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Improvements in hyperspectral image technology, diversifcation methods, and cost reductions have increased the convenience of
hyperspectral data acquisitions. However, because of their multiband and multiredundant characteristics, hyperspectral data
processing is still complex. Two feature extraction algorithms, the autoencoder (AE) and restricted Boltzmann machine (RBM),
were used to optimize the classifcation model parameters. Te optimal classifcation model was obtained by comparing a stacked
autoencoder (SAE) and a deep belief network (DBN). Finally, the SAE was further optimized by adding sparse representation
constraints and GPU parallel computation to improve classifcation accuracy and speed. Te research results show that the SAE
enhanced by deep learning is superior to the traditional feature extraction algorithm. Te optimal classifcation model based on
deep learning, namely, the stacked sparse autoencoder, achieved 93.41% and 94.92% classifcation accuracy using two experi-
mental datasets. Te use of parallel computing increased the model’s training speed by more than seven times, solving the model’s
lengthy training time limitation.

1. Introduction

Hyperspectral-imaging spectral sensors, which are now car-
ried out on a variety of platforms, such as satellites, aerospace
aircraft, uncrewed aerial vehicles, and ground vehicles, collect
rich surface refectance information [1–3]. Tis kind of
remote-sensing imaging technology with tens or hundreds of
spectral bands is used in geological and mineral detection,
environmental investigations [4–7], vegetation monitoring
[8–10], and marine research [11]. Correction and compres-
sion of hyperspectral image data and object detection and

feature classifcation are important research areas of hyper-
spectral remote sensing [12, 13]. Supervised classifcation
algorithms commonly used for low-dimensional space per-
form poorly in the classifcation of hyperspectral data due to
the Hughes phenomenon [14, 15]. For classifcation purposes,
it is crucial to retain valuable information from high-
dimensional data while reducing their dimensionality
[16–18]. An urgent issue is reducing the dimensionality of the
data while using a reasonable feature extraction method to
derive the nonlinear structure information from the image
pixels that are more suitable for classifcation [19, 20].
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Te pixel features that are more important for classif-
cation can be obtained by unsupervised classifcation.
Commonly used hyperspectral data feature extraction
methods include linear and nonlinear dimensionality re-
duction approaches. Te main linear dimensionality re-
duction methods used in hyperspectral image
dimensionality reduction are independent component
analysis (ICA) [21, 22], principal component analysis (PCA)
[23–25], linear discriminant analysis (LDA) [22, 26], and
local feature analysis (LFA) [27], among others. However,
traditional linear dimensionality reduction methods cannot
explore the nonlinear features inside the hyperspectral data,
leading to lower fnal classifcation accuracy. Terefore,
there have been fewer studies on hyperspectral feature ex-
traction algorithms for linear dimensionality reduction al-
gorithms in recent years. Te commonly used nonlinear
dimensionality reduction methods are based on kernel
functions and eigenvalues. Te kernel function-based
methods include methods such as kernel discriminant
analysis (KDA) [28–30] and kernel principal component
analysis (KPCA) [31].

Nonlinear dimensionality reduction methods are used
more frequently in remote sensing due to the rapid ad-
vancement of deep learning theory and technology [32]. Due
to their advantages, deep learning theory is more regularly
applied to the feature extraction and classifcation of
hyperspectral image data [33–36]. Deep learning is partic-
ularly suitable for feature extraction of high-dimensional
nonlinear data [37, 38]. Numerous studies have used deep
learning methods combined with diferent classifers to
achieve better classifcation results of hyperspectral remote-
sensing images [39–42], including stacked autoencoders
(SAEs), deep belief networks (DBNs), and convolutional
neural networks (CNN) [43]. Deep learning algorithms
combined with spatial background information can extract
high-quality spectral and spatial information and achieve
high classifcation accuracy with a small number of training
samples and simple classifers [44, 45]. Multiscale deep
learning can be combined to classify hyperspectral images
[46]. For example, a new hyperspectral image classifcation
model based on deep understanding is constructed by
combining stacked autoencoders (SAEs) and deep con-
volutional neural networks [47], and a spatial pyramidal
pool is used for pooling deep convolutional neural networks,
obtaining excellent classifcation performance [48, 49]. Te
stacked autoencoder (SAE), which has the advantage of
better data dimensionality reduction, is used in the process
of feature extraction of hyperspectral remote sensing, re-
ducing processing complexity, and thus improving the ef-
fciency of data abstraction and the accuracy of data
classifcation [50]. Moreover, combined with the classif-
cation advantages of the CNN [51, 52], a fusion network for
image classifcation can be constructed based on an SAE
optimization, improving classifcation performance com-
pared to traditional data processing [53, 54]. Te semi-
supervised classifcation algorithm based on multilabeled
samples and deep learning [55], with labels from both the
nearest domain information and training samples [56, 57],
and nonlabeled samples obtained from self-teaching

learning, yields an efective semisupervised hyperspectral
image classifcation method [58, 59]. Numerous classifca-
tion experiments based on deep learning algorithms on
a variety of hyperspectral data found that deep learning
algorithms are the optimal classifcation algorithms in most
cases [60–66].

Tis paper’s objective was to apply deep learning theory
to hyperspectral image classifcation, investigate the
hyperspectral image classifcation model combined with
a deep learning algorithm, and obtain a preferred method to
improve classifcation accuracy by resolving the challenges
of the Hughes phenomenon and of extracting the nonlinear
features from within image elements. To achieve the ob-
jectives, we examined the development and testing of the
best classifcationmodels (autoencoders (AEs) and restricted
Boltzmann machines (RBMs)) based on deep learning and
verifed the applicability of deep learning models in the
classifcation of hyperspectral images. We obtained the fnal
classifcation model by connecting these two feature ex-
traction algorithms and classifers suitable for hyperspectral
image classifcation by analyzing model building blocks.
Trough the experiments, we analyzed the efects of the
diferent number of hidden layer neurons, the additional
number of hidden layers, diferent classifers, and other
factors on the model performance and obtained an optimal
classifcation model with optimal parameters. Finally, we
proposed optimization strategies to improve classifcation
accuracy and speed.

