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It is important in image restoration to remove noise while preserving sharp edges and fne details such as blurred thin edges and
low-contrast fne feature. Te Perona–Malik (P-M) model is a well-known anisotropic difusion denoising model, which can
efectively remove noise while preserving edges. However, its difusion coefcient only associates with the gradient of each pixel
but not with the local region information; thus, the P-Mmodel is not able to efectively preserve the important details of image. To
address this problem, this paper proposes an anisotropic difusion denoising model based on local entropy. Te difusion
coefcient of the newmodel not only depends on the gradient of image but also on the local region information described by local
entropy. On this basis, a coupled anisotropic difusion scheme is proposed for detail-and edge-preserving smoothing. Exper-
imental results show that the proposedmodel not only can efectively remove noise while preserving the boundaries better but also
can maintain important details in an image very well.

1. Introduction

Images are often sufered by noise in acquisition and
transmission, which usually degrades the visual quality of
the image. Image restoration is an important step in low-
level computer vision, especially when the input image is
blurred or noisy [1, 2]. An ideal restoration algorithm is
expected to remove noise and meanwhile preserve details in
the input image. For that, a number of nonlinear methods
were proposed in the literature; for example [3–6].

In [3], Perona and Malik frst proposed an anisotropic
difusion equation for image smoothing and edge detection,
in which the difusion coefcient depends on the value of the
image gradient. Specifcally, let I(x, y) represent the original
image defned in a convex domain Ω ⊂ R × R. In the an-
isotropic difusion [3], a family of increasingly smoothed
images, u(x, y, t), is derived from the solution of the fol-
lowing partial diferential equation:

ztu � div(c(|∇u|)∇u), (1)

with the initial condition u(x, y, 0) � I(x, y). In (1), div and
∇ represent the divergence and gradient operators, re-
spectively, and the difusion coefcient c(·) is a nonnegative
decreasing function of |∇u| (the gradient magnitude of u). If
c(·) is a constant, the anisotropic difusion (1) reduces to the
classical Gaussian fltering. Te desirable difusion co-
efcient should be to make (1) difuse more in fat areas and
less around edges. Two such difusion coefcients suggested
by Perona and Malik [3] are as follows:

c(|∇u|) � exp −
|∇u|

K
 

2
⎛⎝ ⎞⎠, (2)

and

c(|∇u|) �
1

1 +(|∇u|/K)
2, (3)

where K> 0 is a constant parameter to be tuned for a par-
ticular application. Te difusion coefcients by (2) or (3)
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clearly make the difusion process perform selectively
smoothing, which only depends on the magnitude of image
gradient at a point.

Te P-M model is essentially a gradient-based flter, in
which the difusion coefcient at a point depends on the
gradient magnitude of the difused point. When the gradient
magnitude is large (often happens around the edge), the
difusion coefcient is approximate to zero and then the
smoothing process is terminated. Conversely, when the
gradient magnitude is small (often happens on the fat re-
gion), the difusion coefcient is close to one, and so the
smoothing process is performed. Terefore, the P-M model
can reduce noise and preserve edges simultaneously.

Unfortunately, it has been widely noted that the an-
isotropic difusion (1) has some limits in applications. In this
model, high gradient magnitude is generally considered as
a good indication of edges, while low gradient magnitude
always points to nonedge regions. However, the low gradient
magnitudemay not always point to nonedge regions or noise
because some important local details along with weak edges
may have low gradient magnitude. For example, if the initial
image has some important details, but the magnitude of
image gradient around the details is not large enough, and
then the large difusion coefcient results in a strong
smoothing efect, and hence, the details lose. In other words,
the difusion process by (1) does not perform well for detail-
preserving. To alleviate this problem, Chao and Tsai [4]
proposed an improved anisotropic difusion model. Tis
model incorporates both local gradient and gray-level var-
iance in the difusion coefcient, and so can preserve edges
and fne details while removing noise efectively. However,
this method cannot preserve weak edges accurately. Re-
cently, Wen et al. [5] proposed a new anisotropic fourth-
order difusion equation model based on image features for
image denoising, in which the difusion coefcient is de-
pendent on the frst-order derivatives for preserving edges
and second-order derivatives for smoothing image.

