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Urban regional risk is a complex nonlinear problem that encounters insufcient information, randomness, and uncertainty. To
accurately assess the overall urban risk, a regional risk assessment model for urban public safety was proposed by using the
information difusion theory. Te entropy theory was employed to optimize the information difusion model to reduce the
uncertainty. A framework of urban regional risk assessment model based on information difusion and entropy was constructed.
Finally, a case study of Hangzhou city in China was presented to demonstrate the performance of the proposed method. Results
showed that the proposed method could successfully estimate the urban regional risk of Hangzhou city. Te risk levels and
probabilities of diferent hazard indicators were basically consistent with reality.Te hazards with respect to industrial andmining
accidents and road trafc accidents were extremely serious. More than 80 deaths from industrial and mining accidents would
occur almost every 3 years, and more than 400 deaths of RTA would occur almost every 2.6 years. Moreover, centralized intervals
of the risk level associated with fve hazards were found, where urban risks were more likely to happen and had higher vul-
nerability. It could provide guidance for the government’s urban safety management and policy-making.

1. Introduction

Urban safety is a complex system issue involving all com-
ponents of society and its citizens [1–3]. At present, ur-
banization continues to accelerate in China. Te population,
functions, and scale of cities have continually expanded [4].
From 1978 to 2021, the urban permanent population had
increased from 170 million to 901 million, and the urban-
ization rate had risen from 17.9% to 63.89%. Both the
number of cities and urban population are developing
rapidly in China. Meanwhile, a high concentration of ur-
banization elements, including population, buildings, gas,
transportation, and production parks, has formed with the
rapid development of urbanization [5–7]. Te urban op-
eration system has become more and more complex. When
an urban hazard happens, it extremely tends to cause the

chain efect of derivative damage of the public crisis.
Terefore, it is imperative to conduct an urban regional risk
assessment and strengthen the process safety management.

Many studies have been conducted to explore the pos-
sible regional risks caused by a single hazard in the felds of
fre protection, construction, chemical industry, and envi-
ronment [1, 8–11]. By the superposition of single risks, the
regional risk involving multiple hazards had been simply
described [12]. For instance, Chen et al. [13] constructed the
disaster risk evaluation index system in accordance with
Chinese reality and presented the urban risk ranking and
risk map of 31 provinces. Zhang et al. [14] explored the
relationship between urban spatial risk and the distribution
of infected COVID-19 populations. Altindal et al. [12]
carried out the seismic risk assessment of earthquake-prone
old urban centers. Hoyos and Hernández [15] pointed out
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that hazard-consistent record selection was extremely im-
portant in the derivation of vulnerability models to use at
a local scale, for sites with contributions from diferent
tectonic regimes. Yang et al. [16] proposed a multiscale
environmental accident risk assessment model to compre-
hensively evaluate the characteristics and impacts of envi-
ronmental risk at diferent scales. As a huge carrier of society
development, regional security has gradually evolved from
qualitative description to quantitative analysis, deepened
from certainty to uncertainty, and developed from random
uncertainty to fuzzy uncertainty [11, 17–19]. For example,
Zhou et al. [20] claimed that uncertainties existed in slope
stability analysis and proposed a probabilistic method for
landslide prediction. Zhao et al. [21] developed R scripts to
implement the K-means algorithm and gap statistics validity
index for clustering regional risk. Yang et al. [22] used
a multilevel risk characterization method to show the
evolutionary process of risk and to provide a scientifc basis
for the management of the urban agglomeration ecological
risk. Xu et al. [23] developed a land-use-based urban growth
scenario for the temporally and spatially explicit simulation
of future urban growth in terms of buildings, roads, and
electrical facilities while considering dynamic information.
However, these publications mainly focus on a certain
“point” or “face” of urban risks, such as drought, food, and
earthquake, and analyze a risk superposition under limited
conditions. Few comprehensive studies on the overall re-
gional risk have been conducted.