2. Methods

2.1. Research Overview. Tis paper is mainly based on
hyperspectral image data, introduces the deep learning al-
gorithm, and discusses the SAE and DBN models. Two
feature extraction algorithms and classifers suitable for
hyperspectral image classifcation were connected to obtain
the fnal classifcation model. Two sets of experimental data
were used to verify the two models. Trough experiments,
we analyzed the infuence of diferent hidden layer neurons,
hidden layers, classifers, and other factors on the model’s
performance and obtained an optimal classifcation model
with optimal parameters. Finally, an optimization strategy
was proposed to optimize and revise the model regarding
classifcation accuracy and speed. Te workfow of the
process is shown in Figure 1.

2.2. Stacked Autoencoder (SAE)

2.2.1. Autoencoder (AE). Te autoencoder (AE) consists of
a feedforward neural network with an input layer, a hidden
layer, and an output layer (Figure 2). Te AE assumes ap-
proximate equality between the decoder output features and
the input features for training, allowing a large amount of
unlabeled training sample data to be applied to the model’s
training process. As a result, overftting and local extremes
brought on by too many parameters and insufcient labeled
training samples are avoided.

Te training process starts with frst mapping x ∈ Rn1

(n1 denotes the dimensionality of the input data, i.e., the
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number of neurons in the input layer) in the input layer to
generate x ∈ Rn2 (n2 denotes the number of neurons in the
hidden layer) through a linear function containing trainable
parameters W1 and B1 and an activation function f(x)
(equation (1)) (generic activation functions are sigmoid

functions, as in equation (4)).Te encoder performs this step
in the neural network called encoding. X is then mapped to
the output layer by an activation function g(x) and a linear
function containing trainable parameters W2 and B2 to
produce Z (equation (2)), so that the input x approximates Z.

ROSIS-3 Hyspex

Stacked Auto-Encoder (SAE)

Deep Belief Network (DBN)

Support Vector Machines (SVM)

Softmax regression classifier

Sparse Auto-Encoder

Auto-Encoder (AE)
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Classification experiments based on DBN model
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Figure 1: Technical fow.
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Figure 2: Schematic diagram of the stacked autoencoder (SAE) model.
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Tis step is performed by the decoder, which is called re-
construction. Sometimes, a linear-decoding approach can
also be used to remove the activation function g(x), i.e.,
equation (3):

X � f W1x + B1( , (1)

Z � g W2X + B2( , (2)

Z � W2X + B2, (3)

W1 and W2 denote implied input and implied output
weights, respectively, and B1 and B2 denote ofsets.

f(x) �
1

1 + exp− x . (4)

2.2.2. Stacked Autoencoder (SAE). Te training process of
a stacked autoencoder (SAE) is essentially unsupervised
learning. Te model is trained by layer-wise pretraining,
which means that the parameters obtained in the frst layer
are propagated forward to obtain the frst hidden layer.Ten, it
is used as the input layer to train the parameters in the second
layer. Training is iterated gradually to guide the training of the
parameters in each layer.Te training parameters of each layer
in the SAE are obtained. Finally, fne-tuning is performed by
the connected classifer. Fine-tuning refers to treating all layers
of the SAE as a single model and optimizing all weights in the
network by an iterative algorithm using a label training sample
set. A backpropagation algorithmwith autocoding is applied to
update the weights, which can be extended to apply as many
layers as desired due to the application of the backpropagation
algorithm (Algorithms 1 and 2).

2.2.3. Stacked Autoencoder (SAE) Algorithm Flow

2.3. Deep Belief Network

2.3.1. Restricted Boltzmann Machines. An RBM is a ran-
domly generated neural network that learns the probability
distribution of the original data. It is a typical energy-based
model with the basic structure of a two-part diagram with
one layer for the data input layer and one layer for the
hidden layer; additionally, the nodes in each layer are not
connected, but the nodes between the layers are fully
connected. All the nodes can only take values of 0 and 1.
Tey are random binary variable nodes, and this complete
probability distribution E(v, h) satisfes the Boltzmann
distribution. Tis model is the RBM:

E(v, h) � −b
′
v − c
′
h − h
′
Wv, (5)

W denotes the connection weight between the visible and
hidden layers and b and c represent the respective biases of
the visible and invisible layers.

2.3.2. Deep Belief Network. Te DBN consists of multiple
layers of the RBM superimposed to extract deep features of
the original data (Figure 3). Te joint probability

distribution between the input data v in the visual layer and
the l-layer hidden layer hk is shown in equation (6). Te
weights are obtained using unsupervised greedy algorithm
(GA) training, by frst training the frst layer of the RBM and
fxing its training parameters, and then using the output of
the hidden layer of the frst layer of the limited Boltzmann
machine as the input of the second layer of the RBM, in turn,
training the parameters layer by layer. Te last hidden layer
is connected to the classifer. Refnement is completed by the
supervised gradient descent (GD) algorithm, whose algo-
rithm fow is as follows: except for the frst layer RBM, the
weights of the remaining RBM can be classifed as upward
cognitive weights as well as low generative weights. Te
generation process, after the top layer representation and
assignment of low weights to form the bottom layer state,
while refning the upward weights between layers, fnally
obtains the classifcation model based on DBNs:

P v, h
1
, h

2
, · · · , h

l
  � 

l�2

k�0
Ph

k〉hk+1
 ⎛⎝ ⎞⎠P h

l−1
, h

l
 , (6)

where P(hl−1, hl) is the joint probability distribution between
the topmost RBM model visible layer and the hidden layer
(Algorithms 3 and 4).