In addition to the nonlinear difusion models, there are
two well-known nonlinear flters to reduce noise and pre-
serve edges and/or details simultaneously. Tomasi and
Manduchi [6] proposed the bilateral flter, which is an edge-
preserving and noise-reducing smoothing method. Tis
flter is a weighted average of the local neighborhood
samples, where the weight depends not only on Euclidean
distance but also on the radiometric diferences (diferences
in the range, e.g., color intensity) between the center sample
and the neighboring samples. Tis flter is locally adaptive,
and it was shown to give similar and possibly better results to
those obtained by the P-M model. However, it works better
only on obvious boundaries but fails to preserve small de-
tails. Buades et al. [7] introduced the NL-means algorithm
which is based on the redundancy property of periodic
images, textured images, or natural images to remove noise.
Tis method is essentially a neighborhood flter, in which the

noisy grey-values are replaced by a weighted average (mean)
of the grey values in the entire noisy image where the weight
is determined by the neighborhood similarity of image
patches. Te NL-mean flter is good at detail-preserving but
is very time consuming.

In this paper, inspired by the work in [4, 5], we propose
a new detail-and edge-preserving smoothing technique based
on the P-M anisotropic difusion and entropy of the local
region histogram (local entropy), which incorporates both local
gradient and local entropy in the difusion coefcient.Te local
entropy has the properties as follows: a large value is taken
around the edges and details, and the small value can be made
in the fat region. Besides, the local entropy is robust to noise.
Terefore, the proposed model can preserve edges and fne
details while removing noise efectively. Experiments show that
the proposedmethod can really flter out noise efectively, while
preserving both edges and fne details in the restored image.

Te organization of this paper is as follows: Section 2
briefy introduces the local entropy for image analysis and
then presents the proposed model combining local entropy
with anisotropic difusion. Section 3 shows some experi-
mental results. Tis paper is concluded in Section 4.

2. The Proposed Model

2.1. Local Entropy. Te entropy of a system as defned by
Shannon gives a measure of uncertainty about its actual
structure. Entropy is a widely used measure of local in-
formation content or uncertainty. Pun [8] used Shannon’s
concept to defne the entropy of an image, assuming that an
image is entirely represented by its gray level histogram only.

Let Ωk be a small neighborhood window of size
Mk × Nk, located at the central pixel k. Following Pun’s
defnition [8], the local entropy E(Ωk) is defned as

E Ωk(  � − 
L−1

j�0
pjlogpj, pj �

nj

Mk × Nk

, (4)

where L and nj are the maximal gray level and the number of
pixels with gray level j appearing in the neighborhood Ωk,
respectively. We call E(Ωk) the local entropy of the central
pixel k. Generally, Mk � Nk, Mk ∈ 3, 5, 7{ }; in this paper, we
adopt Mk � Nk � 3.

By moving the window Ωk pixel by pixel within the
image from left to right and top to bottom, we obtain the
entropy image of the original image, which is composed of
the local entropy value of each pixel.

Figure 1 shows the entropy images for a synthetic noisy
image and real Lena image. From Figure 1, we can see that
local entropy has the two properties: (1) local entropy is not
sensitive to noise due to common efort of all pixels in a local
window; (2) local entropy is larger for a heterogeneous
region (e.g., including edge and/or details) but smaller for
a homogeneous neighborhood.

