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The objective of this study is to investigate the complexity of a discrete predator-prey system. The discretization is achieved using
the piecewise constant argument method. The existence and stability of equilibrium points, as well as transcritical and Nei-
mark-Sacker bifurcations, are all explored. Feedback and hybrid control methods are used to control the discrete system’s
bifurcating and fluctuating behavior. To validate the theoretical conclusions, numerical simulations are performed. The findings of
the study suggested that the discretization technique employed in this investigation preserves bifurcation and displays more
effective dynamic consistency in comparison to the Euler method.

1. Introduction

Predator-prey models are a class of population models
utilized to investigate the dynamics of predator-prey
relationships within an ecosystem. The aforementioned
models depict the temporal evolution of populations of
predators and prey, taking into account variables such as
predation, reproduction, and natural mortality. Com-
prehending the intricate dynamics inherent in predator-
prey models is of paramount importance in predicting the
repercussions of human activities on animal populations
and shaping conservation endeavors. The Lotka-Volterra
model is a widely recognized predator-prey model that
was formulated separately by Lotka [1] and Volterra [2].
Subsequently, many population models have been for-
mulated to account for intricate factors, including mul-
tiple predators, predator competition, and ecological
factors such as food availability and changes in the
weather.

The authors in [3] analyzed the complex behavior of the
following system:

dx xy
E—x(l—x)(x—A)—;,

d_y_ Ax .
a N\1+px )

The variables x (t) and y (¢) represent the densities of the
prey and predators, respectively, at a given time ¢. All pa-
rameters, namely, A, m, A, f, and 7, are positive with the
additional constraint that 0 < A <1. The investigation fo-
cused on the examination of equilibrium points, their
presence, and their stability. Furthermore, the authors have
demonstrated that the system (1) experiences NS bifurcation
at the positive fixed point of the system (1).

The area of discrete-time systems analysis has made great
strides in comprehending the complicated dynamics shown
by many systems. Classic works in this area, such as the
discretized quasiperiodic plasma perturbations model [4, 5],
the discretized fractional-order predator-prey system [6-8],
the discrete economic system [9-11], and discrete systems
describing competition games [12-14], have all played
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important roles in unraveling the complexities of discrete
systems. These seminal studies have aided understanding
of phenomena such as the emergence of complex patterns
and bifurcations in plasma oscillations, the impact of
fractional-order dynamics on predator-prey population
dynamics, the nonlinear dynamics underlying economic
systems, and the intricate dynamics of competitive
interactions.

It is noteworthy that a variety of biological models are
typically governed by both continuous and discrete models.
In recent years, several authors have significantly contrib-
uted to the development of discrete models [15-19]. One
possible explanation for this phenomenon is that discrete
models tend to be more compelling than continuous models
in situations involving nonoverlapping generation. It has
been established through extensive research that discrete
models have the potential to display more complex dy-
namical behaviors than continuous models. In addition,
numerical solutions for discrete models can be generated
with greater ease. This has been demonstrated in various
studies [20-24].

The authors employed the Euler method in [24] to in-
vestigate the following discrete version of system (1):

Xpy1 = X T Vxn<(1 - xn) (xn - A) - &>’
m

(2)

oy Ax,
yn+1_yn yyn 1+ﬁxn T)

The investigation focused on the examination of the
presence and stability of equilibrium points. The findings
presented in [24] indicates that the discretization of system
(2) using Euler’s method with a large step size leads to
period-doubling and bifurcation at the positive equilibrium
point. This observation is in contrast to the expected ac-
curacy of the numerical method employed.

A further issue is that the discrete system created
using the Euler approach is not nearly as realistic as it
should be. This is because some parameters and initial
values have negative values for the prey and predator
population size. Nevertheless, by using the piecewise
constant argument approach, it is possible to eliminate
the occurrence of negative values. This motivates us to
discretize the system (1) by using the piecewise constant
argument method [25-29] to obtain the following dis-
crete system:

- —A)=y,/
X1 = e (1750) G )l 3)
Ax,/1+px,—T

Y1 = Yn€

The present investigation’s primary findings and de-
ductions are as follows:
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(i) The study investigates the presence and topological
categorization of equilibrium points

(ii) The results of our study indicate that the mathe-
matical system represented by equation (3) un-
dergoes both NS and transcritical bifurcations

(iii) The present study investigates the conditions for the
existence and direction of NS bifurcation at the
positive equilibrium point

(iv) In order to rein in the unpredictability of the (3)
system, feedback and hybrid control methods
are used.

The subsequent text outlines the format of the document:
Section 2 provides a comprehensive analysis of the presence
of equilibrium points and their regional stability. Section 3
provides a discussion on the NS bifurcation occurring at the
positive equilibrium point. The feedback and hybrid control
methodologies are employed in Section 4. We have in-
corporated a few numerical examples in Section 5 to back up
our theoretical findings. Finally, the present study is con-
cluded in Section 6.

2. Existence and Stability of Equilibrium Points

The system’s equilibrium points can be found by solving the
following equations:

{ x = xe(l—x)(x—A)—y/m)

y = yexlx/1+‘[3x—f

(4)

The four equilibrium points obtained are as follows:

P, =(0,0),
P1 = (1$ 0))

P, = (A,0), (5)

T
P3'< B

The first trio of equilibrium points, denoted as P, P,
and P,, are classified as boundary equilibrium points. The
equilibrium point P, of the system (3) is the only positive
equilibrium point if AM/1+AB<T<A/1+8.

Next, we explored the stability analysis of the equilib-
rium points. To investigate the stability of the equilibrium
points, we calculated the variational matrix J of system (3) at
any point (u,v) as follows:

m(T+ﬁT—A)(T+AﬁT—AA))
(Br-1)? .

(6)

T (u,v) :|:j11 Ji2 j|’

Ja1 J22

where
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. —u?—vim- A+uA 2
= WM AAC L o v uA),
11

e vim—(—1+u) (u— A)u

Ji2 =~ >

m
7
) _e—r+u)L/1+uﬁW\ ( )
T
]. _e—r+u}L/1+uﬁ
22— .

