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In this paper, considering the multifactor infuence of the knowledge dissemination process, a new ignorant-knower-spreader-
forgetter (IKSF) knowledge dissemination model is proposed, which considers internalization mechanism, degradation
mechanism, communication, and willingness, as well as time-varying and uncertain parameters. First, we prove that the
knowledge loss equilibrium of the model is globally asymptotically stable when the basic reproduction number R0 < 1, and
knowledge is permanent when R0 > 1. Next, improving the willingness of knower individuals and reducing the knowledge
degradation function of spreader individuals canmake the best efect of propagation; a hierarchical control strategy is designed. At
the upper layer, an efective optimal control mechanism of the IKSF knowledge dissemination model is studied to provide optimal
control action and minimization costs. At the lower layer, to guarantee robustness control performance and track the control
targets, an intervention optimal guaranteed cost control strategy for the IKSF knowledge dissemination system with uncertain
parameters is studied. Converting the controller’s design problem into a minimization problem with linear matrix inequalities,
not only the impact of uncertain parameters is reduced but also the propagation efect of the knowledge dissemination model is
guaranteed. Simulation results confrm our method.

1. Introduction

People acquire knowledge mainly to improve their own
quality, but knowledge can not only improve economic
production but also promote social prosperity. Knowledge is
power. With the advent of the information age, knowledge
can be fexibly used in our hands to create what we want; at
this time, knowledge dissemination is essential. For example,
knowledge dissemination plays an important role in social
innovation and competition [1–3]. However, the process of
knowledge transfer is very difcult [4, 5] to describe in the
real world [6]. Terefore, how to describe an accurate
transmission process, in reality, has been puzzling to re-
searchers. To solve this problem, many researchers have
introduced complex networks. Terefore, how to analyze
complex networks becomes particularly important. Jun Hu
reviews the latest state estimation schemes for complex
dynamical networks, especially those over the networked

environment [7]. Rai et al. provide a brief overview of
complex networks, as well as measurements of several key
related concepts, the structure and social impact of complex
networks, and more [8].

In any system, the mechanism plays a fundamental role.
In the ideal state, with a suitable mechanism, even when the
external conditions are uncertain changes, the system can
automatically respond quickly and adjust the original
strategy and measures to achieve the optimization goal.
Mechanism originally refers to how a machine works, but it
can mean diferent things in diferent felds. In the area of
knowledge dissemination, the mechanism represents the
internal law of knowledge dissemination. Tere are a lot of
researchers who have studied this in depth; for example, Cao
et al. [9] took the forgetting mechanism into account and
developed a completely newmodel. Rozewski and Jankowski
[10] integrated self-learning ability into the model and
simulated it with a new method. Furthermore, Wang et al.

Hindawi
Discrete Dynamics in Nature and Society
Volume 2023, Article ID 8862323, 24 pages
https://doi.org/10.1155/2023/8862323

https://orcid.org/0000-0002-7141-8055
https://orcid.org/0000-0001-7135-4226
https://orcid.org/0000-0002-4148-0608
https://orcid.org/0000-0003-3561-075X
mailto:meij0000@163.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/8862323


found in the course of their research that human self-
learning ability can spread knowledge more widely [11].
Chen and Chung [12] found that regular review can indeed
preserve knowledge longer. According to the diferent ways
of knowledge existence, Liao and Yi [13] used an in-
ternalization mechanism to analyze knowledge transmission
in complex networks. So far, many internal mechanisms of
knowledge dissemination have been considered, and they
are incorporated into the model from the abstract space,
which makes the model more vivid and concrete. However,
the mechanisms do not exist in isolation. To work, diferent
mechanisms must echo and complement each other. In
recent years, many researchers have been studying multiple
mechanisms. For example, in the feld of biology, Warren
et al. [14] found that the invasion of plant species in
woodlands is jointly afected by multiple mechanisms. In the
feld of sociology, Tanner [15] found that language pro-
duction is infuenced by multiple mechanisms.

Knowledge transmission is a complex behavior; most of
the existing studies only focus on the infuence of a certain
mechanism in the dissemination process, such as the dis-
semination route [16], self-learning [11], forgetting mech-
anism, forgetting level [9], forgetting review [17], and
internalization mechanisms [13]. However, in real life,
knowledge dissemination is afected by various mechanisms.
For example, knowledge receivers can acquire knowledge in
various ways (self-learning, contact, and communication),
and knowledge disseminators will also lose knowledge due
to forgetting or losing interest. It may happen in real life.
Terefore, it is necessary to comprehensively consider the
process of knowledge dissemination in complex networks
through various mechanisms. We investigate whether the
interaction of multiple mechanisms afects the performance
of knowledge dissemination according to the existing
mechanisms. Specifcally, an ignorant-knower-spreader-
forgetter (IKSF) knowledge propagation model is proposed,
which integrates existing knowledge propagation mecha-
nisms and analyzes the dynamics in scale-free networks.

Te uncertainty of the system is generally divided into
two kinds, namely, the uncertainty of the parameters and the
uncertainty of the unknown function. Te uncertainty of the
parameters mainly means that the parameters will change
over time, and the range of change is known, but the change
in the system is unknown, for example, in engineering
applications, air resistance, and coefcient of friction. Te
uncertainty created by these parameters generally does not
afect the structure of the system. However, the uncertainty
of unknown functions may lead to uncertainty in the system
structure because they are afected by the external envi-
ronment, resulting in their own structure not being de-
termined. In uncertain systems, nonlinear systems tend to
have uncertainties. Tis is because the models’ people de-
signs are often diferent from the real models. In engineering
applications, there will be many external interferences or
errors that cause uncertainty to occur. Many researchers
today are studying the uncertainty of nonlinear systems.
Wang et al. [18] studied the tracking control of uncertain
nonlinear systems under neural networks and proposed
a new adaptive critical framework. Souzanchi-K and

Akbarzadeh-T [19] studied the impedance control of
emotional learning in the brain with time delay, integrating
emotional learning into an uncertain system. Haddad and
Mirkin [20] applied adaptive tracking for uncertain non-
linear systems to urban trafc.

However, in the feld of knowledge dissemination, the
default parameters of the previous knowledge dissemination
model are constant, but in real life, their values changed over
time. When there are uncertain parameters in the system,
whether the system is still stable needs to enter an in-depth
study. To remedy this defect, we introduce a feedback
control strategy to solve the infuence of system parameter
disturbance on system stability [21]. Te introduction of
control will also bring a specifc cost and the investment of
a large number of charges may not be worth the loss, but the
optimal control technology can efectively solve this prob-
lem. Optimal control [22] is simply to optimize the system
by adjusting parameters on the premise of accurately de-
scribing the system. Optimal control has been applied in
many felds, such as simulated annealing algorithms, genetic
algorithms, predictive control, and chaotic optimal control.
In epidemiology, optimal control techniques can be used to
reduce viral infections [23–25]. Diferent from epidemiol-
ogy, the optimal control in knowledge dissemination [26] is
mainly to speed up the dissemination of knowledge while
reducing control costs. To deal with uncertain parameters,
the guaranteed cost control (GCC) technology [21] can not
only solve the stability of the control system but also make
the control system have a good performance level. Te
proposal of GCC solves many practical problems, and in
recent years, it has also been deeply studied [27–31]. For
example, Chen et al. [31] added cost control to the gene
regulation network to make it more precise. Li et al. [30]
imposed cost control on the high-speed travel of the train to
make its description more realistic. In the study, we found
that knowledge dissemination also has the problem of cost
control, which is because the current communication ef-
ciency often relies on a large amount of cost input to im-
prove. People often do not consider the cost for the sake of
high efciency, which is efective but not the best choice.