2 Discrete Dynamics in Nature and Society



2.2. Model Description. Te defciencies of the P-M model
[3] are mainly caused by the difusion coefcient, which
only considers the magnitude of image gradient at each
point. However, the gradient magnitude may be high at
a noisy point, so the fltering performance is not good
enough. Besides, the gradient magnitudes for some details
are small, and therefore, the difusion coefcient is large;
this leads to a strong smoothing efect and the detail
losses. Based on this observation, we propose a new
difusion coefcient based on gradient magnitude and
local entropy in (4), as follows:

g(|∇I(x, y)|, E(x, y)) �
1

1 + |∇I(x, y)| · f(E(x, y))/k0( 
2,

(5)

where |∇I(x, y)| is the gradient magnitude of the image I at
point (x, y), E (x, y) is the local entropy at (x, y) by (4), and K0
is a positive constant used as an edge strength threshold.Te
function f(E(x, y)) is defned as

f(E(x, y)) � 1 + M
E(x, y) − Emin

Emax − Emin
, (6)

where Emax and Emin represent the maximum and minimum
local entropies, respectively, and M is the maximum of
|∇I(x, y)| over image domain. Clearly,
1≤f(E(x, y))≤M + 1.

In [9], Nordström introduced the fdelity source I − u in
difusion (1), the role of which is to force u (x, t) to always
remain close to the original image I (x, y) during the dif-
fusion, as follows:

ztu − div(c(|∇u|)∇u) � I − u, (7)

which has a priori advantage of having a nontrivial steady
state. Te strategy of introducing the fdelity source in the
difusion equation has been adopted in subsequent studies;
see for example [5].

Following but diferent from [9], we present a new
anisotropic difusion for image smoothing as follows:

ztu � div(g(|∇v|, E)∇u) +(1 − g(|∇v|, E))(I − u), (8)

with the initial condition u(x, y, 0) � I(x, y), where the
function v is determined at each iteration by

ztv � g(|∇v|, E) Gσ ∗ u − v( ,

v|t�0 � u.
 (9)

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 1: Local entropy images. (a, c): original images (synthetic noisy image and real Lena image); (b, d): local entropy images of (a, c);
(e, g): two patches shown in the blue and red bounding boxes for Lena image; (f, h): local entropy images of (e, g).
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(a) (b)

(c) (d)

(e) (f )
Figure 2: Continued.
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(g)

Figure 2: Comparison with six fltering methods applied to the noisy bear image. (a) Original image. (b) P-M. (c) BF. (d) NL. (e) Chao et al.’
method. (f ) Wen et al.’ method. (g) Ours.

(a) (b)

(c) (d)
Figure 3: Continued.
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where Gσ is the Gaussian function with standard deviation σ.
In (8) and (9), the function g(·) is given by (5).

It should be noted that the convolution Gσ ∗ u was frst
used in the difusion coefcient of Perona and Malik
equation in Catte et al.’ work [10]. Teoretical analysis and
experimental results in [10] have shown that the convolution
Gσ ∗ u plays an essential role in the recovered quality of
images contaminated by noise.

In (8), the balance between the fdelity source term (2nd
term) and the difusion term is made by 1 − g, which works
as a moderated selector of the difusion process. Due to the
fdelity source term, the smoothed image u remains close to
the initial image u in the edge areas where g ≈ 0. On the
other hand, in homogeneous areas g ≈ 1 and therefore, the
source term will have an inexpressive efect, which allows for
a better renovate of the image.

(e) (f )

(g) (h)

(i) (j)

Figure 3: Details preserving comparison of the restoration results used four fltering methods. Top row: (a) original CT image with noise;
(b) NL-means; (c) Chao et al.’ method; (d) Wen et al.’ method; (e) our method. Bottom row: (f )–(j) the zoomed portions corresponding to
(a)–(e), respectively.
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(a) (b)

(c) (d)

(e) (f )
Figure 4: Continued.
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3. Experiments

Te proposed difusion model is implemented using a simple
fnite diferencing, in which the divergence term is discretized
via an 8-nearest neighbors, inspiring from [3, 9], namely,

div(g(|∇v|, E)∇u) ≈ 
8

i�1
g ∇i

v


, E  · ∇i
u




, (10)

where

∇1u � u(x + 1, y) − u(x, y),

∇2u � u(x, y + 1) − u(x, y),

∇3u � u(x − 1, y) − u(x, y),

∇4u � u(x, y − 1) − u(x, y),

∇5u �
(u(x + 1, y + 1) − u(x, y))