2.3.3. DBN Algorithm Flow

2.4. Support Vector Machines (SVMs). SVMs are supervised
learning algorithms commonly used for statistical and re-
gression analysis. Tey are linear classifers that fnd the
maximum spacing on the feature space. Teir goal is to
maximize spacing, by which the optimization problem be-
comes a convex quadratic programming problem. In ad-
dition to being able to be used for linear classifcation,
support vector machines can perform nonlinear classifca-
tion, where vectors are mapped into a high-dimensional
space that establishes a maximum spacing hyperplane. For
example, in the separated hyperplane of the divided data,
there are two parallel hyperplanes whose planes are parallel.
Te separated hyperplane maximizes the distance between
these two hyperplanes if the distance between the hyper-
planes is far, implying a small overall error.

In the given training sample set (xi, yi), yi equals −1 or 1,
which is the label of xi. Each xi is a p-dimensional real vector
requiring a “maximum hyperplane” between the set of
points with yi � − 1 and the set of issues with yi � 1, so that
the distance between the nearest point xi and the hyperplane
is maximized. Any hyperplane satisfes equation (7), and the
distance between them can be maximized if the training data
are linearly separable, i.e., if the two hyperplanes can be used
to separate the two types of data.

Te support vector machine is extended to linearly in-
distinguishable using a loss function (equation (7)). Te
objective function is as in equation (8). Te parameter λ is
used to weigh the relationship between increasing the size of
the interval and ensuring that xi lies on the right side of the
interval. Tus, for sufciently small values of λ, it is assumed
that the original data can be classifed linearly even if it is not
linearly classifable, and still, a feasible classifcation criterion
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Step 1: start
Step 2: given the parameters in Algorithm 1 and the number of hidden layer layers
Step 3: train the frst layer of AE; the training algorithm is as in Algorithm 1
Step 4: use the hidden layer of the frst layer of AE as the input layer of the second layer of AE and train layer by layer in turn until the
last layer of AE
Step 5: connect the last output layer to the classifer to complete fne-tuning
Step 6: closing

ALGORITHM 2: Stacked autoencoder (SAE) training algorithm.

Step 1: start
Step 2: given the set of training samples, the number of cells in the visible and hidden layers, the number of iterations, the learning
rate, the initialized training parameter weight matrix W, the bias vectors b, c, and the canonical terms
Step 3: using the restricted Newton’s method algorithm, update the training parameters until the algorithm converges
Step 4: closing

ALGORITHM 1: Autoencoder (AE) training algorithm.

Input

RBM1
RBM2

RBM3
Classifier

Classifier

x1 x1 (1)

x2 (1)

x3 (1)

xi (1)

xn2 (1)

x1 (2)

x2 (2)

x3 (2)

xi (2)

xn3 (2)

x1 (3)

x2 (3)

x3 (3)

xi (3)
hk

xn4 (3)

x2

x3

x4

xn-1

xn

h1

h1
Output

Visible layer Hidden layers1 Hidden layers2 Hidden layers3

(W1,b1,c1) (W2,b2,c2) (W3,b3,c3)

Figure 3: Schematic diagram of the deep belief network (DBN) model.

Step 1: start
Step 2: given the set of training samples, the number of cells in the visible and hidden layers, the number of iterations, the learning
rate, the initialized training parameter weight matrix W, and the bias vectors b and c
Step 3: using the contrast scattering algorithm, update the training parameters until the algorithm converges
Step 4: closing

ALGORITHM 3: RBM training algorithm.
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can be learned. Support vector machines are generalized
linear classifers, and as such, the choice of kernel functions
and kernel parameters signifcantly impacts their
performance:

w · x − b � 0, (7)

1
n



n

i�1
max 0, 1 − yi(w · x − b)( ⎡⎣ ⎤⎦ + λ‖w‖

2
. (8)

2.5. Softmax Regression Classifer. Te softmax regression
classifer is an extension of the logistic regression classifer to
this problem of multiple classifcations.Te test input x takes
a hypothesis function to estimate the probability value for
each category j.

Te objective function is as in equation (9), where l{ } is
the demonstrative function with the rule that l{ }� 1, ex-
pression is true, and l{ }� 0, expression is false. Te prob-
ability that x is classifed as j in softmax regression is given in
equation (10). Te objective function is optimized using the
gradient descent method. Equation (11) can be substituted
into an algorithm such as the gradient descent method to
minimize the objective function (10):
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1
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2.6. Sparse Autoencoder. Te sparse representation can be
defned as follows: when the value of the output neuron is
close to 1, it is defned as neuron activation, and when the
value of the output neuron is close to 0, it is defned as
neuron inhibition. When a large number of neurons in the
hidden layer are inhibited, and only a small number of
neurons are stimulated, this is the sparse state; i.e., a large
number of components in the feature vector are 0. Te
mathematical expression is equation (12), which indicates

that the jth component of the Nth data has as few nonzero
terms as possible (e.g., ρ� 0.05). Te penalty factor of sparse
representation is added to the original objective function,
and the loss function of sparse representation is equation
(13), where n2 denotes the number of neurons in the hidden
layer and j denotes each neuron in the hidden layer. Actual
relative entropy KL divergence is also expressed as the
relative entropy between two Bernoulli random variables, as
shown in equation (14). When the two variables are equal,
the relative entropy equals 0. When the diference between
the two variables becomes larger, the relative entropy in-
creases until it approaches infnity. Terefore, minimizing
the penalty factor can also make ρ and ρi close. Te loss
function of the original optimization problem can be
expressed in equation (15), and μ denotes the weight of the
penalty factor of the sparse term:

ρi�
∆ 1

N


N

k�1
Xj(k) � ρ, (12)



n2
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���� , (13)
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 +μ
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���� .