As a complex nonlinear fuzzy system, urban regional risk
involves many factors and varies rapidly in reality [24–27].
Due to the spatiotemporal limitations, data collection and
feedback are commonly difcult. In the process of urban
regional risk assessment, information asymmetry and in-
sufciency are often encountered [28–30]. Tis is commonly
called a small sample size problem. Information difusion
theory is a fuzzy mathematical method for centralized
processing of incomplete information systems [31, 32]. With
the aid of fuzzy mathematics, a single sample point can be
processed to establish an information difusion model. Te
relationship among variables is constructed via the difusion
function, and then, the incomplete information is appro-
priately expanded to compensate for information in-
sufciency in small sample size problems. Recently,
information difusion has been gradually introduced into
specifc disaster risk assessments such as food, meteorology,
fre, and earthquake [33–35]. For instance, Bai et al. [36]
employed a genetic algorithm to improve the information
difusion algorithm and conducted that for monthly river
discharge time series interpolation and forecasting. Hao
et al. [37] claimed that the incompleteness, the nonclarity,
and the uncertainty of the data must be addressed with the
risk assessment and applied information difusion algorithm
in probabilistic analysis of grassland biological disasters risk.
Sun et al. [38] proposed a difusive foot-and-mouth disease
model with nonlocal infections.

However, the overall regional risk assessment by in-
formation difusion method was rarely accounted for.
Moreover, it should be pointed out that the above studies
mainly computed that by using a simplifed model derived

from molecular difusion theory. A reasonable difusion
coefcient is crucial to system risk assessment. Asmentioned
earlier, uncertainty is a signifcant factor in urban regional
risk assessment. Actually, it would also afect the de-
termination of the difusion coefcient. Te optimization of
the difusion coefcient should be considered during the
implementation of the information difusion model.

To compensate for the aforementioned drawbacks, this
study is intended to propose a regional risk assessment
method for urban safety by introducing information dif-
fusion theory. Furthermore, the entropy theory is combined
into an information difusion model to reduce the un-
certainty.Te remainder of the paper is organized as follows.
a brief introduction to information difusion theory is
elaborated in Section 2; Section 3 adopts the entropy to
optimize the difusion coefcient; Section 4 illustrates the
overall procedure of the regional risk assessment model for
urban public safety; in Section 5, a case study is adopted to
validate the proposed method; fnally, Section 6 provides the
conclusions and suggestions for future work.

2. Information Diffusion Theory

Te information difusion theorem is a fuzzy mathematical
method for centralized processing of incomplete in-
formation systems [31]. In this method, each information
sample point is supposed to have a tendency to develop into
multiple information points in the process of transition from
the original incomplete system to completeness [19]. Ac-
cordingly, the corresponding information expansion of the
incomplete system can be carried out by mathematical
methods to make up for the shortcomings of insufcient
information. At the same time, the calculation of the
membership function can be avoided, and the original in-
formation carried by the original data can be preserved to
the greatest extent possible. Terefore, even under the
condition of incomplete information, this method can
predict the relationship between variables through a certain
difusion function.

To understand the principle of information difusion, the
following defnitions should be frst reviewed [37].

Defnition 1. For a nonlinear relationship, any sample with
a size smaller than the population is regarded as incomplete.

Defnition 2. For a known sample set X, letW be the object’s
true relation. X is called a correct data set forW if and only if
there exists a model through which X is processed to obtain
an estimate WX

c such that WX
c =W.

Based on the abovementioned two defnitions, the in-
formation difusion principle can be defned. LetX be a given
sample, V be a subset of the universe U, and
μ: X × V⟶ [0, 1] be a mapping from X×V to [0, 1].
∀(x, v) ∈ X × V is called a kind of information difusion of X
on V, μ is called a difusion function, and V is called
a monitor space. If and only if X is incomplete, there must
exist a difusion function μ (x) which can difuse the
quantitative information obtained at point x to v.
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Based on the molecular difusion theory, Professor
Huang [19] proposed a one-dimensional normal difusion
function, as shown in the following equation:

f uj􏼐 􏼑=
1

h
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where h is the difusion coefcient, which governs the do-
main of information difusion; xi is the variable of X in-
cluding m samples, i� 1, 2, . . . , n; uj is the element of
universeU including n variables, j� 1, 2, . . . ,m. Based on the
“average distance model” and the “two-point proximity
principle,” h can be calculated by the following equation:

h=
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where a=min1≤i≤n xi􏼈 􏼉; b=max1≤i≤n xi􏼈 􏼉.