The eigenvalues g, , of the variational matrix J are helpful
in determining the stability of equilibrium points. The
equilibrium point (u, v) is known as a sink if ¢, ,| < 1, which
is locally asymptotically stable (LAS), and as a source if
I¢;1>1 and [¢,| > 1, which is unstable. Moreover, the equi-
librium point (u,v) is a saddle point (SP) if |¢;|>1 and
Il <1 (or |¢|<1 and [¢,|>1). In the case of a non-
hyperbolic point (NHP) (u,v), either |¢;| =1 or |¢,| = 1.

Lemma 1 [30]. Let I'(¢)=¢*+T,c+T, and I(1)>0.
Moreover, ¢, ¢, are the solutions of I (¢) = 0, then we have the
following:
(i) 615l < 1e=T < 1AT(-1)>0
(ii) 1g; | < 1A Gl > 1 (or || > 1A gl < 1) &T'(-1)<0
(iii) g1 > 1A G| > 1=T > 1AT(-1)>0
(iv) ¢4 = -1A|g|#1e=T, #0,2AT(-1) =0

(v) 1, are complex and g ,|=1T]-4T,<
OAT, = 1.

Proposition 2. The equilibrium point P, is LAS.

Proof. The variational matrix ] (Py) is calculated as follows:
-A
e 0
](Po) = [ _r :| (8)
0 e

Clearly, ¢, = e 4<1 and G =eT"<1.

The local asymptotic stability of the equilibrium point P,
has been derived. Consequently, it is possible for both the
predator and prey populations to become extinct
simultaneously. O

Proposition 3. The equilibrium point P, is as follows:
(i) LAS if t>M1+f
(ii) SPif T<A/1+ 8
(iii) NHP if T = M/1 + .

Proof. The variational matrix ] (P,) is calculated as follows:
-1
A —
m

J(Py) = : 9)

0 e T+M1+B

Clearly, ¢, = A< 1 and ¢, = e ™*#_ It is obtained that

. A

<1 ifr>—y,

1+p

A

- T+M/ 14 j - . —

'e 1 ifr —1+B, (10)

>1 ifr<L.

1+p

The stability of the equilibrium point P, = (1,0) has
been determined. Thus, the potential exists for the predator
to become extinct. O

Proposition 4. The equilibrium point P, is as follows:
(i) Source if T< AM1 + AP,
(ii) SP if 7> AM1 + AP,
(iii) NHP if T = AM1 + AB.

Proof. The variational matrix ] (P,) is calculated as follows:

-A
1+A(1-A) —
m
J(P,) = . (11)
0 e—T+A)L/1+A,/3

Clearly, ¢, = 1+ A(1 - A) <1 and ¢, = e ™V1*48 One
can easily check that

<1 ifr> ,
nr 1+Af
AL
- T+AM1+AB)| | -1 ifr= 12
e T 1+Aﬂ’ ( )
>1 ifr< .
nr 1+Ap

Topological classification of equilibrium point P, is
depicted in Figure 1(a) and P, in Figure 1(b).

Next, we focus on the positive equilibrium point P,. We
obtain

(2= +AB+P) +(1+ A-2BTA+ 1 T

(- Br +1)? mpBr —mA
](Pa) =
m(t+pr—A) (1 + At — A)) 1
A
(13)

The matrix J (P;) yields the characteristic polynomial as
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I(Q) = Cz+<(2+/ﬁ’+Aﬁ—2ﬁZ)T2 -1 +A—4ﬁ)r)t—2)t2>c

(-pr+1)°
1 4,93 2 (14)
+t———S BA+PHA+ABT +A (1 -A7) - A" 2+ 7+ (1 + A)B(1+27)
A(A = B1)
+ B (-1 +3A7)) + A’7(1 =28 + 7+ A(1 + 7 + 347))).
Thus, we obtain
_t(r+pr-A)(r+ APr - A))
()= G- ,
I0) = % BA+PA+ART +1° (1 - A1) - AT 2+ 7+ (1 + A)B(1 +27)
A(A = B1)
+ﬁ2(—1+3AT))+)LZT(1—2ﬁ+T+A(1+T+3/37))), (15)
r(-1)= % BA+PA+ART + 12 (4 - A1) - A" (4+ 7+ 2(1 + A)B(1 +7)
A(A = B1)
+B2(—4+3A7)) + 12 1(2 - 8B+ 7+ A(2 + T + 3B1))).
By using Lemma 1, we obtain the following theorem: [ (i) LAS if
Theorem 5. The equilibrium point P, of the system (3) is as
follows:
BA+P)T N (A +1) + A2+ +7+2p7) (16)
N HBA+PT + A1 +7+3p7) - PAr(1+(2+3P)7)
and one of the conditions listed below is satisfied: (iii) a source if one of the conditions listed below is

(@) T<A<T(2+7)/1+7and 0<f<—7+ M, satisfied:

b)A>t2+1)/1+7 and 2+ A +27A - (a) T<A<T(2+71)/1+1,0<B<-T+ N7 and

™+ 6124 + A/ 212 << —T+ M,

(ii) not a SP,

342
BA+HT -A(1+71)+AT(2+ + 7+ 2p7) <A< — T (17)

VB +B)T + A (1+ 1+ 3p1) - PAT(1 + (2 + 3P)7) Br-1’

B)A>1(2+1)/1+71,< —7T>+ A+ 270~ ) A>t2+0)/1+7,-7> + A+ 27—
V1t + 6124 + A*/21%, and A< — /Pt -, Vit + 6724 + A*/2172 < B< -1 + M1, and

BA+P)T N (A +1)+Ar(2+f+7+2p7) T
3 2 3,2 <AL ———, (18)
X +B (1 +B)T + A (1+7+3B7) - BAr(1+ (2 +3p)7) pr—A
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(b)

FiGgure 1: Topological classification of (a) P, and (b) P, by setting m = 1.3, 5= 0.6, A = 0.2, 7 € [0, 10], and A € [0, 10].

(iv) NHP if

BA+PT -V A +1)+Ar(2+p+7+2p7)

-2+ B (14 BT + AP (14 7+ 3B7) - BAT(1 + (2 + 3B)7)

and one of the conditions listed below is satisfied:

(@) r<A<t+1)/1+71and 0<B<-T+ M7,
B A>12+1)/1+7 and 2+ A+ 27A -
V1t + 6720 + \2/21% < f< -1 + M.
Topological classification of equilibrium point Pj is

depicted in Figure 2.