(15)

3. Data

3.1. Data Source. Tis study used two sets of hyperspectral
image data simultaneously for the experiments. Te purpose
of selecting two sets of diferent data is to verify the model
and method’s reliability and the experimental results’ gen-
eralizability and extensiveness. Te two sets of data selected
have diferent feature types and spatial resolutions. Te two
datasets are airborne aerial hyperspectral image data from
Pavia, Italy, and ground-based close-range hyperspectral
image data acquired using the HySpex imaging
spectrometer.

Step 1: start
Step 2: given the parameters in Algorithm 1 and the number of hidden layer layers
Step 3: train the frst layer of RBM and the training algorithm as in Algorithm 1
Step 4: use the hidden layer of the frst RBM layer as the input layer of the second RBM layer and train layer by layer in turn until the
last RBM layer
Step 5: connect the fnal layer of output to the classifer to complete fne-tuning
Step 6: closing

ALGORITHM 4: DBN training algorithm
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Te frst dataset is the publicly available hyperspectral
data from the city of Pavia, Italy, acquired by the airborne
refective optic system imaging spectrometer (ROSIS-3).
Tis image is 610× 340 pixels (Figure 4(a)). Te ROSIS-3
sensor generates a spectral range of 430–860 nm and 115
bands. Te main categories are asphalt, bare ground, gravel,
grass, metal sheets, brick, trees, and shadows.

Te second dataset is the ground-based near-feld
hyperspectral image data from the Chengdu University of
Technology acquired by using the HySpex imaging spec-
trometer. Te image is 400× 600 pixels (Figure 4(b)). Te
HySpex sensor generates 1600 spatial pixels, with a spectral
range of 400–1000 nm, and 108 bands. Te main features are
water, vegetation, concrete roads, lava rocks, steel, glass,
and walls.

3.2. Data Preprocessing. Te ROSIS-3 data are preprocessed
that can be used immediately in experiments. Te HySpex
data are radiometrically corrected by the radiometric cali-
bration module that comes with the HySpex imaging
spectrometer, and refectance inversion was performed by
the fat-feld method based on the statistical model; a large
concrete feld was used as a fat feld. Te image data can be
used for experiments after preprocessing.

4. Results

4.1. SampleSelection. We used the two types of image data to
select a total of eight feature classes. Te selection of each
type of ground object sample data in the ROSIS-3 data is
shown in Table 1, and the spectral curve of each type of
ground object sample is shown in Figure 4(a). Te sample
data of each type of ground object in the HySpex data are
shown in Table 1, and the sample spectrum curve of each
type of ground object is shown in Figure 4(b). Te selected
samples were divided into training, validation, and test
samples in a ratio of roughly 3 :1 :1. We used the training
samples to adjust the trainable parameters of the model, the
validation sample to adjust the hyperparameters of the
model, and the test sample to test the classifcation accuracy
of the model Figure 5.

4.2. Classifcation Experiment Based on the Stacked
Autoencoder (SAE)

4.2.1. Analysis of the Autoencoder (AE) Model. AEs with
diferent numbers of neurons in the hidden layer were
trained separately with the same training samples. AE
training is aimed at making the original and the recon-
structed data as similar as possible after encoding and
decoding.Tus, the model’s performance can be analyzed by
the reconstructive ability of the model on the test samples
after the training samples are completed. Te AE coded and
decoded the frst 100 features of the test sample to obtain the
reconstructed features. Te original and reconstructed fea-
tures were transformed into a 10∗10 pixel-size frame to
represent the image features. We selected representative
asphalt and grassland features in the ROSIS-3 data for the

experiment. Te visualization experiment results of the
features reconstructed using diferent numbers of neurons in
the hidden layer are shown in Figures 6(a) and 6(b). We
selected representative water bodies and concrete road
features in the HySpex data for the second experiment. Te
visualization experiment results of the features recon-
structed with diferent numbers of hidden layer neurons are
shown in Figures 6(c) and 6(d). Te spectral curve of asphalt
is obtained, whose refectance has been stabilized at a lower
level, so the image is mainly blue, and the analysis can be
performed when the number of neurons in the hidden layer
is 30. Te best efect of reconstruction is obtained when the
number of neurons in the hidden layer is 30; the spectral
curve of grass is obtained, whose refectance has been kept at
a lower state, when the wavelength is below 700 nm, and
when the wavelength is 700 nm, an obvious jump is pro-
duced. Refectance suddenly increases, and then, the region
is stabilized. Te image is blue frst and then transitions
quickly to red. Te reconstruction efect is best when the
number of neurons in the hidden layer is 50 and the number
of neurons in the hidden layer is 30. In summary, the best
reconstruction efect is achieved when the number of
neurons in the hidden layer of the AE is 30–50, and AE
performance is the best at this time.