Tere are other recent works on the robust control of
uncertain systems using the LMI approach. Turki et al. [32]
adopted a state-feedback controller to robustly control the
motion of a 1-DoF double-side impact mechanical oscillator
subject to norm-bounded parametric uncertainties. Gritli
[33] studied the robust calming problem of a class of
continuous-time nonlinear systems and applied it to
a simple helicopter model. He also addressed the problem of
static output feedback (SOF) stabilization for continuous-
time linear systems subject to norm-bounded parameter
uncertainties using the LMI approach [34]. Badri and
Sojoodi investigated the robust stability and stabilization
analysis of interval fractional-order systems with time-
varying delay [35]. Moradi et al. proposed an ofine ro-
bust model predictive control (RMPC) method based on
LMIs to solve vehicle suspension design problems [36].
Nodozi and Rahmani proposed a LMI approach to mixed-
integer model predictive control (MPC) of uncertain hybrid
systems with binary and real-valued control inputs [37].
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Tese studies have great implications for our application in
the feld of knowledge dissemination.

Trough the above description, this paper integrates the
existing mechanism, studies the IKSF propagation model
under multiple mechanisms, also considers the impact of
uncertain parameters on the system, and optimizes the
control.

Te innovations of this paper are as follows:

(1) Te model incorporates self-learning mechanisms,
forgetting mechanisms self-learning ability, com-
munication, willingness, internalization, forgetting
level, etc. At the same time, the prerequisites for the
dissemination of knowledge are derived.

(2) Te time-varying and uncertain parameters are
taken into account in the IKSF model.

(3) Using the optimal control theory to improve the
above given model, the purpose of hierarchical
optimal control is to speed up the spread of
knowledge with the minimum resources consumed.
Te optimal guaranteed cost control technology is
employed to guarantee the stability and robust
performance level of the IKSF model under un-
certain parameters.

Other contents in this article are as follows. In Section 2,
we mainly describe the propagation mechanism of the IKSF
model. In Section 3, we conduct theoretical research on the
IKSF model, including the conditions for judging whether
knowledge can be disseminated, and the study of the
equilibrium point. Section 4 mainly discusses optimal
control strategies, namely, optimal control and optimal cost
control. Section 5 primarily validates the conclusions we
made in the previous sections, including the simulation of
the results of the validation theory, the study of the infuence
of diferent parameters on the four groups of people, and the
application of optimal control and optimal cost control of
uncertain parameters. Finally, the summary is contained in
Section 6.

2. Description

Te design of network topology and the interaction rules
[10] that drive knowledge difusion are two important di-
mensions of knowledge difusion. Generally speaking,
a knowledge transmission model starts with ignorant and
spreader. Ignorant individuals are learning individuals who
resemble susceptible populations in the mode of viral
transmission. Spreader individuals are communicators who
possess the knowledge and share it with their neighbors.
Since knowledge exists in diferent ways, the ignorant in-
dividual absorbs and digests the knowledge frst after being
spread by knowledge, whether he/she is willing to spread it
or not. Individuals who become the third type after ab-
sorbing knowledge are called knowers. Knower refers to an
individual who possesses the knowledge and has the ability
to share knowledge. Te acquisition of knowledge can bring
benefts to people [38]; it can be supposed that ignorant
people like to learn knowledge, but knowers may be

motivated by external conditions to share knowledge.
Spreader individuals may forget knowledge or lose interest
in knowledge in the interference of themselves or external
factors and then degenerate into forgetters; forgetters can
regain knowledge through self-learning and
communication.

Next, we will describe in detail the propagation mechanism
of the IKSF model. When an ignorant individual contacts
a spreader individual, the ignorant individual will change to the
state of the knower individual with probability λ1. Ignorant
individuals can acquire knowledge through instinctive self-
learning abilities; μ1 represents the average self-learning abil-
ity of ignorant individuals. Te knower shares knowledge with
probability δ in response to an external stimulus. Since knower
individuals will not remember their knowledge forever unless
they use knowledge, if knower individuals may lose their
willingness to share knowledge, they will degenerate into ig-
norant individuals with probability ε. Te probability that
a knowledge disseminator will degenerate into an ignorant
individual due to himself/herself or external factors is c. At the
same time, the forgetter individual can regain knowledge
through interaction with the neighbors or self-learning and
return to the state of the knower individual. Let λ2 represent the
probability of the forgetter individual’s secondary interaction
and use μ2 to represent the self-learning rate of the forgetter
individual. Te specifc details of the IKSF model are shown in
Figure 1. In general, all parameters defning a procedure are
nonnegative and λ1 ≠ μ1, λ2 ≠ μ2.

Suppose the system is on a scale-free network with
degree distribution p(k), and the average network degree is
〈k〉 � 􏽐 kp(k), k � 1, 2, . . . , kmax. Let
Ik(t), Kk(t), Sk(t), Fk(t) denote the density of ignorant,
knower, spreader, and forgetter individuals with degrees k at
time t, respectively. Te probability that an ignorant person
is infected by the people around him/her at time t is Θ(t),
and Θ(t) is represented as

Θ(t) �
􏽐kkp(k)Sk(t)

〈k〉
,

k � 1, 2, . . . , kmax,

(1)

where kmax represents the maximum degree of the node.
Applying the mean feld theory, the IKSF model can be

expressed as follows:

dIk(t)

dt
� − λ1k + μ1( 􏼁Ik(t)Θ(t) + εKk(t),

dKk(t)

dt
� λ1k + μ1( 􏼁Ik(t)Θ(t) + λ2k + μ2( 􏼁Fk(t) − δKk(t) − εKk(t),

dSk(t)

dt
� δKk(t) − cSk(t),

dFk(t)

dt
� cSk(t) − λ2k + μ2( 􏼁Fk(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where 0≤ Ik(t), Kk(t), Sk(t), Fk(t)≤ 1.
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For the above model, we analyze the multimechanism
fusion of the knowledge transfer process and model it,
considering the internalization mechanism, degradation
mechanism, communication, willingness, and self-learning,
respectively.

Remark 1. In the existing research study, knowledge dif-
fusion models mainly focus on the infuence of a certain
mechanism, such as self-learning [11], internalization [13],
forgetting [9], and review [17]. However, they did not study
these mechanisms in a single model. Knowledge dissemi-
nation is afected by these mechanisms simultaneously.
Terefore, we should fully consider the impact of multiple
mechanisms on the model.

3. Theoretical Analysis

3.1. Equilibrium Point and Basic Reproduction Number

Theorem 1. Tere are two equilibrium points for system (2);
if R0 < 1, the system has a knowledge loss equilibrium point

E0 � (I01, K0
1, S01, F0

1, . . . , I0kmax
, K0

kmax
, S0kmax

, F0
kmax

), where
I0k � 1, K0

k � 0, S0k � 0, F0
k � 0; if R0 > 1, there is a knowledge-

endemic equilibrium in the system
E∗ � (I∗1 , K∗1 , S∗1 , F∗1 , . . . , I∗kmax

, K∗kmax
, S∗kmax

, F∗kmax
), where

I
∗
k �

λ2k + μ2( 􏼁εc
λ2k + μ2( 􏼁(c + δ) + cδ􏼂 􏼃 λ1k + μ1( 􏼁Θ∗ + λ2k + μ2( 􏼁εc

,

K
∗
k �

λ1k + μ1( 􏼁 λ2k + μ2( 􏼁cΘ∗

λ2k + μ2( 􏼁(c + δ) + cδ􏼂 􏼃 λ1k + μ1( 􏼁Θ∗ + λ2k + μ2( 􏼁εc
,

S
∗
k �

λ1k + μ1( 􏼁 λ2k + μ2( 􏼁δΘ∗

λ2k + μ2( 􏼁(c + δ) + cδ􏼂 􏼃 λ1k + μ1( 􏼁Θ∗ + λ2k + μ2( 􏼁εc
,

F
∗
k �

λ1k + μ1( 􏼁cδΘ∗

λ2k + μ2( 􏼁(c + δ) + cδ􏼂 􏼃 λ1k + μ1( 􏼁Θ∗ + λ2k + μ2( 􏼁εc
,

(3)

and Θ∗(t) � (􏽐kkp(k)Sk(t)/〈k〉) is the only positive root of
the following equation:

f Θ∗( 􏼁 � Θ∗ −
􏽐kkp(k)

〈k〉

λ1k + μ1( 􏼁 λ2k + μ2( 􏼁δΘ∗

λ2k + μ2( 􏼁(c + δ) + cδ􏼂 􏼃 λ1k + μ1( 􏼁Θ∗ + λ2k + μ2( 􏼁εc
. (4)

Proof. Substituting E0 � (1, 0, 0, 0, . . . , 1, 0, 0, 0) into equa-
tion (2), it is easy to see that E0 is the solution to equation (2).