Q, ={m,)t,ﬁ,re R,ANA € (0,1)‘

Q, = {m,A,ﬁ,T eR,AA€(0,1) ’%<T<L, (iv-b) ofTheoremlholds]».

Moreover, system (3) experiences period-doubling
bifurcation at any equilibrium point P if one of the ei-
genvalues of J (P) is —1 and the other eigenvalue do not lie
on the unit disk. Since all the eigenvalues of J (P,), J (P,),
and J (P,) are non-negative, therefore there is no possi-
bility of period-doubling bifurcation at Py, P;, and P,.
Moreover, the characteristic polynomial of J (P;) does not
satisfy I'(—1) = 0. Thus, condition (iv) of Lemma 1 implies
that system (3) does not experience period-doubling bi-
furcation at P;.

—— <7<
1+ AB 4 1+p

(19)

It can be inferred that in the event that condition (iv) of
Theorem 5 is satisfied, the eigenvalues of ] (P;) are complex
numbers with a modulus of one. The system represented by
equation (3) undergoes NS bifurcation at point P; when the
parameters are altered in the vicinity of Q, or Q,, where

L, (iv — a) of Theorem 1 holds}, (20)

1+p (21)

3. Neimark-Sacker Bifurcation at P,

This section explores the possibility of bifurcation in the
system (3). Bifurcations in predator-prey systems manifest
as a result of alterations in the system’s parameters. A slight
modification of a parameter leads to a bifurcation. Bi-
furcations in predator-prey systems are a crucial component
in forecasting the dynamics of wild populations and for-
mulating viable approaches for their conservation. Improper
management of bifurcations has the potential to cause
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Ficure 2: Topological classification of P; by
m=13,7=0.5,8=0.2,1 € [0.60,0.85], and A € [0,1].

setting

significant disruptions to population dynamics and lead to
the destruction of ecosystems. For a detailed bifurcation
analysis, we recommend that readers refer to the sources
[31-35].
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The positive equilibrium point P; holds noteworthy
biological significance as it denotes a crucial point in time
where both predator and prey species are able to coexist and
flourish. The study placed significant emphasis on com-
prehending the dynamics and behaviors associated with this
particular fixed point. Our study is concentrated exclusively
on the bifurcation phenomena that take place at P;. The NS
bifurcation located at point P; is analyzed through the
utilization of the bifurcation parameter A for the set ;. An
analogous study can be established regarding the set denoted
by Q,.

By introducing a small change, denoted by y (where
|yl<1), into the bifurcation parameter A, system (3) can be
written as follows:

X, = xne(l—xn) (xn—(A+y))—y,,/m’

Ax,/1+Bx,—T (22)

Yne1 = Vn€

We  suppose that x,=u,-1/fr1-Ay,=v,—
m(r+Br-A)(r+ (A+p)pr— (A+pD)/(Br-1)°  to
translate the equilibrium point P; to origin. Due to the

aforementioned transformation, the system represented by
equation (22) transforms to

|:un+1:| =[a11 a12:||:un:|+[¢(un’vn):|’ (23)
Vn+1 a21 1 Vn (P(un’ Vn)

where

) +(1 B +By+p2 +y))‘r3 +A% (=1 =37 +y1) +/\T(ﬁ—2‘r+ 327 - 2Byr —y(1 + T))

e =B+ B+ BT —A(1+7+2p7) ’
- T
2 = mA —mpBr’
m(A—(1 +,8)T)(y/13 —BA+Pyr =2 (-1 +y(1 + 7+ 3p7)) +)tr(—l + 32T+ B(-1+p+ 2y1))) (24)
a =

2 3 2 2 2
¢ (U, v,) = ayv, + ayv, + asu,v, + a,u,v, + asu, v, + dgu, + a;u

2 2 3
% (un’ vn) = blunvn + qunvn + b3un + b4un’

where

AA* +B(1+ BT = A (1 + 7+ 2P7))