From (2), it can be concluded that the value of h is
mainly determined by the minimum a, the maximum b, and
sample size n.

To equalize the numerical status of each set, the difusion
function fi(uj) is commonly normalized, as shown in the
following equation:

Ci = 􏽘
m

j=1
fi uj􏼐 􏼑. (3)

Ten, the normalized information distribution formula
μxi

(uj) can be defned as follows:

μxi
uj􏼐 􏼑 =

fi uj􏼐 􏼑

Ci

. (4)

Via the abovementioned information difusion, the
single-valued sample point xi is successfully transformed
into a fuzzy subset with the membership function μxi

(uj).
Next, let p(uj) be the estimate of the probability asso-

ciated with sample point xi at uj. p(uj) can be expressed as
follows:

p uj􏼐 􏼑=
􏽐

n
i=1μxi

uj􏼐 􏼑
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m
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n
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Ten, the exceeding probability (uj), which is the es-
timate used to assess disaster risk, can be computed by the
following equation:

P uj􏼐 􏼑 = 􏽘
m

k=j

p uj􏼐 􏼑. (6)

3. Optimization of Diffusion Coefficient
Based on Entropy

From (1) and (2), it is clear that the difusion coefcient h
signifcantly afects the expansion of incomplete sample X.
However, the traditional empirical calculation method,
namely, (2) has typical uncertainty and lacks a sufcient
theoretical basis. It might be remarked that the information
entropy is capable of measuring the uncertainty and the
randomness of the system. It is mainly used as a probability
density function to quantitatively describe the information
capacity of the system.Te larger the entropy, the higher the
uncertainty of the system. In other words, the more in-
formation we know about a system, the less uncertain it is.

According to Shannon’s theorem [39], the information
entropy function can be expressed as follows:

H= − 􏽘
n

i=1
Pi lnPi. (7)

With the aid of the maximum entropy principle, the
maximum entropy H of the one-dimensional normal in-
formation difusion function can be obtained from the
following equation:
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For a given sample, each random sampling event can be
considered as an event with equal probability. Ten, the
entropy reaches a maximum, as expressed in the following
equation:

H= − 􏽘
n

i=1
pi lnpi = ln(n). (9)

According to (8) and (9), σ can be expressed as follows:

σ =
e

H

���
2πe

√ . (10)

Due to that h� σ ·Δn, where the average width
Δn = (b− a)/(n − 1), the difusion coefcient h can be fur-
ther modifed as follows:

h=
σ(b− a)

(n − 1)
=

e
H

���
2πe

√􏼠 􏼡 ·
(b− a)

(n − 1)
. (11)
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4. Urban Regional Risk Assessment Model
Based on Information Diffusion

Urban regional risk assessment is a complicated issue
commonly with incomplete information and numerous
uncertainties [2, 28]. Fortunately, the information difusion
and information entropy are precisely the way to solve such
problems. Terefore, in this study, the two methods are
combined to assess regional risk in relation to urban public
safety.

In the process of urban regional risk assessment, in-
formation asymmetry and insufciency are often encoun-
tered. Terefore, it is difcult to raise the urban risk
assessment from the “point” level of various hazards to the
“face” of the region. As a set-valued fuzzy mathematical
method, information difusion theory is commonly used for
risk assessment of small sample systems. In view of fuzzy set
theory, the probability distribution can be regarded as
a mapping from events to probability values. Accordingly,
the single sample point can be processed by fuzzy mathe-
matics to establish an information difusion model. Te
relationship among variables is constructed via the difusion
function, and then, the incomplete information is appro-
priately expanded to compensate for information in-
sufciency in small sample size problems. Tus, the
probability is employed as a risk measure to evaluate the risk
level or vulnerability of the hazard. Generally, information
difusion can be implemented in two ways: (1) multisource
information is distributed at diferent control points; (2)
multiple information universes are expanded to obtain the
fuzzy relationships of the system. In this study, the former is
adopted to construct a risk assessment model of urban
hazards.Te samples of urban risk indicators are regarded as
incomplete sample sets. By establishing the universe of each
single-valued sample of hazard, the information distribu-
tions at diferent risk levels are computed by using in-
formation difusion theory. In this case, an urban regional
risk assessment model based on information difusion and
maximum entropy can be established, as shown in Figure 1.