Next to prove the equilibrium of E∗, according to the sta-
bility condition of system (2), we obtain

− λ1k + μ1( 􏼁Ik(t)Θ(t) + εKk(t) � 0,

λ1k + μ1( 􏼁Ik(t)Θ(t) + λ2k + μ2( 􏼁Fk(t) − δKk(t) − εKk(t) � 0,

δKk(t) − cSk(t) � 0,

cSk(t) − λ2k + μ2( 􏼁Fk(t) � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

Te solution in (5) can be obtained as

Ignorant Knower Spreader Forgetter
λ1

Communication Willing degeneration

μ1

Self-Learning
Self-Learning

μ2

λ2

CommunicationLose willing

ε

γб

Figure 1: Structure of the IKSF knowledge transmission process.
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I
∗
k �

λ2k + μ2( 􏼁εc
λ2k + μ2( 􏼁(c + δ) + cδ􏼂 􏼃 λ1k + μ1( 􏼁Θ∗ + λ2k + μ2( 􏼁εc

,

K
∗
k �

λ1k + μ1( 􏼁 λ2k + μ2( 􏼁cΘ∗

λ2k + μ2( 􏼁(c + δ) + cδ􏼂 􏼃 λ1k + μ1( 􏼁Θ∗ + λ2k + μ2( 􏼁εc
,

S
∗
k �

λ1k + μ1( 􏼁 λ2k + μ2( 􏼁δΘ∗

λ2k + μ2( 􏼁(c + δ) + cδ􏼂 􏼃 λ1k + μ1( 􏼁Θ∗ + λ2k + μ2( 􏼁εc
,

F
∗
k �

λ1k + μ1( 􏼁cδΘ∗

λ2k + μ2( 􏼁(c + δ) + cδ􏼂 􏼃 λ1k + μ1( 􏼁Θ∗ + λ2k + μ2( 􏼁εc
.

(6)

Substituting the third equation of (3) into (1), Θ∗ can be
converted to the following form:

Θ∗ �
􏽐kkp(k)

〈k〉

λ1k + μ1( 􏼁 λ2k + μ2( 􏼁δΘ∗

λ2k + μ2( 􏼁(c + δ) + cδ􏼂 􏼃 λ1k + μ1( 􏼁Θ∗ + λ2k + μ2( 􏼁εc
. (7)

It can be seen that (HTML  translation  failed) is the
solution of system (2); next, we discuss the nontrivial so-
lution of Θ∗ ∈ (0, 1) in system (2).

Defning

f Θ∗( 􏼁 � Θ∗ −
􏽐kkp(k)

〈k〉

λ1k + μ1( 􏼁 λ2k + μ2( 􏼁δΘ∗

λ2k + μ2( 􏼁(c + δ) + cδ􏼂 􏼃 λ1k + μ1( 􏼁Θ∗ + λ2k + μ2( 􏼁εc
, (8)

it is easy to obtain

df Θ∗( 􏼁

dΘ∗
� 1 −

1
〈k〉

􏽘 kp(k)
ABδ (B(c + δ) + cδ)AΘ∗ + Bεδ􏼂 􏼃 − [B(c + δ) + cδ]A

2
BδΘ∗

(B(c + δ) + cδ)AΘ∗ + Bεc􏼂 􏼃
2 , (9)

where A � (λ1k + μ1) and B � (λ2k + μ2). It is easy to see that (df2(Θ∗)/dΘ∗ 2)> 0 and satisfed
f(0) � 0, while

f(1) � 1 −
􏽐kkp(k)

〈k〉

λ1k + μ1( 􏼁 λ2k + μ2( 􏼁δΘ∗

λ2k + μ2( 􏼁(c + δ) + cδ􏼂 􏼃 λ1k + μ1( 􏼁Θ∗ + λ2k + μ2( 􏼁εc
> 0, k � 1, 2, . . . , kmax. (10)

To allow the existence of an extraordinary solution, the
inequality

df Θ∗( 􏼁

dΘ∗
� 1 −

1
〈k〉

􏽘 kp(k)
Aδ
εc
< 0, (11)

must be satisfed.
Terefore,

R0 �
δ
εc

λ1
〈k2〉
〈k〉

− 1􏼠 􏼡 + μ1 1 −
1

〈k〉
􏼠 􏼡􏼠 􏼡. (12)

To sum up, when R0 < 1,Θ∗ has no nontrivial solution at
(0, 1) (see Figure 2(a)). When R0 > 1, Θ∗ has only one
nontrivial solution at (0, 1) (see Figure 2(b)).

Ten, we have the following: when R0 < 1, system (2) has
a knowledge-free equilibrium E0 � (1, 0, 0, 0, . . . , 1, 0, 0, 0);
when R0 > 1, system (2) has a knowledge-endemic
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equilibrium E∗ � (I∗1 , K∗1 , S∗1 , F∗1 , . . . , I∗kmax
, K∗kmax

, S∗kmax
,

F∗kmax
). □

3.2. Stability Analysis

Theorem 2. If R0 < 1, then the knowledge loss equilibrium E0

of system (2) is globally asymptotically stable.

Proof. For a sufciently small ε1 > 0, there exists t1 > 0 such
that when t> t1, there is Ik(t)≤ I0k + ε1, where I0k � 1.

Te second formula of system (2) has (dKk(t )/dt)

≤ (λ1k + μ1)Θ(t)(I0k + ε1) − εK + k(t), t⟶∞.
For ε2 > 0 small enough, there exists t2 > 0 such that

when t> t2, Kk(t)≤ ((λ1k + μ1)Θ(t)(I0k + ε1)/ε) + ε2.

When t> max (t1, t2), we have
(Sk(t)/dt) ≤ δ((λ1k + μ1)Θ(t)(I0k + ε1)/ε) + ε2δ − cSk(t).

Tis is enough to prove that the positive solution of the
following auxiliary system tends to zero as t tends to infnity:

d􏽥Sk(t)

dt
� δ

λ1k + μ1( 􏼁Θ(t) I
0
k + ε1􏼐 􏼑

ε
+ ε2δ − cSk(t), (13)

where 􏽥Θ(t) � (􏽐kkp(k)􏽥Sk(t)/〈k〉).
Let 􏽥Sk(0) � Sk(0); there is 􏽥Sk(0)≤ Sk(0).
Te Lyapunov function is defned as follows:

L(t) � (􏽐kkp(k)􏽥Sk(t)/〈k〉).
L(t) is derived along system (13) to obtain

L
′
(t) �

1
〈k〉

􏽘
k

kp(k) δ
λ1k + μ1( 􏼁Θ(t) I

0
k + ε1􏼐 􏼑

ε
+ ε2δ − c⎡⎣ ⎤⎦

≤ c 􏽥Θ(t)
1

〈k〉
􏽘
k

kp(k)
δ λ1k + μ1( 􏼁 1 + ε1( 􏼁

ε
− 1⎡⎣ ⎤⎦ + ε2δ 1 −

1
〈k〉

􏼠 􏼡

� c 􏽥Θ(t) R0 1 + ε1( 􏼁 − 1􏼂 􏼃 + ε2δ 1 −
1

〈k〉
􏼠 􏼡.

(14)

For R0 < 1, when t⟶∞, ε1, ε2 is small enough to make
L′(t)< 0. Guaranteed (dL(t)/dt)≤ 0 for all 􏽥Sk(t)≥ 0 and
􏽥Sk(t) � 0 only if (dL(t)/dt) � 0. It can be known from the
comparison theorem that when t tends to infnity, the so-
lution of system (2) tends to 0, that is,

lim
t⟶ +∞

Sk(t) � 0. (15)

Te proof of Teorem 2 is completed. □

Theorem 3. If R0 > 1, knowledge will always be preserved;
i.e., there is a constant ζ > 0 such that

lim
t⟶ +∞

inf S(t) � lim
t⟶ +∞

inf􏽘
k

kp(k)Sk(t)> ζ. (16)

Proof. Using the results in [39], we can get the knowledge is
permanent; Liu and Zhang [40] provide the relevant
theorem.