>

3
n’
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T

g’
P S—
6m” (A — 1)
(XA -P By +BE )T + N (-1 -3fr +y7) + Ar(B- 27 + 3677 - 2ByT - y(1 + 1))
e (2> A= Br) (X + B+ H7 —A(1 + 7+ 26D))) ’
(A p(-1+ B -pU+ )T+ X (1 +3Br—yr) +Ar(y + 27 = 3677 + 47 + f(-1+ 2y7)))
M (m =BV +B(1+H)T —A(1+17+261))) '
/{7 2
b = ( /\BT) i
b - =B’ -2+ D)
2 2/\2 >
2 +(1 +ﬁ)2(—1 —2B8 434+ 2ﬁ3)75 212+ (7 +108)7) + ZAZT(I +(3 +8B+ 3[32)1 +(—1 + 9B+ 2147 + 10/33)12)
—2(1+ PAT (3B - 21+ 577+ B (1+97)) — 2114 + 37 + 10877 + B(3 + 147))
(X + B+ A AL+ 74260)) = 2p(F° = B(L+ BA(-1 - B+ )7~ A1 2+ 7+ 567) + 1 (1+ 7+ 6Br + 2(~1 + 28+ 567)7?)
+(1+ AT (-1 - B2 (-2 + 1) -7+ 5 = B(1+57)) - V’7(108°7 + 6871 (1 + 1) - 7(2 + 37) + B(1 + 27 - 67°))
as =
(Zm(/\—ﬁr)(kz +B+PE-A(1 +T+2/51))2)
2° - (1+BP(-1-2B+3F° +28°)7° - 1* (2 + (7 + 10B)7)
—2A21(1 +(3 +8B+ 3[32)1 +(—1 +9B+ 2187 + 10[33)12)
+2(1+ PAT (3B - 20+ 5877+ (14 97)) + 24714 + 37 + 10877 + B(3 + 147))
#2112+ B+ BT - A(1+7+260)) +2y(1° - B(L+ BP(-1 - B+ )
A2+ T+5p7) + )»3(1 +T+6BT+ 2(—1 +2B+ Sﬁz)rz)
+(1 +ﬁ)).r3(—1 —ﬂz(—Z +1)—T+ 5/331—[3(1 + 51))
-1(108°7 + 6> (1+ 1) - 7(2+ 37) + (1 + 27 - 67°))
ag = >
’ (20 B B +p) -2 (1 47+ 260)’) (25)
YA = B2 (1L + P)yr® = A2 (=1 +y(1 + 7+ 3p1)
m = -1 +P)1)(A - B2 +1)
b +)L‘r(—1 +3F%7 + (-1 +y+2y‘r))
o (2P(F + B+ PT* = A (1 + 7 +267)))
m=Br)* A= (1+Pr)(A* - 2813 + 1) + B(6 + 67+ 7°))
b = (y/\3 -B(1+ Pyt —/12((—1 +y(1+7+3p7)) +)\r(—1 +38% T+ B(-1+y+ Zyr))))
e (6 (W+B(1+p)° - 1(1+1+2p1))) '
3(-1+ 2+ W = (14 B (-1-38(1+y) - 38 (=2+ 2y +97) + 3 (-1 + 2y + ) = B(-11 - 9y + 37 +97))7
+A%(154 (2 + 21p)T +y 7= 37 (3+ (2 + 7B)7) - 3y (4 + (9 + 14P)7))
6+ (4+25)7 +(=10 - 48+ 218°)7° + v (1 + 7+ 2p7)
-3\
( =V (3+ 4+ 1587 +(-1+ 128+ 218°)7") - p(2 + (17 + 208)7 +(13 + 548 + 428°)7*) )
—ZT+7[34(—1 +2y+y2)1—y(1 +1) —ﬂ(—5+2y2(1 +T)+y(2+81))
+3(1+ B
B9+ +y (1+1)-3(2+71) +9*(2+80) + f(=5+9* (3 - 20) + 187 - 2’1 + y (4 + 267))
2+57 =207 + 218 (-1 + 2y +97) 7" =y (1 + 0)° = yr (4 +57) + Br(=25+ 317 - 5’7 + 3y° (5+ 37) + y (20 + 937))
“3(1+ PN -B(-2-277- 217+’ (1 + 77 + 9 (1 + 107 + 117°) + p(-8 - 127 + 137%))
+B7(-=6+97+ 697" — 1 (4 + 57) +9(3 + T - 197°) + p(2 + 487 + 377%))
24202+ 9P)7+2(-6+88+ 258" )7 +5(-3 - 108 - 28" + 78°) 7 + ' 1(1 + (2 + 4p)r +(1 + 58+ 56°)7°)
+3)
P (1+Q2+9B)7+(=3+ 168+ 3087)7" + 5(~=1 - B+ 68> + 78°)r*) — yr(10 + 207 + 47” + 708°" + 5B°7(8 + 277) + B(6 + 687 + 657°))
10584 (-1 + 2y +97) 7 =y’ (1 + 1)’ =6y’ (1 + 37+ 27°) + 7(12 + 487 + 197°) + 6y(1 + 47+ 27° - 37")
A7 —108°7(15 — 47+ 2y1 - 3y” (3 + 47) — 6y (2 + 97)) — 37 (18 + 247 — 1007 + 2’7 (3 + 57) + 17 (-9 — 247+ 107°) - 2p(3 + 517+ 657°) )
-3p(2+87- 367 - 607° + 2’71+ 37+ 20°) — 4yr(5 + 157 + 47 ) + y* (-1 - 47+ 97 +207°) )
a; =

(s(l_ﬁf)(f +B(1+p)r* - A(1 +r+2ﬁr))3)



8 Discrete Dynamics in Nature and Society

Let, Be the characteristic equation of the variational matrix of

system (23) calculated at origin, where.
&= p(ye+a(y) =0. (26) tem () 8

((—Z)LS +(1 +ﬁ)(—1 + 2ﬁ2 -B(1+ y))13 T Q+T+ 61 — y7) +)Lf(y +27 - 6[321 +p7+2B(-1+(-1+ y)‘r)))

r)= (=B + B+ PP —A(1+7+26)))) ’
iy = 0 + BT + A% (1 - y7) + AT (=B +y + yT + 2By7)
7= A - pr) '
(27)
The solutions of (26) are as follows: Because (A,m, A, B,7) € Q,, thus we have [¢;,| = 1 and
i
SE P_(Z)’) * 3 V4q (y) - P2 (y). (28)
<d|cll> _ (d|cz|> (BB BT A1+ 7+ 27) o (29)
dy /o dy /. 20 (BT - 1)
In addition, it is required that ¢} , # 1 (i = 1,2,3,4) when
y equals zero. This condition is comparable to
p(0)# +2,-1,0. Because (A,m, A, f3,7) € Q,, therefore,
20 —(-1-28+B+28)° =V (2 + 1+ 6B7) + 2A1(B - 7 + fr + 3B%T
p(0) = ( Fp /32 5 p (ﬁ fr+3p );e +2,-1,0. (30)
(A=BD)(X* +B(1L+B)r* = A (1 + 7 +2p7))
U, ap 0 €,
Subsequently, the transformation employed to convert = ) (31)
the linear part of equation (23) into canonical form aty =0 Vn §—an LS,
is as follows: where
; -2\ +(—1 2B+ + 2/33)13 + A7 2+ 7+ 6pT) - ZAT(ﬁ -T+pT+ 3/327)
- 20 - pr)(N + B+ B)° = A (1 +7+2B7)) ’
(32)
1 40— gy (<20° +(-1-28+ B2 +26°)* + 12 (2 + 7+ 687) — 2A7(B — 7 + fr + 367) )’
N=—r—-— -Br) - :
2(A-pr) (2 + B +PT* - A(1+7+287)
When (23) is transformed by (31), the resulting system is , \ , , , ,
as follows: X(ew fn) =cifutcafutcsenfntcae,fr+cse,+cce,fr+ e,
[ e, ] [ f— ] [ e, ] [ x(ew f) ] (e fo) = difo+ dofy+ dse, fo+doey fo + dse, fo + doey + die,
= + , (33)
fn+1 n f fn Y(en’ fn) (34)

where
where
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rlz
Cy —W
2
W (14 8) 121+ 8)r+(2- B -1+ 8))F
= 2m(h = pry ’
(P14 8) 21+ E)r (24 F(-1+8))7)
=7 2m* (A — ﬂ‘r)z :
N(2-38+8) - 2pM2-38+ &) r+(-68+ f(2-38+ )7
c; = 5

6m” (A - pr)°
4 n(=E+ X +(1+28- )7 =V (1+3p0) + Ar(B - 20+ 3F71)/ (A - pr)(A* + B(1 + B)7° = A (1 + 7+ 2B7)))
1= 2m ?