Step 1. Determine the regional risk assessment index sys-
tem. Let U� {u1, u2, . . . , um} and X� {x1, x2, . . . , xn} be the
universe and sample set of urban risk indicators,
respectively.

Step 2. Compute the difusion coefcient h with the aid of
entropy. According to the collected sample set in Step 1, the
minimum a, the maximum b, and sample size n of each
indicator X are determined. Ten, the entropy H can be
derived from equation (9). Via equations (10) and (11), h can
be computed.

Step 3. Construct the normalized information distribution
formula μxi (uj). Substitute h into equation (1), and then,
a one-dimensional normal difusion function can be
established. With the aid of equations (3) and (4), μxi(uj)

can be defned, which can transform single-valued sample
point xi into a fuzzy subset.

Step 4. Assess the regional risk for urban public safety.
Estimate the probability p (uj) and exceeding probability
P(uj) associated with all risk indicators via equations (5)
and (6).

5. Case Study

5.1. Database. Urban public safety risk assessment is a large
and complex system that should cover the elements of urban
security as much as possible. In order to validate the per-
formance of the proposed method, the statistical data of
urban death accidents in Hangzhou city, China, were se-
lected as test samples [40]. Hangzhou is an international
tourist city and a famous national historic and cultural city.
It has a total area of 16850 square kilometers and a per-
manent population of 12.204 million. In 2022, Hangzhou
will achieve a GDP of 1875.3 billion Yuan. Recently, more
and more international conferences and events were held
there, such as the G20 summit and the Asian Games. It is
becoming the megalopolis of China and is faced with public
safety risks far beyond small andmedium-sized cities. Due to
the rapid growth of the economy, city size, population, and
trafc density, the urban safety risks in Hangzhou are be-
coming increasingly severe. As commonly used indicators in
China, the death numbers of industrial andmining accidents
(IMA), road trafc accidents (RTA), water trafc accidents
(WTA), fshing vessel transportation and fshing accidents
(FVTFA), and mortality per hundred million GDP (MHM-
GDP) from 2005 to 2021 were studied to assess the safety
production risk in the Hangzhou region. Te original data
for each sample are shown in Table 1.

5.2. Results. Let X1, X2, X3, X4, and X5 represent IMA, RTA,
WTA, FVTFA, and MHM-GDP, respectively. Ten, the
sample set of urban regional risk indicators associated with
Hangzhou city was frst established. Te sample size of each
indicator was 17. Te discrete domain was set as U� {U1, U2,
U3,U4,U5}. All the minimum values ofU1,U2,U3,U4, andU5
were set as 0. Due to the diferences in loss among the fve
hazards, the intervals of risk levels Δ1, Δ2, Δ3, Δ4, and Δ5
should be reasonably selected to refect the actual situation of
safety production in Hangzhou. As the relative high death toll
of U1 and U2, Δ1� 10 and Δ2 � 50 were set to divide the risk
levels of IMA and RTA. Δ3 and Δ4 were set as the minimum
unit due to their relative low death number, namely, 1.
Δ5 � 0.02 was selected according to the 17 years loss of MHM-
GDP. Ten, the U was accordingly constructed as follows:

U1 � {0, 10, 20, . . . , 250}, Δ1 � 10, 26 levels in total
U2 � {0, 50, 100, . . . , 2000}, Δ2 � 50, 41 levels in total
U3 � {0, 1, 2, . . . , 20}, Δ3 �1, 21 levels in total
U4 � {0, 1, 2, 3, 4, 5}, Δ4 �1, 6 levels in total
U5 � {0, 0.02, 0.04, . . . , 0.7}, Δ5 � 0.02, 36 levels in total

By using (11), the difusion coefcients of he associated
with fve indicators were computed. For comparison, cor-
responding values of h0 were also calculated by using (2). For
instance, it was known from Table 1 that a1 � 30, b1 � 137,
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and n� 17. Via (9), H� 2.83 could be computed. Ten,
he � 27.51 and h0 �17.96 associated withX1 could be resolved
by (2) and (11), respectively. Similarly, the difusion co-
efcients of X2, X3, X4, and X5 could be calculated, as shown
in Table 2.