Defning

X � I1, K1, S1, F1, . . . , Ikmax
, Kkmax

, Skmax
, Fkmax

􏼐 􏼑: Ik, Kk, Sk, Fk ≥ 0, Ik + Kk + Sk + Fk � 1􏽮 􏽯,

X0 � I1, K1, S1, F1, . . . , Ikmax
, Kkmax

, Skmax
, Fkmax

􏼐 􏼑 ∈ X: 􏽘
k

p(k)Sk > 0
⎧⎨

⎩

⎫⎬

⎭,

zX0 � X\X0,

(17)

where k � 1, 2, .., kmax, X is the feasible region of system (2).
Clearly, X is positively invariant to system (2). From the

third equation of system (2), (􏽐kp(k)Sk(t))′ ≥ −

c􏽐kp(k)Sk(t) is easily obtained.

Because of 􏽐kkp(k)Sk(t)> 0, it can be seen that
􏽐kp(k)Sk(t)≥􏽐kp(k)Sk(0)e− ct > 0 indicates that X0 is
positive and invariant, and there exists a compact set B

where all solutions initiated by system (2) in X go into B and
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exist forever; for this set B, this condition is easily verifed
in [39].

Defning the following set,

Mz � Ik(0), Kk(0), Sk(0), Fk(0)( 􏼁: Ik(t), Kk(t), Sk(t), Fk(t)( 􏼁 ∈ zX0, k � 1, 2, . . . , kmax, t≥ 0􏼈 􏼉,

Ω � ∪ ω(y)􏼈 􏼉, y ∈Mz,
(18)

where ω(y) is the limit set of model (2).
According to Mz, we rewrite the system:

Ik(t) � εKk(t),

Kk(t) � λ2k + μ2( 􏼁Fk(t) − δKk(t) − εKk(t),

Sk(t) � δKk(t) − cSk(t),

Fk(t) � cSk(t) − λ2k + μ2( 􏼁Fk(t).

(19)

It is easy to show that system (19) has a unique equi-
librium E0 on X. Hence, E0 is the only equilibrium of system
(2) in Mz. Since (19) is a linear system, it is easy to prove that
E0 is globally asymptotically stable. Hence, Ω � E0􏼈 􏼉, where

E0 is a cover ofΩ, and E0 is isolated acyclic. Next, we proved
that E0 is the weak repulsion force of X0, that is,

lim
t⟶ +∞

sup dist Ik(t), Kk(t), Sk(t), Fk(t)( 􏼁, E
0

􏼐 􏼑> 0,

(20)

where ((Ik(t), Kk(t), Sk(t), Fk(t)), E0) is any solution with
the initial value on X0. According to Lemma 3.5 in [41], it is
only necessary to prove Ws(E0)∩X0 � ∅, where Ws(E0) is
the stable manifold of E0. By contradiction, assuming it is
incorrect, then there is a solution
((Ik(t), Kk(t), Sk(t), Fk(t)), E0) ∈ X0, such that

Ik(t)⟶ 1, Kk(t)⟶ 0, Sk(t)⟶ 0, Fk(t)⟶ 0, as t⟶∞. (21)

For R0 � (δ/εc)(λ1((〈k2〉/〈k〉) − 1) + μ1(1 − (1/〈k〉)))

> 1, we choose a sufciently small δ > 0, η> 0, such that

δ
εc

λ1
〈k2〉
〈k〉

− 1􏼠 􏼡 + μ1 1 −
1

〈k〉
􏼠 􏼡􏼠 􏼡(1 − σ) − η> 1. (22)

From (21), we know that there is t> t3, such that

1 − σ < Ik(t)< 1 + σ, 0≤Kk(t)< σ, 0≤ Sk(t)< σ, 0≤Fk(t)< σ, k � 1, 2, . . . , kmax. (23)

1

f (θ)

1

f (1)

0 θ

(a)

f (θ)

1

1

f (1)

0 θ
θ*

(b)

Figure 2: Diagram of solutions for f(Θ) in diferent cases.
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From the second equation of system (2), we can obtain

dKk(t)

dt
≥ λ1k + μ1( 􏼁Θ(t)Ik(t) + λ2k + μ2( 􏼁Fk(t) − εKk(t).

(24)

When t⟶∞, from (21), we obtain

dKk(t)

dt
≥ λ1k + μ1( 􏼁Θ(t)Ik(t) − εKk(t). (25)

For t> t4, there exists t4 > 0 such that

Kk(t)≥
λ1k + μ1( 􏼁

ε
− ε3􏼢 􏼣Θ(t)Ik(t), (26)

where ε3 is an arbitrary constant.
Let W(t) � 􏽐kkp(k)Sk(t); we have

W
′
(t) � 􏽘

k

kp(k) δ
λ1k + μ1( 􏼁

ε
− ε3􏼢 􏼣Θ(t)Ik(t) − cSk(t)􏼨 􏼩

≥􏽘
k

kp(k)Sk(t) δ
λ1k + μ1( 􏼁

ε
− ε3􏼢 􏼣

1
〈k〉

􏽘
k

kp(k)(1 − σ) − c
⎧⎨

⎩

⎫⎬

⎭

� c􏽘
k

kp(k)Sk(t) R0(1 − η) − 1 − 1 −
1

〈k〉
􏼠 􏼡

δε3(1 − σ)

c
􏼢 􏼣

� c􏽘
k

kp(k)Sk(t) R0(1 − σ) − 1 − η􏼂 􏼃

� ψW(t).

(27)

For all t> max (t3, t4), there is

ψ � c
δ
εc

λ1
〈k2〉
〈k〉

− 1􏼠 􏼡 + μ1 1 −
1

〈k〉
􏼠 􏼡􏼠 􏼡(1 − σ) − η􏼢 􏼣,

(28)

where

η � 1 −
1

〈k〉
􏼠 􏼡

δε3(1 − σ)

c
. (29)

Terefore, when t⟶∞, W(t)⟶∞, which con-
tradicts the assumption; hence, the theorem holds. □

4. Optimal Control Strategy

4.1. Analysis of Optimal Control. As we all know, knowledge
dissemination has a positive impact on enterprise devel-
opment and social innovation. Terefore, intervention
control strategies can be introduced into the knowledge
difusion system inspired by the infectious disease control
model (2). Te benefts of control strategies are capable of
increasing the number of spreader individuals to speed up
knowledge difusion, but the introduction of the control
strategy will also increase a lot of costs inevitably, so the
optimal control is considered here; that is, the objective
function should not only maximize the efect of knowledge
difusion but also reduce business costs as much as possible.

Tis section mainly modulates the knowledge dissemi-
nation process by introducing an intervention controller.
Te specifc details of the IKSF model with two controllers

are shown in Figure 3. Specifc descriptions of the in-
terventions are as follows.

4.1.1. Motivation. By establishing a reward mechanism, the
willingness of knower individuals can be increased, which in
turn motivates them to continue learning. When they keep
learning and receiving material rewards, the probability of
knower individuals choosing to become knowledge
spreaders is ι1(0≤ ι1 ≤ 1) under a predefned period of time.
Furthermore, continuing learning intensity is denoted by u1.
Te minimum sleep time for people is 6 h [42]. We assume
that the time spent engaging in activities necessary for
survival is 1 h and that people are fully engaged in learning.
Terefore, the maximum learning intensity u1max is 17 h per
day, and u1 can be expressed as

u1 �
u1

u1max
, (30)

where u1 is the current learning intensity.