P (=4 X +(1428- )7 - 22 (1 +3pr) + Ar(B - 27+ 3B°7)/ (A - Br)(A + B(1 + BT — A(1 + 7 +2B1)))
=

5 5

6m

0 (AR 1+ - +P(1+p+F(-1+H)T° =1 (-1 - 3Br + E(1 + 7+ 3p1) + Mr27+ 387 (-1 + 7 + f(-1+ E + 267)))
i (2m® A= B0 (V* + B(1+ B)* A (1 + 7+ 261))) '

g MW(E+8-1)-PU+PT + A0 (<6 -2+ B (1 -8 +37) + f(E- & +47) ) + X(E+3pEr - E (1 + 7+ 3B1) + 7(1+ 7+ 4BD) + (287 + 3 (=E+ & - 21)7 + B(-E + £ (1 +21) - 7(2+ 37))))
T (mAA = Br)(A2 + B(1+ B)7 = A(1+ 1 +2p0))) ’

(fﬁ(’(l P02+ 4N —1+E+E -8 +‘rz) +ﬁ5)t16(2+(11 + 12ﬁ)r+(6+7ﬂ)‘rz)

(1= 7 = =8 (1 +5p1) —E(1 + T+ 5p0) + E (1 + 7+ 57) + pr(5 - 21 - 77°))

N (2+4B-28" (-1 + E+ B (1+26-8) + pH(8+E -8 +257+157) + (-1 + £+ & = & + 307 + 217°))

(41 - 67 (<1 + HET +2(-1 + E+ T+ 261 = E1) 4 5B7(-1 4+ E+ E = E + 87+ 777) 4 B(=1+ &+ & + 120+ 487+ 307 + 207" - (1 + 41)))
0 7(=2(=1+ HEr + Br(-10 + 108 + 108 - 108" + 127 +217°)

+B(-3+38 + 21+ 77 + 67 +E(B3 +41) - & (3+41)) AT,

g (—2 +17-6B(-1+ &) - Ere28(1+1)+ 5[331(—2+2£+2£2 —28 467+ 712) +[§2(—3 +38 4 87+2000 +150° - 38 (1+20) +E(3 + 61)))
o (2 A= B’ (X + B(1+ BT = 1(1 + 7+ 261)))

A1+ (148 =21) + B (14 P(-2+ f(-2+ 1) + T+ 27 (-1 + 1)

P (1+Q+5p)T+ 1+ 1207 - E (1 +5p0) + £ (1+ 7+ 51 = E(1+ B+ 5p)T+2(1+ 6B)7°)) + A7°

(-2-4p+f (~1+O(-1+ & - 121) + 2B (6 - E+ & —41) + (3 -26 + £ = 37) + p*(F + 52+ ) - E(3+ 107)))

A 7(108° (<1 + (-1 +& = 37) 1+ 21(§ - & + 1) + B(-3+ 38 — 107 - 57" - & 3+ 41) + §(3 + 127+ 107%)))

(4= 5B (1 + (-1 + & —61) T+ 6 r(-2+ E = & +21) + f(-2- 287 + 37 + E(2 +47)) + B(-1+ & - 207 - 107" - & (1 + 47) + §(1 + 127+ 207°) ),

4 N (24 7= Er- 10" (<1 + (14 & —dr)T+7° + 26(1+7) + 2Br(-2 + 3¢ = 38 + 47) + B1(-3 + 38 — 207 - 107° - 38 (1 + 27) + £(3 + 187 + 207°) ))
o (2mnd (A - B0 (X + B(1 + B)r* = A(1 + 7+ 261)))

V(-1+8(2-36+8 =37) + B 1+ P (3 (-1 + O 2+ 1) + 2(-3+7°) + 2B(-3+ 7))
A =24370 + 7 = E (14 5B1) = 38 (1+ 7+ 5p7) + & (1+ 7+ 5p1) + Pr(-10 + 67 + 217°)
+(5+2+250)T-3(1+2B)7 - 3(1+7B)7°) + p'A2°

(12-87 = 38° (-1 + 1 (12+ 77) - 4B(-9 + 57°) + f*(30 + 337 + 67 = 3{(2 + 117+ 677)) ) + X*1°6E + 128 - f (-1 + §)
(2-38+& - 907 - 637°) - 28°(20 - 38" + & - 207°) + B(-8 + 3¢ + 68" - & + 1277) - p*

(-38 + & +15(4+ 57+ 7°) = E(22 + 757 + 4577 ) ) + A2(B (=1 + )7(20 - 30¢ + 108 - 367 - 637°) )

+21(2 =38 + & = 27%) + f(=6 - 38 + 67+ 2177 + 67" = 38 (3 +47) + £ (3 + 41) + £(15+ 21 - 2177 — 187"))

AP (3E(-2+ 1) - E1+ 68 (1+7) = 56’ (-1 + (4 - 6F + 28 - 187 -217%))

+27(=1+7°) + 2Br(~6 + 98 = 38 + 107%) = 37 (=2 = & + 107+ 207" + 57° = 38 (1 +27) + &' (1 +27) - §(=5 + 47+ 207" + 157°))
N7 (1287 - 561 (-1 + O)7(2 - 38+ & - 247 - 217%))

+2B°7(-12 + 98" - 38 +207°) + (65 (~1+ 1) — 47— 287 + 87 + 687 (1 +27)) + B,

(2+& - 607 - 907" - 207 + 38 (1 + 47) — &* (1 + 47) + (-5 + 287 + 907" + 607°))

4= (6mP i (= Boy’ (N + B(1 + P)r —A(1 + 7+ 267)))