Based on the proposed urban risk assessment model, the
established sampleX could be appropriately expanded to the
discrete domain U. With the aid of MATLAB, the fuzzy
membership functions corresponding to each indicator
could be obtained as follows:

Table 1: Safety production risk indices of Hangzhou from 2005 to 2021.

Years IMA (person) RTA (person) WTA (person) FVTFA (person) MHM-GDP (100%)
2005 137 1037 3 0 0.4000
2006 124 929 1 0 0.3063
2007 118 899 10 1 0.2500
2008 136 862 6 1 0.2100
2009 105 806 7 0 0.1800
2010 104 761 8 0 0.1500
2011 105 736 4 0 0.1210
2012 99 711 0 1 0.1040
2013 85 690 6 1 0.0910
2014 73 620 0 0 0.0753
2015 75 609 4 0 0.0684
2016 107 448 2 1 0.0398
2017 85 362 2 0 0.0400
2018 54 254 1 0 0.0245
2019 30 160 0 0 0.0124
2020 32 103 1 0 0.0084
2021 34 96 0 0 0.0072
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Figure 1: Framework of regional risk assessment model for urban safety based on information difusion combining entropy.
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μ1( 􏼁17×26=

5.97 × 10−8 3.41 × 10−7 . . . 3.14 × 10−6

5.61 × 10−7 2.71 × 10−6 . . . 4.04 × 10−7

⋮ ⋮ ⋱ ⋮

6.76 × 10−3 9.91 × 10−3 . . . 5.94 × 10−16
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,

μ3( 􏼁17×21=

7.85 × 10−2 1.15 × 10−1 . . . 4.97 × 10−11
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1.55 × 100 8.05 × 104 . . . 4.23 × 10−53
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,

μ5( 􏼁17×36=

1.55 × 10−3 3.33 × 10−3 · · · 4.79 × 10−2

3.97 × 10−2 7.10 × 10−2 . . . 1.98 × 10−3
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3.94 × 100 3.92 × 100 . . . 2.38 × 10−10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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.

(12)

According to sample X1, the probability and exceeding
probability of IMA at diferent risk levels were calculated by
using (5) and (6), as shown in Table 3. Similarly, corre-
sponding results of RTA, WTA, FVTFA, and MHM-GDP
could also be determined according to the samples X2, X3,
X4, and X5, as shown in Tables 4–7.

5.3. Discussion. In the past 20 years, the regional risk of
Hangzhou city has improved signifcantly. Tis can be
clearly observed in Table 1. Te overall risk level of
Hangzhou city showed a downward trend as time pro-
ceeded. However, the proportions of diferent hazards sig-
nifcantly difered from each other, as illustrated in Figure 2.
Of the fve indicators, the risk related to IMA was medium
but showed a fuctuating trend. Te risk related to RTA was
high but showed a downward trend. Obviously, the hazards
of IMA and RTA were still the areas with high incidences of
casualties and property losses, accounting for 11.15% and
87.64%, respectively. In contrast, the risk related to theWTA
and FVTFA was lower and showed a dropping trend. Te

hazard prevention of them was remarkable, annual deaths of
which had fallen into the single digits or not occurred. Tey
were expected to achieve the terminal goal of risk-free by
taking necessary targeted policies and technical safety
measures in the future.

It was generally recognized that the difusion coefcient
was crucial to the performance of information difusion. In
this study, the entropy theory was employed to modify the
traditional difusion coefcient. LetHe andH0 be the entropy
value of information difusion estimation under he and h0,
respectively. Table 8 shows the results of H1 and H2 derived
from two diferent strategies. It was obvious that as for any
indicator X, H0<He. Tis indicated that the probability of
the information difusion results computed by hewas greater
than that calculated by h0. Te entropy-modifed coefcient
was more reliable and reasonable.

Te proposed information difusion method combining
entropy could successfully estimate the urban regional risk.
It could be seen from Tables 3–7 that the exceeding prob-
ability P (u) associated with diferent hazards decreased with
the increase of risk level. However, the corresponding risk

Table 2: Difusion coefcients of he and h0 by using diferent methods.