4.1.2. Enhancement. We reduce the knowledge degradation
of individual spreaders by establishing a supervision
mechanism and formulating excellent learning methods.
Tis can be achieved by increasing the frequency of review.
Similarly, the probability of a knowledge spreader becoming
a knowledge forgetter after completing the above behavior is
ι2(0≤ ι2 ≤ 1) under a predefned period of time. In addition,
the review frequency is denoted by u2. Te shortest memory
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cycle is 5min [43]. Terefore, the maximum revision fre-
quency u2max is 288 per day, and u2 can be expressed as

u2 �
u2

u2max
, (31)

where u2 is the current review frequency.
According to the above description, when we add the

two intervention controllers into model (2), the system is
written as

dIk(t)

dt
� − λ1k + μ1( 􏼁Ik(t)Θ(t) + εKk(t),

dKk(t)

dt
� λ1k + μ1( 􏼁Ik(t)Θ(t) + λ2k + μ2( 􏼁Fk(t) − δ + ι1u1( 􏼁Kk(t) − εKk(t),

dSk(t)

dt
� δ + ι1u1( 􏼁Kk(t) − c − ι2u2( 􏼁Sk(t),

dFk(t)

dt
� c − ι2u2( 􏼁Sk(t) − λ2k + μ2( 􏼁Fk(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

According to the above description, the cost function
should be set to the number of knowledge disseminators
minus the cost of the controller.Te objective function of the
control model (32) is defned as follows:

J u1, u2( 􏼁 � 􏽚
tf

0
Sk −

c1

2
u
2
1 −

c2

2
u
2
2􏼒 􏼓dt, (33)

where tf represents the fnal time, c1 and c2 are the weight
constants to increase the willingness and reduce the deg-
radation of knowledge, respectively, and (c1/2)u2

1 and
(c2/2)u2

2 are represented the cost of two control strategies.
Te objective function is as follows:

J u
∗
1 , u
∗
2( 􏼁 � max

u1,u2∈Ψ
J u1, u2( 􏼁, (34)

where u1 and u2 are unknown control rate, and the control
range is as follows:

Ψ � u1, u2( 􏼁 | 0≤ ui ≤ 1, ui is lebesguemeasurable, i � 1, 2.􏼈 􏼉.

(35)

Te existence of the optimal control pair can be obtained
using a result by Fleming and Rishel in [44] and by Lukes in
[45]. When ui � 0, i � 1, 2, it means that there is no in-
vestment in the control strategy. When ui � 1, i � 1, 2, it
means that the investment cost is the largest, and the control
strategy has the best efect. For the maximization problem

Ignorant Knower Spreader Forgetter
λ1

Communication

б+u1

Willing

γ–u2

degeneration

λ2

CommunicationLose willing

Self-Learning
Self-Learning

μ1
μ2

ε

Figure 3: Schematic diagram of knowledge dissemination with controllers.
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(34) of system (32), it can be transformed into a Hamiltonian
problem of maximization by applying Pontryagin’s

maximum value theorem. Here, the Hamiltonian of the
control system (32) is denoted as H:

H � Sk −
c1

2
u
2
1 −

c2

2
u
2
2 + η1

dIk

dt
+ η2

dKk

dt
+ η3

dSk

dt
+ η4

dFk

dt

� Sk −
c1
2

u
2
1 −

c2
2

u
2
2

+ η1 − λ1k + μ1( 􏼁Ik(t)Θ(t) + εKk(t)􏼂 􏼃

+ η2 λ1k + μ1( 􏼁Ik(t)Θ(t) + λ2k + μ2( 􏼁Fk(t) − δ + ι1u1( 􏼁Kk(t) − εKk(t)􏼂 􏼃

+ η3 δ + ι1u1( 􏼁Kk(t) − c − ι2u2( 􏼁Sk(t)􏼂 􏼃

+ η4 c − ι2u2( 􏼁Sk(t) − λ2k + μ2( 􏼁Fk(t)􏼂 􏼃.

(36)

Te optimal solution of the control system (32) is
discussed next.

Theorem 4. Under the initial condition
(Ik(0), Kk(0), Sk(0), Fk(0)), problem (32) has a unique so-
lution (I∗k (0), K∗k (0), S∗k (0), F∗k (0)) and (u∗1 , u∗2 ) on [0, tf],
where

u
∗
1 � max 0, min

η3 − η2( 􏼁ι1Kk

c1
, 1􏼨 􏼩􏼨 􏼩,

u
∗
2 � max 0, min

η3 − η4( 􏼁ι2Sk

c2
, 1􏼨 􏼩􏼨 􏼩.

(37)

Furthermore, there exists an adjoint function satisfed as

dη1
dt

� −
zH(t, x, u, η)

zIk

� η1 − η2( 􏼁 λ1k + μ1( 􏼁Θ(t),

dη2
dt

� −
zH(t, x, u, η)

zKk

� δ + ι1u1 + ε( 􏼁η2 − η1ε − η3 δ + ι1u1( 􏼁,

dη3
dt

� −
zH(t, x, u, η)

zSk

� − 1 + η1 − η2( 􏼁 λ1k + μ1( 􏼁Ik(t)
􏽐kkp(k)

〈k〉
+ η3 − η4( 􏼁 c − ι2u2( 􏼁,

dη4
dt

� −
zH(t, x, u, η)

zFk

� η4 − η2( 􏼁 λ2k + μ2( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(38)

where the transversal conditions are η1(tf) � 0, η2(tf) � 0,

η3(tf) � 0, and η4(tf) � 0.
Proof. We apply Pontryagin’s maximum value theorem to
Hamiltonian to fnd the optimal solution of the system. If
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(x, u) is the optimal solution to an optimal control problem,
where x � (Ik, Kk, Sk, Fk)T and u � (u1, u2)

T, there is
a function η � (η1, η2, η3, η4) that satisfes the following
equation:

dη1
dt

� −
zH(t, x, u, η)

zη1
,

dη2
dt

� −
zH(t, x, u, η)

zη2
,

dη3
dt

� −
zH(t, x, u, η)

zη3
,

dη4
dt

� −
zH(t, x, u, η)

zη4
,

dη1
dt

� −
zH(t, x, u, η)

zIk

� η1 − η2( 􏼁 λ1k + μ1( 􏼁Θ(t),

dη2
dt

� −
zH(t, x, u, η)

zKk

� δ + ι1u1 + ε( 􏼁η2 − η1ε − η3 δ + ι1u1( 􏼁,

dη3
dt

� −
zH(t, x, u, η)

zSk

� − 1 + η1 − η2( 􏼁 λ1k + μ1( 􏼁Ik(t)
􏽐kkp(k)

〈k〉
+ η3 − η4( 􏼁 c − ι2u2( 􏼁,

dη4
dt

� −
zH(t, x, u, η)

zFk

� η4 − η2( 􏼁 λ2k + μ2( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)

where the transversal conditions are
η1(tf) � 0, η2(tf) � 0, η3(tf) � 0, and η4(tf) � 0.

Next, we will solve the maximization problem of
equation (33); let

0 �
zH(t, x, u, η)

zu1
,

0 �
zH(t, x, u, η)

zu2
.

(40)

We obtain

u
∗
1 �

0, u1 ≤ 0,

η3 − η2( 􏼁ι1Kk

c1
, 0≤ u1 ≤ 1,

1, u1 ≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
∗
2 �

0, u2 ≤ 0,

η3 − η4( 􏼁ι2Sk

c1
, 0≤ u2 ≤ 1,

1, u2 ≥ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(41)

Ten, we get that the optimal control problem (32) has
a unique optimal solution (I∗k (t), K∗k (t), S∗k (t), F∗k (t)) and
(u∗1 , u∗2 ) on [0, tf] to maximize the objective function (32).

Since the purpose of introducing the control strategy in
this paper is to promote faster knowledge difusion and
increase the number of knowledge disseminators, so default
here R0 > 1; we do not discuss when R0 < 1. □

Remark 2. When R0 > 1, the stability of the knowledge-
endemic equilibrium of the control system (32) based on
optimal control is globally asymptotically stable.

4.2. Guaranteed Cost Control under Uncertain Parameters.
When there are multiple time-varying parameters in the
system, the stability of the optimal controller of the
system may not be guaranteed. As shown in Figure 4,
when the willingness rate δ changes with time, the
number of knowledge disseminators will no longer be
stable, and the stability of the system may not be guar-
anteed. However, the control strategy of guaranteed cost
control can efectively solve this problem.