4.2.2. Comparison of Traditional Methods with AEs.
After the analysis has yielded a better selection of the
number of neurons in the hidden layer of the AE, it is natural
to verify whether it can help the classifer’s classifcation
accuracy. Te AE is compared and analyzed with several
commonly used downscaling and feature extraction algo-
rithms. Te classifers connected after the feature extraction
algorithm are an SVM classifer and the softmax regression
classifer.Te SVM kernel function is chosen as a radial basis
kernel function suitable for hyperspectral image classifca-
tion. Te hyperparameter σ of the kernel function is set to
0.009; the penalty parameter is 100. Te learning rate of
softmax regression is chosen to be 0.1, and the optimization
iteration number is 500. Te number of neurons in the frst
hidden layer is set to 40, and the number of neurons in the
second layer is [5, 10, 15, 20, 25, and 30]. We selected the
traditional downscaling and feature extraction algorithms as
principal component analysis, minimum noise fraction
rotation (MNF Rotation), factor analysis (FA), and in-
dependent components. Te experimental results of com-
paring the classifcation accuracy between AEs and
traditional methods with ROSIS-3 data are shown in
Figures 7(a) and 7(b). Te analysis shows that the classif-
cation accuracy of AEs is the highest when the SVM is
connected. Te accuracy changes little with a change in the
number of features. Te classifcation accuracy of the factor
analysis and principal component analysis is similar and
stable but still signifcantly lower than that of the AE. When
the softmax regression classifer is connected, the classif-
cation accuracy of the AE is further improved, and the
classifcation accuracy reaches the optimum value (>90%)
when the number of features is 20. Te experimental results
of comparing the classifcation accuracy between AEs and
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traditional methods with the HySpex data are shown in
Figures 7(c) and 7(d). Te analysis shows that the classif-
cation accuracy of the AE is the highest when the SVM
classifer is connected. Te classifcation accuracy increases
slowly as the number of features increases. When the
number of features is too large, the classifcation accuracy
decreases signifcantly.

In contrast, the classifcation accuracy of the factor
analysis and principal component analysis remains stable.
Still, the classifcation accuracy is lower than that of AEs, and
independent component analysis and minimum noise
separation accuracy are still more inadequate. However,
when the softmax regression classifer is connected, the
classifcation accuracy of the AE is improved and the

classifcation accuracy shows a steady increase. Its classif-
cation accuracy is better than other methods at this time.

According to the analysis above, the AE performs sig-
nifcantly better overall than the other four feature extraction
algorithms.Te classifcation accuracy exhibits a more stable
trend as the number of features changes. Additionally, the
classifcation accuracy is higher when the softmax regression
classifer is connected than when the support vector machine
classifer is connected.

4.2.3. Analysis of the Impact of the Number of Hidden Layers
in SAEs. Te conclusion of the previous section demon-
strated that the feature extraction ability of the AE is better
than that of the traditional feature extraction algorithm and

(a) (b)

Figure 4: Hyperspectral images used in the study: (a) data from a true-color composite ROSIS-3 image; (b) HySpex composite image data in
true color.

Table 1: Selection of sample data for ROSIS-3 and HySpex data (number).

Training samples Validation samples Test samples Total
Asphalt (R) 1345 450 502 2297
Bare ground 831 282 335 1448
Gravel 1193 400 458 2051
Grassland 1002 333 385 1720
Metal sheet 1850 625 762 3237
Brick 952 333 389 1674
Shadows 2247 718 759 3724
Trees 1380 459 510 2349
Water (H) 1148 379 390 1917
Vegetation 1161 388 383 1932
Concrete road 1321 446 449 2216
Magma rock 1007 351 356 1714
Steel 1085 373 377 1835
Glass 633 211 211 1055
Wall 1233 411 411 2055
Note. R is for ROSIS-3 data; H is for HySpex data.
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Figure 5: Te sample data spectrum character curves: (a) the sample data spectrum character curve of ROSIS-3; (b) the sample data
spectrum character curve of HySpex.
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Figure 6: Reconstructed features under ROSIS-3 data with various numbers of hidden layer neurons. (a) Original and recreated asphalt
spectral curve visualizations, when the concealed layer has 10, 30, 50, 70, or 90 neurons, respectively, are shown from left to right. (b)
Original and reconstructed versions of the grass spectral curve, left to right, with 10, 30, 50, 70, and 90 neurons in the hidden layer.
Visualization of reconstructed features with the diferent number of hidden layer neurons under HySpex data. (c) Original and recon-
structed water body spectral curve with 10, 30, 50, 70, and 90 neurons in the hidden layer, from left to right. (d) Visualization of the original
and reconstructed cement road spectral curve with 10, 30, 50, 70, and 90 neurons in the hidden layer, from left to right.Te color transitions
from blue (low refectance) to red (high refectance).
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that the classifcation accuracy is better when the AE is
connected to the softmax regression classifer. Next, the SAE
is constructed by the AE, and the classifcation model is built
by combining the softmax classifer and comparing the efect
of diferent layers of the AE on the classifcation accuracy.

One of the critical factors determining the performance
of SAEs is the number of hidden layers, that is, the selection
of the number of AE layers. Te number of diferent AE
layers determines what kind of features is extracted and plays
a critical role in the fnal classifcation accuracy. When the
number of layers is too small, only shallow parts can be
removed, which afects the image classifcation accuracy, and
as the number of hidden layers increases, more and more
abstract feature representations can be obtained. However,
when the number of layers is too large, the model may be
overftted [67]. Tis shows the impact of the number of
layers of the AE on the classifcation performance. From the