(35)
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For the occurrence of NS bifurcation in the system (33),
it is necessary that the aforementioned quantity is not equal
to zero:

Discrete Dynamics in Nature and Society

1-2¢ )¢ 1 2 2
L:|:_Re<(4;)2NzoN11>_£lN11| _lNozl +Re(c2N21) > (36)
1

1-

where

y=0

1 ,
Nao =5 Yo, ~Xpus, + Ve, + 1(Yere, = Vo, = 2er, )

1
Nuv =3 e, * 25,5, + 1 (Yoo, Y1)

1

(37)

Noo = [Kewe, = Xpo, = Veos, + {(Xere, = Yrg, *+ 2Ke,1,) )

1 .
Nov=1¢ Werere, ¥ Xers ¥ Yerors * Y, ¥ 1(Yeseses * Yeusos, = Kever, = X))

Based on the analytical approach discussed earlier, we
can assert the following theorem as a result.

BA+PT =N (1 +71) + A2+ +7+2B7)

Theorem 6. We assume that (A,m,A,3,7) € Q, and L#0,
then (3) experiences NS bifurcation at P, when the bifurcation
parameter A is close to

(38)

0

Furthermore, in the case of L being negative, an
attracting invariant curve emerges from P, when A exceeds
A,, while in the case of L being positive, a distancing in-
variant curve emerges from P; when A is less than A,,.

4. Bifurcation and Chaos Control

The utilization of chaos control techniques is prevalent
across various domains of applied research and engineering.
The objective is to minimize disorder and enhance the ef-
ficiency of dynamic systems based on specific performance
measures. Historically, unstable fluctuations and bi-
furcations have been viewed as unfavorable occurrences that
hinder the propagation of biological populations and are
deemed undesirable in the field of mathematical biology. The
construction of a controller capable of modifying the bi-
furcation characteristics of a specific nonlinear dynamical

TR RPN (LT +3p7) - PAr(L+ (24 3P)1)

system with the aim of inducing order from the chaotic state
that arises from NS bifurcation is a feasible undertaking.
Consequently, the attainment of specific dynamic charac-
teristics becomes feasible.

We used the feedback and hybrid control techniques for
controlling bifurcation and chaos in the system. Initially, the
state feedback control approach is employed [36, 37]. For
this, corresponding to (3), we consider the following con-
trolled model:

Xy = x,e (T iy (39)
_ Ax,/1+Bx,— T

Yne1 = Vn€ ’

where U, = H(x, + 7/t —-A) + P(y,+ m(r+pr-1) (7+
ABt — AV)/ (B - 1)?) is feedback controlling force and H
and P are feedback gains. The Jacobian matrix of (39) at P is
given by
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—(-1+ HA + (1 +A+2(-1+ H)BAr —(2+ (1 + A)B+ (-1 + H)B*)7* T
(A - pr)’ - mA-mpr
J(Ps) = . (40)
mA-Q0+p)1)(-1+ AL - f1)) )
A
The characteristic equation of J(E,) is given by where
c2+T1c+T0 =0, (41)

~ (=2 + H)A* - (1+A+2(2+H)pAr +(2 +(1+A)B+(-2 +H)ﬁ2)r2

1 (A-pr)° ’
. 4 B 4 4304 B
T, _A(A—ﬁr)z( AmPA" - B(1+B) (1 + AB) (-1 +mPB)t" + A" (1 - H+mPr+ A(-1 +mP (42)
+4mPp)1) + /\27(1 +A+71-mPT+ A(l +(3-3mP)s - 6mPﬁ2)T +B(-2+2H - 3mPT))
+ Mz(—z - T+ 4AmPﬁ3T -B(1+A+2A7+(2-2mP)1) + ﬁz (1-H+3mPt+3A(-1+ mP)T))).
Let ¢; and ¢, be the roots of (41), then we have
(2+ X -1+ A+2(-2+ H)PAr+(2+ (1 + AP+ (-2 + H)F*)7
G t6 = 3 > (43)
(A= p7)
GGy = W(—Amw ~B(1+B)(1+AB) (-1 +mPP)7* + 1> (1 - H + mPt + A(~1 + mP (44)
- Bt
+4mPP)T) + A*1(1+ A+ 7 -mPr+ A(1+ (3 - 3mP)B - 6mPB* )7 + B(~2 + 2H — 3mPr1)) ()

+AT(=2 = T+ 4AmPP’ 1 - B(1 + A + 2A7 + (2 - 2mP)7) + B> (1 - H + 3mP7 + 3A(~1 + mP)1))).

To derive the lines of marginal stability, it is necessaryto ~ one. Assuming that ¢;¢, = 1, it follows from equation (44)
solve the equations ¢; = +1 and ¢;¢, = 1. These constraints  that
ensure that the absolute values of ¢; and ¢, are both less than

L —H+( m(A—(1 +/3)T)/(1—T+A(/1—/31)))P+L10 _o, (46)
where Ly=7(-AP +B(1+ B (1 + AB)T> At (2 + 7 Next, we suppose that ¢; = 1 and using equations (43)
+3AR T+ (1+ A)B(1+21) +A*(1+ 7+ A(1+7+3p7)))/  and (44), we obtain

AL - pr)’.

(47)

L. m@A-1+p))(-7+ A - 7)) p T(—/\+T+/5’T)(—A/\+T+Aﬂr)_0
2 A " - o) -
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Finally, if ¢; = —1 and using equations (43) and (44), we
obtain

m( —(1+B)7) (-1 + A(A - Br))
by

Ly: —2H+( )P+L30:0,

where

Ly, BA+PA+ART + 17 (4- A7) - A (4+1+2(1+ A)B(1+1)

__ 1 (
S A\ - pr)?

+ B (~4+3A7)) +X°T(2 - 8B+ T+ A(2+ T+ 3pD))).