Taking into account the uncertainty of the parameters,
we get system (42), and the uncertain parameters of the
control system (42) are expressed as follows:
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dIk(t)

dt
� − λ1(t)k + μ1(t)( 􏼁Ik(t)Θ(t) + ε(t)Kk(t),

dKk(t)

dt
� λ1(t)k + μ1(t)( 􏼁Ik(t)Θ(t) + λ2(t)k + μ2(t)( 􏼁Fk(t) − δ(t) + ι1u1( 􏼁Kk(t) − ε(t)Kk(t),

dSk(t)

dt
� δ(t) + ι1u1( 􏼁Kk(t) − c(t) − ι2u2( 􏼁Sk(t),

dFk(t)

dt
� c(t) − ι2u2( 􏼁Sk(t) − λ2(t)k + μ2( 􏼁Fk(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(42)

Unlike most existing knowledge propagation models
with constant parameters, the time-varying uncertainty
parameters λ1(t), λ2(t), μ1(t), μ2(t), ε(t), δ(t), c(t) in the
above control system are expressed as follows:

λ1(t) � λ1 + ∆λ1, λ2(t) � λ2 + ∆λ2,
μ1(t) � μ1 + ∆μ1, μ2(t) � μ2 + ∆μ2,
ε(t) � ε + ∆ε, δ(t) � δ + ∆δ, c(t) � c + ∆c,

⎧⎪⎪⎨

⎪⎪⎩
(43)

where λ1, λ2, μ1, μ2, ε, δ, c are constant, representing the normal
state of knowledge disseminating individuals without external

intervention. And ∆λ1,∆λ2,∆μ1,∆μ2,∆ε,∆δ,∆c are uncertain
parameters, which can be time-varying, representing the fuc-
tuation of knowledge dissemination to individuals around the
range of constant parameters under the intervention of external
conditions. And satisfying norm-bounded uncertainty, u1 and
u2 are the control input. By considering the individual’s time-
varying willingness parameter, time-varying self-learning pa-
rameter, time-varying communication parameter, and time-
varying degradation parameter, the system can be rewritten to
obtain

dIk(t)

dt
� − λ1 + ∆λ1( 􏼁k + μ1 + ∆μ1( 􏼁( 􏼁Ik(t)Θ(t) +(ε + ∆ε)Kk(t),

dKk(t)

dt
� − λ1 + ∆λ1( 􏼁k + μ1 + ∆μ1( 􏼁( 􏼁Ik(t)Θ(t) + λ2 + ∆λ2( 􏼁k(

+ μ2 + ∆μ2( 􏼁􏼁Fk(t) − (δ + ∆δ) + ι1u1( 􏼁Kk(t) − (ε + ∆ε)Kk(t),

dSk(t)

dt
� (δ + ∆δ) + ι1u1( 􏼁Kk(t) − (c + ∆c) − ι2u2( 􏼁Sk(t),

dFk(t)

dt
� (c + ∆c) − ι2u2( 􏼁Sk(t) − λ2 + ∆λ2( 􏼁k + μ2 + ∆μ2( 􏼁( 􏼁Fk(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(44)

Let u(t) � (u1, u2)
T and x(t) � (Ik, Kk, Sk, Fk)T; we re-

write system (44) as the following state feedback control system:

_x(t) � A(x)x(t) + ∆A(x)x(t) + Bu(t), (45)

where

A(x) �

− λ1k + μ1( 􏼁Θ ε 0 0

λ1k + μ1( 􏼁Θ − (δ + ε) 0 λ2k + μ2( 􏼁

0 δ − c 0

0 0 c − λ2k + μ2( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

∆A(x) �

− ∆λ1k + ∆μ1( 􏼁Θ ∆ε 0 0

∆λ1k + ∆μ1( 􏼁Θ − (∆δ + ∆ε) 0 ∆λ2k + ∆μ2( 􏼁

0 ∆δ − ∆c 0

0 0 ∆c − ∆λ2k + ∆μ2( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B �

0 0

− ι1Kk 0

ι1Kk ι2Sk

0 ι2Sk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(46)
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Considering an uncertain continuous nonlinear system,
_x(t) � A(x)x(t) + ∆A(x)x(t) + Bu(t), where A(x) is
a polynomial matrix with respect to x.

Because 0≤ λ1, λ2, μ1, μ2, ε, δ, c≤ 1 and
0≤ λ1(t), λ2(t), μ1(t), μ2(t), ε(t), δ(t), c(t)≤ 1, then
0≤∆λ1,∆λ2,∆μ1,∆μ2,∆ε,∆δ,∆c≤ 1. ∆A(x) is the norm-
bounded uncertainty caused by the time-varying parame-
ters of the system, satisfying the following formula:

∆A(x) � DF(x(t))E, (47)

where

D �

− k
􏽐kkp(k)

〈k〉
0 −

􏽐kkp(k)

〈k〉
0 1 0 0

k
􏽐kkp(k)

〈k〉
k

􏽐kkp(k)

〈k〉
1 − 1 − 1 0

0 0 0 0 0 1 − 1

0 − k 0 − 1 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

E �

1 0 0 0

0 0 0 1

1 0 0 0

0 0 0 1

0 1 0 0

0 1 0 0

0 0 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

F(x(t)) �

∆λ1Sk(t) 0 0 0 0 0 0

0 ∆λ2 0 0 0 0 0

0 0 ∆μ1Sk(t) 0 0 0 0

0 0 0 ∆μ2 0 0 0

0 0 0 0 ∆ε 0 0

0 0 0 0 0 ∆δ 0

0 0 0 0 0 0 ∆c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(48)

Because of 0≤∆λ1Sk(t) and∆λ2,∆μ1Sk(t),∆μ2,
∆ε,∆δ,∆c≤ 1, the elements of the uncertain matrix F(x(t))

are Lebegue measurable and satisfy

F
T
(x(t))F(x(t))≤ I, (49)

where I is the identity matrix of the appropriate dimension
and D and E are the known matrices of the appropriate

dimension. For the uncertain item ∆A(x), when it satisfes
the above conditions, it is said to be admissible.

For the guaranteed cost control of knowledge dissemi-
nation, a lower cost should be guaranteed when the level of
knowledge dissemination is high. Te requirement for
knowledge dissemination becomes even more important
when investment costs are low. We consider the number of
knowledge disseminators in the system as the performance
of knowledge dissemination. Te cost functions that are
defned as related to knowledge propagation control are as
follows:

J � 􏽚
∞

0
x(t) − x

∗
( 􏼁

T
Q x(t) − x

∗
( 􏼁 + u(t) − u

∗
􏼁

T
R u(t) − u

∗
( 􏼁􏼐 􏼑dt􏼐 ,

(50)

where Q and R are positive defnite weighting matrices and
x∗ and u∗ are the optimal state and control action calculated
byTeorem 4.Te frst part of the integral in (50) represents
the performance level of knowledge in the process of dis-
semination and the second part represents the cost input in
the process of knowledge dissemination. To solve the op-
timal control of knowledge dissemination, we design the
control law as

u(t) � Kx(t), (51)

where K is the income matrix, such that the closed-loop
system is cost-guaranteed for all admissible uncertainties
(47), and the corresponding performance metric does not
exceed a certain upper bound:

_x(t) � (A(x) + DFE + BK)x(t). (52)

Lemma 1. (Schur complementary lemma [46]). For a given
symmetric matrix,

S �
S11 S12

S21 S22
􏼠 􏼡, (53)

with ST
11 � S11, ST

22 � S22, and the following three conditions
are equivalent:

(1) S< 0
(2) S11 < 0, S22 − ST

12S
− 1
11S12 < 0

(3) S22 < 0, S11 − S12S
− 1
22ST

12 < 0

Lemma 2 (see [47]). Given matrices Y, D, and E of ap-
propriate dimensions, where Y is symmetric, then there is
the following formula: Y + DFE + ETFTDT < 0. For the
matrix F, there is a condition for FT(t)F(t) ≤ I to be
established; the necessary and sufcient condition for the
Y + DFE + ETFTDT < 0 condition to be established is that
there is a constant ε> 0 that satisfesY + εDDT + ε− 1ETE< 0.