above section, it can be tentatively determined that better
classifcation accuracy can be obtained when the number of
neurons in the hidden layer is 30–50. Tus, the number of
hidden layer neurons is fxed at 40, and the number of AE
layers is selected as [1–5], respectively, to confrm the re-
liability of the experiment by repeating the experiment
several times under a single condition, which is fnally
represented by a box plot. Te classifcation accuracy results
of the SAE with diferent hidden layers of the ROSIS-3 data
are shown in Figure 8(a). Figure 8(b) shows the classifcation
accuracy results of the stacked autoencoder for the HySpex
data with diferent numbers of hidden layers. As the number
of layers of the AE increases from 1 to 3, the classifcation
accuracy increases signifcantly and the stability of the
classifcation accuracy increases gradually, and with further
increases in the number of layers of the AE, the classifcation
accuracy starts to show a specifc decreasing trend.When the
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Figure 7: (a, b) Comparison of classifcation accuracy between autoencoders (AEs) and traditional methods under ROSIS-3 data. (c, d)
Comparison of classifcation accuracy between autoencoders (AEs) and traditional methods under HySpex.
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number of layers of the AE reaches 6, the classifcation
accuracy decreases signifcantly and the classifcation ac-
curacy starts to become unstable. Te median classifcation
accuracy is 92.12% for the ROSIS-3 data and 94.02% for the
HySpex data.

4.2.4. Optimal Model Accuracy Evaluation. According to
the experimental analysis, the optimal classifcation model
is obtained when the number of neurons in the hidden
layer is 40 and the number of layers in the AE is 3. Based
on the conclusion of the experiments in the previous
section, two experiments with a classifcation accuracy of
92.12% under the ROSIS-3 data and 94.02% under the
HySpex data were selected to evaluate the accuracy. Te
confusion matrix of the SAE-SR classifcation accuracy
with the ROSIS-3 data is shown in Table 2. Te analysis
shows that the classifcation model is better at recognizing
metal sheets, grass, and trees, performs worse for asphalt,
gravel, and bare ground, and has an average performance
for bricks and shadows, which are easily confused with
asphalt, bare ground, and gravel, and between shadows
and trees. Te confusion matrix of the SAE-SR classif-
cation accuracy of the HySpex data is shown in Table 3.
Except for steel plates and concrete roads, the recognition
degree of the other features is higher; steel plates and walls
are easily confused.

4.3.ClassifcationExperimentofClassifcationModelBasedon
Deep Belief Networks

4.3.1. Analysis of the RBM Model. Using two types of image
data, ROSIS-3 and HySpex, we applied an RBMmodel of the
structural unit of the deep belief network. We analyzed the
infuence of the number of hidden layer neurons on the
performance of the RBM, where the hyperparameters in the
RBM were designed, with a learning rate of 0.1, according to
the hyperparameter selection advice given in [68]. Te
number of hidden layer neurons was set as [10, 30, 50, 70,

90], respectively. Te RBM containing diferent numbers of
neurons in the hidden layer was trained with the same
training samples separately until the algorithm converged.
In this section, the model’s performance is determined by
the ability of the model to reconstruct the test samples after
training was completed.

We compared the spectral curves of the original sample
with the reconstructed spectral curves under diferent ex-
perimental parameters. Te diference in reconstructing
ability of the RBM with diferent numbers of hidden layer
neurons can be visually compared in Figure 9. Represen-
tative asphalt and grassland features in the ROSIS-3 data
were selected for the experiment. Te spectral curve results
of the experiment are shown in Figure 9. When the number
of hidden layer neurons is 30, the reconstructed asphalt
spectral curve is most similar to the original asphalt spectral
curve and the reconstructed grass spectral curve is most
similar to the original grass spectral curve.Te reconstructed
cement road spectral curve is most similar to the original
cement road spectral curve. In summary, the performance of
the RBM is optimal when the number of hidden layer
neurons is 30. A too large or too small number of hidden
layer neurons have a large impact on the performance.

4.3.2. Comparison of the RBM with the Traditional Method.
Te impact of the number of neurons in the hidden layer on
the performance of the RBM was analyzed. Te best per-
formance of the RBM was found when the number of
neurons in the hidden layer was 30. Te best performing
RBM was compared with the AE and the traditional feature
extraction algorithm. According to the conclusion obtained
in the experiment in Section 4.2.3, the classifcation accuracy
of the two traditional feature extraction algorithms (factor
analysis and principal component analysis) was higher, so
only these two algorithms are selected as the traditional
feature extraction algorithm in this section of the experi-
ment. In the experiments, two neural network layers of the
RBM were constructed; the number of neurons in the frst
hidden layer was set to 30, and the numbers of neurons in the
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Figure 8: (a) Box plot of classifcation accuracy of the stacked autoencoder (SAE) with the diferent number of hidden layers under ROSIS-3
data. (b) Box plot of the classifcation accuracy of the SAE with the diferent numbers of hidden layers under HySpex data.
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Table 2: Confusion matrix for the SAE-SR classifcation accuracy of ROSIS-3 data.

Asphalt Bare ground Gravel Grassland Metal sheet Brick Shadows Trees Total Accuracy (%)
Asphalt 422 10 49 0 0 21 0 0 502 84.06
Bare ground 0 295 40 0 0 0 0 0 335 88.06
Gravel 19 30 401 0 0 8 0 0 458 87.55
Grassland 0 0 0 371 0 0 12 2 385 96.36
Metal sheet 0 0 4 0 741 17 0 0 762 97.24
Brick 16 14 1 0 0 358 0 0 389 92.03
Shadows 13 0 0 0 0 0 701 45 759 92.36
Trees 0 0 0 0 0 0 22 488 510 95.69
Total 470 349 495 371 741 404 735 535
Accuracy (%) 89.79 84.52 81.01 100 100 88.61 95.37 91.21
Overall accuracy� 3777/4100� 92.12%; kappa coefcient� (0.9212− 0.1353)/(1− 0.1353)� 0.91.

Table 3: Confusion matrix for the SAE-SR classifcation accuracy of HySpex data.