Xnsl = 1 _P)xn +pxqe

It is clear that stable eigenvalues are located inside the {
Ax
Yt = (L=p)yutpy,e™

triangular area defined by the straight lines L,,L,, and L.
Next, the hybrid control approach [38] is employed to

/14+fx,—T
>

(l—xn) (x”— A)— yn/m)

(48)

(49)

(50)

regulate chaos through bifurcation effects. This is carried out ~ where p € (0, 1). Controlled system (50) and uncontrolled
with the aim of inducing order in the system described by  system (3) have the same equilibrium points. The variational
system (3), which exhibits a state of disorder. We assume the =~ matrix of the controlled system evaluated at its positive

following controlled system corresponding to system (3): equilibrium point P; is provided by

N+ X(=2B+p+ Ap)r +(B - 2p — (1 + A)p)7° pT
(A - Br)’ mA — mft

](P3):

mp(A = (1 +B)7) (=7 + A(A - p1))
A

- . . . () =¢ +Tic+Ty
The characteristic polynomial of matrix J(P;) is as

follows: where

- —20% + A (4B - (1 + A)p)T +(-28" + 2p + (1 + A)Bp)7°
b (A - pr)’

>

1

- W(ﬁ(l +B) (1 + AB)p’t! +/\3(1 - APZT) +/121((1 +A)p(1+p1) +/5(—2 + 3Ap2‘r))
— pT

T,
—Arz(p(z +p1)+ (1 +A)Bp (1 +2p7) + ﬁz(—l + 3Ap21))).

By simple computations, we obtain

(51)

(52)

(53)
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(1) = P2 T(=A + 7+ 1) (—AL + 7 + APT)
A(A - Br) ’
r(-1) = Tlﬁ)z (B(L+ B (1 +AB)p " + 1*(4 - Ap’t) + 121((1 + A)p (2 + pr) + B(-8 + 34p°7))
- PT
AP (2(1+ ABp(1+ pr) + p (4 + pr) + F(4 + 34p%7))), (54)
1
r)= Y (B(L+ B (1 +AB)p " + (1 - Ap’r) + A22((1 + A)p (1 + pr) + B(-2 + 34p°7))

—/\Tz(p(2 +p1)+ (1 +A)Bp (1 +2p7) + /52(—1 + 3Ap21))).

It is evident that the value of I'(1) is greater than zero.
According to Lemma 1, the equilibrium point P; of system
(50) exhibits local asymptotic stability under the condition
that T'(1)>0,T(-1)>0, and I'(0) < 1.

5. Numerical Examples

In this section, some numerical simulations are performed to
verify the aforementioned theoretical discussion. These
simulations are further indicating the interesting complex
behavior of system (3). MATLAB was used for the com-
putations and visual illustrations.

5.1. Bifurcation Analysis by Varying 7. In this example, we
explored the NS bifurcation at P; by utilizing 7 as a bi-
furcation parameter while keeping
m=131=1,=06,A=0.2,x,=0.5, and y, = 0.3 fixed.
Specifically, we vary 7 within the range of 0.44 < 7<0.65.
Upon simultaneous solution of the inequalities I'(1) >0,
I'(-1)>0,and T (0) < 1, the resulting interval for the variable
T is 0.463093 <7<0.625. Thus, the equilibrium point
denoted as P, exhibits local asymptotic stability provided
that the value of 7 falls within the interval of 0.463093 to
0.625. The NS bifurcation value has been determined to be
7 = 0.463093 through calculations. From calculations, it is
obtained that P; = (0.641275,0.205785). The eigenvalues of
the matrix J(P;) have been determined to be
G2 = 0973531 + 0.228554i, satisfying the condition
[6121 = 1. The aforementioned analysis verifies that the
stability of the equilibrium point P; is affected at
7=0.463093 as a result of the emergence of the NS
bifurcation.

Figures 3(a) and 3(b) display the bifurcation diagrams.
The bifurcation diagrams illustrate that system (3) un-
dergoes a transcritical bifurcation at 7 = 0.625. By concur-
rently solving I'(1)>0,T(-1)>0, and T'(0)<1, it can be
determined that the equilibrium point P, is unstable and the
equilibrium point P; is stable for 7 = 0.62. Furthermore,
when 7 equals 0.63, the equilibrium point denoted as P,
exhibits stability, while the equilibrium point labeled as P,
displays instability. At a value of 7 = 0.625, it can be ob-
served that the equilibrium points P, and P; undergo
a collision and a subsequent exchange in their respective

stability. The evidence supports the presence of a tran-
scritical bifurcation. MLE graph is presented in Figure 3(c).

Figures 4(a)-4(e) depict the phase portraits for various
values of 7. The depictions of phase portraits illustrate the
bifurcation of a smooth invariant circle from the stable
equilibrium point denoted as P;. An invariant curve that
encloses the equilibrium point P; emerges when 7 is less
than 0.463093, and its radius expands as 7 decays.

The controlled system (50) is evaluated using the
identical parameter and initial values, where p is set to 0.5.
The stability of the equilibrium point P, is based upon the
range of values for 7, specifically when 0.452515 < 1< 0.625.
The bifurcation diagrams of the controlled system exhibit
a leftward shift of the NS bifurcation. The figures labeled as
5(a) and 5(b) are presented for reference. The occurrence of
NS bifurcation in the controlled system takes place when the
value of 7 surpasses the threshold of 7 =0.452515. The
postponement of the NS bifurcation across a wider range of
7 can be achieved by decreasing the value of the control
parameter p.