Defnition 1. For the knowledge propagation control model
(44) and the cost function (50), if there is a controller u(t)

and a positive value J∗ such that the input cost conforms to
the performance level in the knowledge propagation process
and the system is asymptotically stable, then J∗ is called the
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upper bound of the performance of system (45) and u(t) is
the state feedback guaranteed cost controller of the uncertain
control system, where the value of its cost function (50)
satisfes J≤ J∗.

Theorem  . For uncertain continuous systems (45) and
performance indicators (50), if there is a symmetric positive
defnite matrix L, the positive defnite matrix P and matrix K

are such that, for all allowable uncertainties, inequality (54) is
satisfed:

Q + K
T
RK + P(DFE + BK) +(DFE + BK)

T
P + L

T
P + PL< 0.

(54)

Ten, (51) is called the guaranteed cost control law of
system (45); J � xT(0)Px(0) is the corresponding upper
bound of system performance at this time.

Proof. Suppose there are matrices P and K that satisfy the
conditions; for uncertainties, inequality (54) will hold, and
let u(t) � Kx(t).

We change system (52) to

_x(t) � f(t, x) +(DFE + BK)x(t). (55)

According to the strategy of [48], where A(x) in the
function is a piecewise continuous function with respect to t
in any fnite time interval [t0, t1], the elements of A(x) are
bounded, which can be simplifed by the elementary
transformation of the matrix as follows:

A(x) �

− λ1k + μ1( 􏼁Θ ε 0 0

0 − δ c 0

0 0 − c λ2k + μ2
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (56)

where

‖A(x)‖ � max − λ1k + μ1( 􏼁Θ, ε − δ, 0, λ2k + μ2􏼈 􏼉. (57)

Terefore, ‖A(x)‖≤ a; for all x, y ∈ Rn and t ∈ [t0, t1],
there is
‖f(t, x) − f(t, y)‖ � ‖A(x)x − A(y)y‖ ≤ ‖a(x − y)‖

� L‖(x − y)‖. So, f(t, x) � A(x)x is a nonlinear function
satisfying the Lipschitz condition and f(t, x)≤ Lx.

We defne the Lyapunov function
V(x(t)) � xT(t)Px(t).

Taking the derivation of the above formula along system
(52), we obtain

_V(x(t)) � _x
T
(t)Px(t) + x

T
(t)P _x(t)

� [f +(DFE + BK)x]
T
Px + x

T
P[f +(DFE + BK)x]

� f
T
Px + x

T
(DFE + BK)

T
Px + x

T
Pf + x

T
P(DFE + BK)x

≤x
T
L

T
Px + x

T
(DFE + BK)

T
Px + x

T
PLx + x

T
P(DFE + BK)x

� x
T

L
T
P +(DFE + BK)

T
P + PL + P(DFE + BK)􏽨 􏽩x.

(58)

From (54), we obtain

_V(x(t)) <x
T

(t) − K
TRK − Q􏽨 􏽩x(t). (59)

Furthermore, we integrate the time t from 0 to ∞ on
both sides of the above formula, since system (52) is stable,
so V(x(∞)) � 0; then, we obtain

􏽚
∞

0
x

T
(t) − K

T
RK − Q􏽨 􏽩x(t)dt≤V(x(0)) � x

T
(0)Px(0),

(60)

where Q + KTRK is the income brought by the weight of the
performance indicator function to the state quantity plus the
weight of the control quantity.

Defned by Defnition 1, the proof is completed.
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Figure 4: When δ changes over time, the density changes the curve of Sk(t).
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Te condition in Teorem 5 contains the uncertainty
matrix F, so all allowable uncertainty matrices F are tested.
We give an equivalent characterization of this condition by
the following theorem. □

Theorem 6. Tere exist matrices P, L, and K such that, for all
admissible uncertainties, matrix inequality (54) holds if and
only if there exists a scalar ε> 0; symmetric positive defnite
matrices X and W such that

BW +(BW)
T

+ XL
T

+ LX + εDD
T ∗ ∗ ∗

W − R
− 1 ∗ ∗

EX 0 − εI ∗

X 0 0 − Q
− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
< 0.

(61)

If matrix inequality (61) has a feasible solution (ε, W, X),
then

u(t) � WX
− 1

x(t), (62)

is a guaranteed cost control law of system (45), and the
maximum of system performance is

J � tr X
− 1

􏼐 􏼑 � J
∗
. (63)

Proof. We defne Y � Q + KTRK + PBK + (BK)TP + LTP

+PL.
Ten, the matrix inequality (54) can be written as

Y + PDFE + ETFT(PD)T < 0. According to Lemma 2, the
matrix inequality above holds for all indeterminate matrices
F satisfying FT(t)F(t) ≤ I if there is a scalar ε> 0, such that
Y + εPDDTPT + ε− 1ETE< 0. Further applying the matrix
Schur complement property, we obtain

PBK +(BK)
T
P + L

T
P + PL + εPDDT

P ∗ ∗ ∗

K − R
− 1 ∗ ∗

E 0 − εI ∗

I 0 0 − Q
− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
< 0.

(64)

Multiplying left and right by diag(P− 1, I, I, I), re-
spectively, in matrix inequality (64), let
X � P− 1, W � KP− 1, then (61) can be obtained; the matrix
inequality (64) is a linear matrix inequality about the
variable ε, X, W, so the solver feasp in the LMI toolbox
can be used to judge the feasibility of the linear matrix
inequality. Furthermore, if the inequality has a feasible
solution (ε, X, W), then (62) gives a parametric repre-
sentation of the guaranteed cost control law of
system (42). □

5. Numerical Simulation

Te proposed theoretical results are verifed by numerical
simulations, where the efects of model parameters are in-
vestigated. Supposing there are 2000 nodes in the network,
the degree distribution of the vertices is a power-law

distribution, the initial number of vertices in the network
is 10, the vertices are randomly connected, and we add new
nodes with 5 new edges in turn. At the same time, the ef-
fectiveness of optimal control and guaranteed cost control of
the system is also verifed.

5.1. Teoretical Verifcation. Figures 5 and 6 show diferent
degrees of density evolution when R0 < 1 and R0 > 1. We
show that the evolution under R0 < 1 and R0 > 1 is diferent,
although the two given R0 are nearly identical, which verifes
the setting in Teorem 1. When R0 < 1, the parameter
selects λ1 � 0.01, λ2 � 0.5, μ 1 � 0.01, μ2 � 0.6, ε � 0.2, δ �

0.01, and c � 0.05 ; then, there is R0 � 9.9760e − 04< 1;
when R0 > 1, we choose parameter λ1 � 0.4, λ2 � 0.5, μ1 �

0.3, μ 2 � 0.6, ε � 0.2, δ � 0.6, and c � 0.05; then, there is
R0 � 2.2446> 1. It can be seen from Figure 5 that when
R0 < 1, the density of Spreader will drop to 0; when R0 > 1 in
Figure 6, the knowledge will exist forever, which can verify
Teorems 2 and 3.

5.2. Parameter Infuence. Since we take many factors into
account in this model, frstly, the willingness rate δ is
studied. Figure 7 shows that as the value of δ increases, so
does the number of knowledge disseminators, indicating
that the willingness rate δ has a positive impact on
knowledge dissemination.

Secondly, the initial communication rate λ1 is studied.
Figure 8 shows that the larger the value of λ1 in the early
stage of knowledge dissemination, the greater the density of
knower individuals, indicating that the value of the com-
munication rate λ1 has a good promotion for the early
knowledge dissemination process.

Finally, the degradation rate is studied. Figure 9 shows
that, as the value of c increases, the density of knowledge
disseminators is decreasing, indicating that the degradation
rate c hurts knowledge dissemination.

5.3. Optimal Control. When R0 > 1, we conduct knowledge
dissemination simulations under various control measures.
Te performance of the knowledge difusion model is then
validated with three diferent control strategies. For sim-
plicity, let ι1 � 0.5 and ι2 � 0.5.