�
2

√ ,

∇6u �
(u(x + 1, y + 1) − u(x, y))

�
2

√ ,

∇7u �
(u(x + 1, y + 1) − u(x, y))

�
2

√ ,

∇8u �
(u(x + 1, y + 1) − u(x, y))

�
2

√ ,

(11)

where the symbol ∇i (not to be confused with ∇, which we
use for the gradient operator) indicates 8-nearest neighbors
diferences, similarly for ∇iv (1≤ i≤ 8).

We present and discuss the experimental results to verify
the proposed model. In all experiments, we set K0 � 250 and
the iteration number as 100.

Figure 2 shows the comparison among the P-M method
[3], bilateral flter (BF) [4], NL-means [7], Chao et al.’
method [6], Wen et al.’ method [5], and the proposed
method when applied to the noisy image with details. From
Figure 3, we can see (1) the P-M model can efectively
remove noise, but it also removes some important details; (2)
the bilateral fltering cannot get rid of noise as much as we
need (see background), whereas it can preserve details good;
(3) NL-means, Chao et al.’ method, Wen et al.’ method, and
our method have similar visual quality.

In order to further verify the detail-preserving perfor-
mance of our method, some methods are used for compar-
ison, as shown in Figure 3. Figure 3(g) presents the enlarged
details portion by the NL-means method. It can be observed
that most noise can be eliminated, but the weak line of the
image is reduced. Te enlarged details portion from Chao
et al.’ method is shown in Figure 3(h), in which the edges
cannot be efectively preserved and some important edge is
fused with the background. Figure 3(i) presents the enlarged
details’ portion byWen et al.’ method. It can be observed that
the weak line of the image is reduced. Figure 3(j) presents the
enlarged details portion by our method. It is clearly seen that
our method efectively preserves the fne details, while
smoothing out noise in the image.

(g)

Figure 4: Details preserving comparison of the restoration results used various fltering methods. (a) Original image. (b) P-M. (c) BF.
(d) NL. (e) Chao et al.’ method. (f ) Wen et al.’ method. (g) Our model.

Table 1: PSNR values with diferent fltering methods for the noisy Lena image.

Method P-M Bilateral NL Chao Wen Ours
PSNR (dB) 28.59 32.67 31.47 30.47 31.72 35.3 
Te larger the PSNR, the better the denoising efect. As shown in Table 1, the higher the PSNR of our method, the better the denoising efect of our method.
Terefore, the PSNR of our algorithm is shown in bold.
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Figure 4 shows another comparison of the restoration
results by six fltering methods; all of the results are obtained
from the 512× 512 Lena image with random noise which
ranges from 0 to 5. By visual comparison, it is clearly seen
that our method efectively preserves the fne details, while it
smooths out noise in the noisy Lena image. Tis fact can be
further validated by quantitative comparison. Te metric
adopted in this study for comparison is the peak signal-to-
noise ratio (PSNR). Table 1 gives the PSNR values for the
restored Lena images using the six methods, and our method
has the highest PSNR. In most cases, when the max of
random noise is less than 10, the PSNR of our model is the
highest than others which are compared in this paper.

4. Conclusions

In this paper, we propose a coupled anisotropic difusion
scheme which combines with the local entropy for
detail-and edge-preserving smoothing. It can efectively
improve the quality of a noisy image and also well preserve
the sharp edges and fne details in an image. Te main
contribution of this study is to exploit entropy of the local
region histogram to improve the P-M anisotropic difusion
in terms of detail-and edge-preserving smoothing.

It should be pointed out that because the computing cost
of local entropy is very high, our method is time-consuming,
especially for large-size images. Besides, the strong noise will
decline the fltering performance of the proposed method.
But considering its good performance in preserving the
sharp edges and fne details of the image, the proposed
algorithm is still one of competitive denoising methods for
detail-and edge-preserving smoothing.
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