5.2. Bifurcation Analysis by Varying A. In this example, we
explored the NS bifurcation at P; while keeping
m=13,1=1,=0.6,7=0.5x,=0.7, and y,=0.1 con-
stant. Specifically, we investigated the impact of varying A
within the range of 0.32<A<0.42 as a bifurcation pa-
rameter. Through simultaneous solution of the inequalities
I'(1)>0, I'(-1)>0, and I'(0)<1, the value of A is de-
termined to be within the range of 0 to 0.38206. Conse-
quently, the equilibrium point denoted as P; exhibits local
asymptotic stability provided that 0 < A <0.38206. The bi-
furcation value has been determined to be A = 0.38206
through mathematical computations. From calculations, it is
obtained that P, = (0.714286,0.123398). The eigenvalues
pertaining to the variational matrix of P; are given by
1 = 0.983389 + 0.181512i, where the magnitude of each
eigenvalue is equal to one. The aforementioned statement
verifies that the system represented by equation (3) un-
dergoes a NS bifurcation at the point P; upon the crossing of
A over the value of 0.38206. Figures 6(a) and 6(b) display the
bifurcation diagrams of the system (3). The diagrams
depicting bifurcation demonstrate that the equilibrium
point denoted as P; exhibits stability within the range of
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FIGURE 3: Bifurcation diagrams for system (3) with m=13,1=1,8=0.6,A=0.2,7 € [0.44,0.65] and with initial conditions
xo = 0.5, ¥, = 0.3; (a) bifurcation diagram of x,,, (b) bifurcation diagram of y,, and (c) MLE graph of system (3).
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FIGURE 4: Phase portraits of system (3). (a) 7 = 0.47, (b) 7= 0.4631, (c) 7 = 0.4630, (d) 7 = 0.46, and (e) 7 = 0.44.
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FiGure 5: Bifurcation diagrams for controlled system (50) with p = 0.5,m =1.3,A=1,5=10.6,A = 0.2, 7 € [0.44,0.65] and with initial
conditions x, = 0.5, y, = 0.3; (a) bifurcation diagram of x, and (b) bifurcation diagram of y,,.
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FIGURE 6: Bifurcation diagrams for system (3) and controlled system (50) with p = 0.6,m = 1.3,A = 1, = 0.6,7 = 0.5, A € [0.32,0.42] and
with initial conditions x, = 0.7, y, = 0.1; (a) bifurcation diagram of x,, of (3), (b) bifurcation diagram of y,, of (3), (c) bifurcation diagram of
x,, of (50), (d) bifurcation diagram of y, of (50), and (e) MLE graph for system (3).
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FIGURE 7: Stability region for controlled model (39) with m = 1.3,7=0.5,=0.6,A = 1,A = 0.4, x, = 0.7, y, = 0.1
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FI1GURE 8: Plots for model (3) and (39) with m =1.3,7=0.5,=0.6,A=1,A=0.4,H = 0.17,P = 1.36, x, = 0.7, y, = 0.1. (a) Plot of x,,
(b) plot of y,, (c) phase portrait, (d) plot of x,, (e) plot of y,, and (f) phase portrait.

0 < A <0.38206 and loses stability at A = 0.38206 as a result
of the emergence of NS bifurcation. MLE graph is presented
in Figure 6(e).

Now, we want to check the effectiveness of the feedback
control method. Considering m = 1.3,7=0.5,=0.6, A =
1,A=04,x,=0.7,y, =0.1 for controlled system (39), we
obtain the following lines for its marginal stability:

L,: P=17.4825(-0.0110204 + H),

(55)
L,: P = —0.549451,

Ly: P =17.4825(-3.99061 + 2H). (56)

The stability region bounded by the marginal lines
L,,L,, and L, for controlled model (39) is presented in
Figure 7.

For these parametric values, the positive equilibrium
point is P, = (0.714286,0.123398) of model (3) is unstable.
Figure 8 depicts the plot of x,, in Figure 8(a), the plot of y,, in
Figure 8(b), and the phase portrait in Figure 8(c) for model
(3). We considered the corresponding controlled system
(39) in which the feedback controlling force is represented
by U, = H(x, — 0.714286) + P(y, — 0.123398) with feed-
back gains H = 0.17 and P = 1.36. Figure 8 depicts the plot
of x, in Figure 8(d), the plot of y, in Figure 8(e), and the
phase portrait in Figure 8(f) for model (39). Therefore, we
conclude that the feedback control method is useful to
control bifurcation and chaos.

Next, we want to see the effectiveness of the hybrid
control method. Controlled system (50) is evaluated using
identical parameters and initial values, where p = 0.6. For
values of A such that 0 < A <0.402371, the equilibrium point
P, is stable. The bifurcation diagrams of the controlled
system exhibit a delayed NS bifurcation. The figures denoted
as 6(c) and 6(d) are presented for reference. The NS bi-
furcation is observed in the controlled system when the value
of A exceeds 0.402371. The postponement of the NS

bifurcation across a wider range of A can be achieved by
using small control parameter values p.

6. Conclusion

This study examines the dynamic complexity of a discrete-
time version of a predator-prey system in continuous time,
as represented by equation (1). The discrete system denoted
by equation (3) is derived through the piecewise constant
argument technique. The complex dynamics of the
continuous-time system represented by equation (1) were
examined in a previous study conducted by [3]. The study
revealed that the system undergoes transcritical and NS
bifurcation. Furthermore, the discrete version of the
aforementioned system (1) was analyzed in [24] by imple-
menting the Euler technique. The discrete system denoted by
equation (2) was demonstrated to undergo NS and period-
doubling bifurcation. The authors assert that their discrete
system, represented as (3), exhibits dynamic consistency
with the continuous-time system (1). This claim is supported
by their findings, which indicate that discrete system (3)
undergoes transcritical and NS bifurcation. Furthermore, it
has been demonstrated that system (3) does not undergo
period-doubling bifurcation. Consequently, based on our
research, we concluded that the piecewise constant argu-
ment approach exhibits greater dynamic consistency than
the Euler technique. In addition, the Euler technique pro-
duces a discretized system that may display limited realism
due to the potential occurrence of negative population sizes
for both the predator and prey under specific parameter and
initial value conditions. Conversely, the method of piecewise
constant argument offers a solution to this issue by
guaranteeing the prevention of negative values.

When compared to the Euler approach, the applied
discretization methodology, the piecewise constant argu-
ment method, exhibits its usefulness in retaining bifurcation
features and demonstrating enhanced dynamic consistency.
This has been used in ecological modeling and simulation.
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Researchers may improve the prediction power and re-
liability of ecological models by using more precise and
reliable discretization approaches. As a result, this can assist
in making informed decisions and implementing effective
management strategies for conservation efforts and sus-
tainable resource management. The aforementioned results
indicated that the utilization of the piecewise constant ar-
gument method presented a viable strategy for discretizing
predator-prey systems. Nevertheless, there exist potential
areas for further investigation in this domain. An area that
warrants further investigation is the examination of the
influence of supplementary ecological factors, such as
fluctuations in the environment or spatial factors, on the
discrete system’s dynamics.
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