5.3.1. u1 ≠ 0 and u2 � 0. We used control u1, which increases
the rate of willingness by increasing learning intensity and
material rewards (u1). Te optimal control curve u∗1 is
shown in Figure 10. u∗1 rapidly decreases to near 0 until 0.
Under this control measure, knower individuals become
knowledge disseminators by sharing knowledge stimulated
by a reward mechanism. Figure 11 mainly describes the
changes in the four groups of people under the control
strategy u1, in which the spreader individuals increased
slightly and the other three groups decreased slightly.
Furthermore, the maximum rate of change in individual
spreaders compared to the noncontrol system is about 15%,
which is consistent with our expected results. When in-
creasing the willingness of knower individuals, the knowl-
edge dissemination model performs better.
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5.3.2. u1 � 0 and u2 ≠ 0. We used control u2, which reduces
the probability of degradation by increasing the fre-
quency of review. Te optimal control curve u∗2 is shown
in Figure 12. u∗2 rapidly decreases to near 0 until 0. Under
this control, the individual spreader continues to
maintain the identity of the knowledge disseminator
through regular review of knowledge under a supervision
mechanism and excellent learning methods. Figure 13
mainly describes the changes in the four types of pop-
ulations under the control strategy u2, in which the
spreader individuals and knower individuals slightly
increased, while the other two populations slightly de-
creased. Furthermore, the maximum rate of change in
individual spreaders compared to the noncontrol system
was about 16%, which is consistent with our expected

results. When reducing the knowledge degradation of the
individual spreader, the knowledge dissemination model
performs better.

5.3.3. u1 ≠ 0 and u2 ≠ 0. We improve the willingness of
knower individuals (u1) while reducing the degradation of
spreader individuals (u2). Te optimal control curve u∗1 , u∗2
is shown in Figure 14. u∗1 , u∗2 rapidly decreases to near 0 until
0. Under this control, the individual spreader continues to
maintain the identity of the knowledge disseminator
through regular review of knowledge under a supervision
mechanism and excellent learning methods. Figure 15
mainly describes the changes in the four groups of people
under the two control strategies u1, u2, in which the spreader
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Figure 5: Diagram of density change of four types of population when R0 < 1.
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Figure 6: Diagram of density change of four types of population when R0 > 1.
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and knower individuals increased slightly and the other two
groups decreased slightly. Furthermore, the maximum rate
of change of individual spreaders compared to the non-
control system is about 25%, which is consistent with our
expected results. When increasing the willingness of knower
individuals and reducing the degradation of spreader in-
dividuals, the knowledge dissemination model
performs best.

5.4. Robustness of Uncertain Parameter Control System.
According to the characteristics of knowledge dissemina-
tion, the parameters of system (45) are as follows:

L �

200 0 0 0

0 300 0 0

0 0 − 500 0

0 0 0 − 200

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B �

0 0

− 1 0

1 1

0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(65)
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Figure 8: Te density of knower individuals changes with the value of λ1.
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Figure 10: Diagram of the optimal solution u∗1 of knowledge propagation.
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Figure 11: Comparison of population density with u1.
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Figure 12: Diagram of the optimal solution u∗2 of knowledge propagation.
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Figure 13: Comparison of population density with u2.
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Figure 14: Diagram of the optimal solution u∗1 and u∗2 of knowledge propagation.
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Figure 17: Diagram of knowledge transmission with guaranteed cost control.
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Figure 15: Comparison of population density with u1, u2.
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Figure 16: Diagram of knowledge transmission without guaranteed cost control.
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D �

− 29.928 0 − 9.9760 0 1 0 0

29.928 3 9.9760 1 − 1 − 1 0

0 0 0 0 0 1 − 1

0 − 3 0 − 1 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

E �

1 0 0 0

0 0 0 1

1 0 0 0

0 0 0 1

0 1 0 0

0 1 0 0

0 0 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(66)

given

Q �

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

R �
1 0

0 1
􏼠 􏼡.

(67)

Applying Teorem 6, the corresponding linear matrix
inequality (61) is available from the LMI toolbox, and
a feasible solution is obtained:

X �

− 1.9292 1.5244 − 1.2840e − 04 0.0209

1.5244 − 1.2884 − 0.0037 0.0764

− 1.2840e − 04 − 0.0037 0.0072 − 0.0011

0.0209 0.0764 − 0.0011 0.0348

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

W �
− 0.0264 0.0198 − 5.5194e − 05 − 0.0063

− 0.0466 0.0171 − 1.3533e − 05 4.2526e − 04
􏼠 􏼡,

ε � 0.7486.

(68)
Ten, we get the guaranteed cost controller and guar-

anteed cost index of the system:

u∗(t) �
− 0.0263 − 0.0497 − 0.0423 − 0.0580

0.0692 0.0591 0.0062 − 0.1589
􏼢 􏼣x(t),

J
∗

� 142.3200.

(69)

We choose the willingness rate as an uncertain parameter
and the time-varying part ∆δ(t) � sin(t). Figure 16 is the
simulation diagram of the four types of people in the IKSF
dissemination system under the unguaranteed cost control.
Figure 17 is the guaranteed cost control efect comparison of
the IKSF knowledge dissemination system picture.

Figure 16 shows that when the system parameters
fuctuate within the range, the density fuctuations of the
four groups of people will be caused. In Figure 17, compared
with no controller, the guaranteed cost controller can well
control the density fuctuations of the four groups of people
brought by the uncertainty parameters of the system so that
it can be maintained at the desired given value.

Figure 18 shows the change of control laws over time
when the system is afected by time-varying uncertainty. As
can be seen from the fgure, the control law initially declines,
then continues to fuctuate due to uncertainty, and stabilizes
at a specifc value, which is in line with our expectations.

Remark 3. Te aforementioned guaranteed cost control ex-
ample of uncertain parameters is simulated under the premise
of R0 > 1, and the simulation is meaningless when R0 < 1.

6. Conclusion

In this paper, the knowledge transfer process in complex
networks is modeled and dynamically analyzed by con-
sidering the interaction efects of multiple mechanisms of
knowledge transfer. Specifcally, we established a new
IKSF knowledge dissemination model, and the model
simultaneously considers multiple factors such as in-
ternalization mechanism, degradation mechanism,
communication, and willingness. We obtain the basic
reproduction number of the scale-free network that
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Figure 18: Te temporal variation of the control law.
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depends on the multimechanism and determine the
knowledge loss equilibrium E0 and the unique endemic
equilibrium E∗. Furthermore, we studied the stability of
the equilibrium point. Trough numerical simulation,
enhancing the willingness of knower individuals and
reducing the degradation rate of spreader individuals will
help to promote the dissemination of knowledge.

In terms of optimal control, to increase the number of
knowledge disseminators, we establish incentive mechanisms
to stimulate willingness andmonitoring mechanisms to reduce
knowledge degradation. Experimental results show that the
efect is themost noticeable whenmultiple controls are applied.

To study the process of knowledge propagation more
precisely, we study the optimal guaranteed cost control
problem of knowledge propagation with uncertain pa-
rameters and control constraints. Using the Lyapunov
stability theory and guarantee cost control technology,
the control law of optimal guarantee cost is designed in
the form of linear matrix inequality so that the four
groups of people in the IKSF model are stabilized in an
ideal state, and the optimal guarantee cost of knowledge
dissemination is obtained. Experimental results show
that the proposed method has a signifcant efect on
dealing with parameter uncertainty problems.

However, there are still many shortcomings that need
further study.

(1) Tere are many ways to access knowledge, but it is
not clear exactly how knowledge difusion can be
carried out in reality because people always have
diferent ways of acquiring knowledge. Tis prevents
us from thinking about access to knowledge in
a particular way.

(2) Tis paper only conducts numerical simulations on
scale-free networks and does not compare experi-
ments with other heterogeneous networks.

(3) System parameters may be afected by various fac-
tors. We fnd that when system parameters change
over time, the system may be in a chaotic or
bifurcated state.

(4) Te robust control of uncertain nonlinear systems
based on the LMI method is studied, and the in-
fuence of adding diferent control constraints to the
system needs to be further studied.

Tese problems will be considered in future work.
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