Water Vegetation Concrete road Magma rock Steel plate Glass Wall Total Accuracy (%)
Water 377 8 5 0 0 0 0 390 96.67
Vegetation 18 365 0 0 0 0 0 383 95.30
Concrete road 7 30 412 0 0 0 0 449 91.94
Magma rock 0 0 0 335 3 0 18 356 94.10
Steel plate 0 0 0 0 335 8 34 377 88.86
Glass 0 0 0 0 0 201 10 211 95.26
Wall 0 0 0 3 5 5 398 411 96.84
Total 402 403 417 338 343 214 460
Accuracy (%) 93.78 90.57 98.80 99.11 88.86 93.93 86.52
Overall accuracy� 2423/2577� 94.02%; kappa coefcient� (0.9402− 0.1479)/(1− 0.1479)� 0.93.
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Figure 9: Continued.
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second layer were [5, 10, 15, 20, 25, and 30].Ten, two neural
network layers of AEs were constructed; the number of
neurons in the frst hidden layer was set to 40, and the
numbers of neurons in the second layer were [5, 10, 15, 20,
25, and 30]. Te traditional dimensionality reduction
methods (principal component analysis and factor analysis)
extracted [5, 10, 15, 20, 25, and 30] features. Te number of
extracted features was set consistently for all dimensionality
reduction methods and was connected to two classifers:
support vector machine and softmax regression classifer.
Te kernel function of the support vector machine was
selected as a radial basis kernel function suitable for
hyperspectral image classifcation; the hyperparameter σ of
the kernel function was set to 0.009, the penalty parameter

was 100, the learning rate of the softmax regression was
selected as 0.1, and the number of optimization iterations
was 500. Te experimental results for comparison of the
classifcation accuracy of the RBM with other methods for
the HySpex data are shown in Figure 10. Te analysis shows
that the classifcation accuracy of the RBM is signifcantly
higher than that of the factor analysis and principal com-
ponent analysis and is more stable with a change in the
number of features; however, the classifcation accuracy of
the RBM is overall inferior to that of the AE.

4.3.3. Analysis of the Impact of the Number of Hidden Layers
in DBNs. From the conclusion of the previous section, it can
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Figure 9: Original and reconstructed spectral curves. (a) Original. (b) Te number of neurons in the hidden layer is 10. (c) Te number of
neurons in the hidden layer is 30. (d) Te number of neurons in the hidden layer is 50. (e) Te number of neurons in the hidden layer is 70.
(f ) Te number of neurons in the hidden layer is 90.
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be concluded that the feature extraction ability of the RBM is
better than that of the two feature extraction methods of
factor analysis and principal component analysis, and its
feature extraction ability is inferior to that of the AE. Te
next step is to build a deep belief network by the RBM and
connect the softmax classifer to construct the
classifcation model.

Te number of hidden layers of the deep belief network
determines whether the appropriate features can be
extracted, signifcantly impacting the fnal classifcation
accuracy. When the number of layers is too small, only the
shallow features can be extracted, improving the classif-
cation accuracy. However, when the number of layers is too
large, it can produce overftting. From the above section, it
can be preliminary judged that the classifcation accuracy
can be improved when the number of neurons in the
hidden layer is 30. We fx the number of hidden layer
neurons to 30 and select the number of hidden layers as
[1–5], respectively; the reliability of the experiment is

confrmed by repeating the experiment several times under
a single condition, which is fnally represented by the box
plot. Te experimental results of the classifcation accuracy
of the ROSIS-3 data in diferent hidden layers of the deep
belief network are shown in Figure 11(a). Te classifcation
accuracy of the HySpex data is shown in Figure 11(b). Te
median classifcation accuracy of the ROSIS-3 data is
88.22%, and the median classifcation accuracy of the
HySpex data is 92.16%.

4.3.4. Optimal Model Accuracy Evaluation. According to
the experimental analysis of the number of neurons in the
hidden layer and the number of layers in the RBM, the
optimal classifcation model is obtained when the number
of neurons in the hidden layer is 30 and the number of
layers in the RBM is 2. According to the conclusion of the
experiments in the previous section, two experiments with
a classifcation accuracy of 88.22% for the ROSIS-3 data
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Figure 10: (a, b) Comparison of classifcation accuracy of restricted Boltzmann machines (RBMs) with other methods under ROSIS-3 data.
(c, d) Comparison of classifcation accuracy of restricted Boltzmann machines (RBMs) with other methods under HySpex data.
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and 92.16% for the HySpex data are selected to perform
the confusion matrix of the ROSIS-3 data of DBN-SR
classifcation accuracy shown in Table 4. Te analysis
shows that, compared with the SAE, there is a signifcant
decrease in recognition of bare ground and bricks by the
deep belief network and that there is also a certain de-
crease in the overall classifcation accuracy. Te confusion
matrix of the HySpex data of DBN-SR classifcation ac-
curacy is shown in Table 5. In the confusion matrix of the
DBN-SR classifcation accuracy, the analysis shows sig-
nifcant degradation in recognizing lava rocks compared
to the SAE.