Difusion
coefcient X1 X2 X3 X4 X5

he 27.51 241.93 2.57 0.26 0.10
h0 17.96 157.92 1.68 0.17 0.07
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probability p(u) increased frst and then decreased, in-
dicating that there would be a concentration area of risk
levels for each hazard. Figure 3 shows the risk probability
distribution curves of fve hazards by using MATLAB 7.0.
For comparison, the estimation results derived from the
traditional difusion coefcient were also given. It was clear
that the regional risk assessment results difered from each
other. For IMA and FVTFA, the highest risk levels associated
with he and h0 were consistent. However, there was a slight
deviation in the probability p. For RTA, WTA, and MHM-
GDP, both the highest risk levels and their probabilities p
were diferent. Tese displayed again the importance of the
correct difusion coefcient. It could be imagined that once
the difusion coefcient was improperly selected, it would

lead to a large deviation of urban regional risk, which would
further afect the formulation of policies and measures for
urban risk prevention and control. Terefore, it was nec-
essary to optimize the difusion coefcient in this study.

As shown in Figure 3(a), it can be observed that the risk
level of 100 deaths associated with IMA in Hangzhou city
had the highest p value, namely, 9.23%. As the risk level
further exceeded 100, corresponding probabilities showed
a signifcant downward tendency.Te risk level of more than
80 deaths occurred with high probability (P> 64.64%),
which happened about every 1.5 years. Tis also meant that
80 deaths would exist almost every 3 years in the future. But
that of more than 160 deaths was small (P< 14.35%), which
occurred about every 7 years. Te peak value of the death
number associated with RTA was 700 (p� 5.47%), as shown
in Figure 3(b). Te risk level of more than 400 deaths oc-
curred with high probability (P> 76.06%), which happened
about every 1.3 years. Comparably, the risk level of more
than 1000 deaths was small (P< 17.09%), which only hap-
pened in 2005. Figure 3(c) demonstrated that the peak value
of the death number associated with WTA was 2
(p� 12.18%). Te risk level of more than 1 death occurred
with high probability (P> 89.42%), occurring about
1.1 years. However, that of more than 8 deaths was small
(P< 19.02%), which occurred every 5.3 years. FVTFA shows
the lowest risk due to the probability of zero death reaching
70.59%, as displayed in Figure 3(d). More than 1 death per
year occurs about every 2–4 years. As for MHM-GDP, the
peak value of the death number associated with RTA was
0.08 (p� 6.91%). Figure 3(e) demonstrated that more than
0.32 per year occurred with low probability (P< 14.37%),
happening about every 7 years. From 2014, MHM-GDP was
less than 0.08 and sharply declined. Overall, compared to the
original data of urban hazards in Table 1, the above-
mentioned conclusions drawn by the proposed information
difusion method were basically consistent with the reality.

Based on the abovementioned analysis, it can also be
found that a centralized distribution interval of the risk level
frequency associated with each urban hazard existed, rep-
resented by S in this study. Te corresponding results of 5
urban hazards are shown in Table 9. Obviously, urban risks in
S were more likely to happen and had higher vulnerability.
Similar to the abovementioned analysis results, IMA and RTA

Table 3: Risk assessment of annual fatalities of IMA.

U p(u) P(u)

0 0.0152 1.0000
20 0.0317 0.9618
40 0.0484 0.8898
60 0.0647 0.7850
80 0.0827 0.6464
100 0.0923 0.4741
120 0.0809 0.2924
140 0.0527 0.1435
160 0.0245 0.0531
180 0.0078 0.0140
200 0.0016 0.0025

Table 4: Risk assessment of annual fatalities of RTA.

U p(u) P(u)

0 0.0199 1.0000
200 0.0317 0.9015
400 0.0412 0.7606
600 0.0518 0.5797
700 0.0547 0.4743
800 0.0534 0.3649
1000 0.0373 0.1709
1200 0.0162 0.0548
1400 0.0042 0.0113
1600 0.0006 0.0014

Table 5: Risk assessment of annual fatalities of WTA.

U p(u) P(u)

0 0.1058 1
1 0.1189 0.8942
2 0.1218 0.7753
4 0.1051 0.5376
8 0.0570 0.1902
12 0.0149 0.03134
16 0.00085 0.0013

Table 6: Risk assessment of annual fatalities of FVTFA.

U p(u) P(u)

0 0.7056 1.0000
1 0.2943 0.2944
2 0.0002 0.0002

Table 7: Risk assessment of annual fatalities of MHM-GDP.

U p(u) P(u)

0 0.0560 1.0000
0.02 0.0616 0.9440
0.08 0.0691 0.7485
0.14 0.0628 0.5448
0.2 0.0490 0.3694
0.26 0.0350 0.2369
0.32 0.0239 0.1437
0.38 0.0157 0.0807
0.44 0.0095 0.0402
0.5 0.0048 0.0168
0.56 0.0019 0.0056
0.62 0.0006 0.0014
0.68 0.0001 0.0002
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Figure 2: Accident death number in Hangzhou in ten years.

Table 8: Entropies of He and H0 by using diferent difusion coefcients.

Entropy X1 X2 X3 X4 X5

He 2.8193 3.2811 2.4965 0.6074 3.1076
H0 2.7077 3.1761 2.4074 0.6058 3.0061
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Figure 3: Continued.
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were the main urban hazards with relatively higher S values. It
also illustrated that urban regional risks were inevitable
during the rapid development of society. However, efective
countermeasures could be adopted to not only reduce the
likelihood of hazards but also prevent dangerous events.
Terefore, based on the risk situation and risk development
trend results, appropriate measures can be taken to reduce the
risk. It is suggested that Hangzhou should strengthen the
safety supervision of the IMA and RTA in the future.

Overall, the information difusion method was easily
carried out and capable of dealing with incomplete in-
formation events with high accuracy. It can provide guidance
for the government’s urban safety management and policy-
making. According to diferent hazards and risk levels, safety
management measures can be formulated based on the actual
state by resolving the estimated probabilities, so as to con-
tinuously improve the level of urban safety management.

6. Conclusion

In this study, information difusion theory was introduced to
assess regional risk for urban public safety. Meanwhile, the
entropy theory was utilized to modify the difusion co-
efcient to reduce the uncertainty. A framework of urban
regional risk assessment model based on information dif-
fusion and entropy was established. Te regional risk of
urban public safety in Hangzhou city was studied by using
the proposed method. Some main conclusions can be drawn
as follows.

(1) Te difusion coefcient was crucial to the perfor-
mance of information difusion. Te information
difusion results derived from entropy entropy-
modifed difusion coefcient earned less un-
certainty and randomness than the traditional
method. Such capacity could reduce the estimated
bias of urban regional risk and contribute to the
formulation of policies and measures for risk pre-
vention and control. With the aid of the modifed
method, the urban regional risk of Hangzhou city in
China was successfully estimated.

(2) In Hangzhou City, the peak risk levels of IMA, RTA,
WTA, FVTFA, and MHM-GDP were 100 deaths,
700 deaths, 2 deaths, 0 death, and 0.08 deaths, re-
spectively, which were basically consistent with the
reality. Comparably, the hazards with respect to IMA
and RTA were extremely serious. More than 80
deaths of IMA would occur almost every 3 years, and
more than 400 deaths of RTA would occur almost
every 2.6 years.

(3) Centralized intervals of the risk level associated with
fve hazards in Hangzhou city could be found. Urban
risks in such intervals were more likely to happen
and had higher vulnerability, almost occurring every
1-2 years. Efective countermeasures could be for-
mulated based on the actual state by resolving the
estimated probabilities, so as to continuously im-
prove the level of urban safety management.

Table 9: Concentrated distribution area of regional risk.

Regional risks IMA RTA WTA FVTFA MHM-GDP
S [60, 120] [400, 1000] [1, 8] [0, 1] [0.02, 0.2]
Cumulative risk probability 49.26% 58.97% 70.4% 70.56% 57.46%
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Figure 3: Death risk estimated value of urban major hazards: p0 and P0 represent the probability and exceeding probability computed by h0;
pe and Pe are probability and exceeding probability computed by he. (a) IMA. (b) RTA. (c) WTA. (d) FVTFA. (e) MHM-GDP.
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