4.4. Comparison of Two Optimal Models. According to the
experimental results obtained in the previous two sec-
tions, the optimal model of the SAE has a hidden layer
with 40 neurons and three layers. Te optimal model of
the DBN has a hidden layer with 30 neurons and two
layers. Te comparative analysis of the box plots and the
confusion matrix shows that SAE has higher classifcation
accuracy and is more accurate and stable in the recog-
nition of each feature. It can be concluded that the
classifcation model based on the SAE and the softmax
regression classifer is the optimal classifcation model
obtained in this experiment. Te optimal models of both
algorithms were used to classify the entire image, and the
classifcation results of the ROSIS-3 and HySpex data are
shown in Figure 12. Te analysis shows that, under the
ROSIS-3 data, the SAE-SR classifcation model mis-
classifes some shadows and trees and some bare ground,
grass, and trees. Te DBN-SR classifcation model mis-
classifes bricks and gravels and confuses with shadows,
trees, asphalt, and bricks, with a lower recognition ac-
curacy of gravels and bricks compared with the SAE-SR

classifcation model. Under the HySpex data, the SAE-SR
classifcation model confuses vegetation, water, glass, and
steel plates with wall. Te DBN-SR classifcation model
has a similar situation, but misclassifcation is more severe
than in the SAE-SR classifcation model.

4.5. Optimization. According to the above box plot and
accuracy evaluation analysis, we devised an optimization
strategy using a stacked sparse autoencoder based on the
SAE.Te number of hidden layer neurons and hidden layers
remained unchanged from the optimal parameters obtained
which were described above, and the accuracy was compared
with that of the ordinary SAE. Te comparative analysis of
the accuracy of the AE is shown in Table 6, which shows that
the classifcation accuracy is improved by using the stacked
sparse autoencoder.

Te deep learning algorithm is computationally com-
plex and takes a long time to train because of the many
parameters in the deep learning model, which is a deep
neural network, and many foating point and matrix op-
erations are performed during the parameter-tuning phase
of the model training process. Te model computation
process in this paper used GPU parallel computing. Fig-
ure 13 displays the analysis of the classifcation speed under
GPU parallel computing outcomes. Basic computer
hardware specifcations in the experiments included
an Intel i7-7500U processor, a GeForce GTX 960M
graphic card, and 8GB RAM. Te software environment
also included Ubuntu, cuda8.0, and cuDNN version 5.
Te model’s training times for the two sets of image
data (ROSIS-3 and HySpex) were reduced from
171 seconds to 23 seconds and from 321 seconds to
45 seconds, respectively. Tis signifcantly sped up image
classifcation.
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Figure 11: (a) Box plot of the classifcation accuracy for diferent numbers of hidden layers of the deep belief network under ROSIS-3 data.
(b) Box plot of the classifcation accuracy for diferent numbers of hidden layers of deep belief networks under HySpex data.
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Table 4: Confusion matrix of DBN-SR classifcation accuracy for ROSIS-3 data.

Asphalt Bare ground Gravel Grassland Metal sheet Brick Shadows Trees Total Accuracy (%)
Asphalt 426 19 31 0 0 26 0 0 502 85.53
Bare ground 0 275 45 0 0 15 0 0 335 81.82
Gravel 45 31 375 0 0 35 0 0 458 84.05
Grassland 0 0 0 321 0 0 42 22 385 94.01
Metal sheet 0 0 0 0 710 52 0 0 762 96.31
Brick 21 26 9 0 0 333 0 0 389 86.98
Shadows 11 0 0 0 0 0 698 50 759 93.95
Trees 0 0 0 0 0 0 31 479 510 95.33
Total 503 351 460 321 710 461 771 551
Accuracy (%) 84.69 78.35 81.52 100 100 72.23 90.53 86.90
Overall accuracy� 3617/4100� 88.22%; kappa coefcient� (0.8822− 0.1363)/(1− 0.1363)� 0.87.

Table 5: Confusion matrix of DBN-SR classifcation accuracy for HySpex data.

Water Vegetation Concrete road Magma rock Steel plate Glass Wall Total Accuracy (%)
Water 379 9 2 0 0 0 0 390 97.18
Vegetation 15 368 0 0 0 0 0 383 96.08
Concrete road 7 41 401 0 0 0 0 449 89.31
Magma rock 0 0 0 302 16 0 38 356 84.83
Steel plate 0 0 0 0 337 8 32 377 89.39
Glass 0 0 0 0 0 194 17 211 91.94
Wall 0 0 0 7 5 5 394 411 95.86
Total 401 418 403 309 358 207 481
Overall accuracy� 2375/2577� 92.16%; kappa coefcient� (0.9216− 0.1481)/(1− 0.1481)� 0.91.
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Figure 12: Continued.
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5. Conclusions

In this paper, the two models, SAE and DBN in deep
learning, were applied to hyperspectral image classifcation
to address some of the problems of hyperspectral image
classifcation. Te classifcation model was formed by
connecting to a softmax regression classifer. Multiple ex-
periments were conducted by changing the number of
hidden layer neurons of the AE and the RBM. Te recon-
structed image features were visualized and analyzed in
comparison with the original image features, and the best
reconstructed efect was obtained with 30 hidden layer
neurons for the AE and 30 hidden layer neurons for the
RBM. Te AE and RBM were compared with the traditional
feature extraction algorithm, and we experimentally verifed
that both classifcation algorithms based on the AE and RBM
outperformed the classifcation algorithm based on the
traditional feature extraction algorithm in terms of classi-
fcation performance; the AE was stacked to form an SAE,
and the RBMwas stacked to form a deep belief network; that
is, the single-layer neural network was stacked to form
a deep network. Trough the experimental analysis, the
classifcation accuracy reached 92.12% and 94.02% with
three hidden layers of SAEs and 88.22% and 92.16%with two
hidden layers of deep belief networks; thus, the optimal
classifcation model was found to be an SAE. Te
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Figure 12: Te data classifcation efect of ROSIS-3: (a) SAE-SR classifcation model; (b) DBN-SR classifcation model. Te data clas-
sifcation efect of HySpex: (c) SAE-SR classifcation model; (d) DBN-SR classifcation model.

Table 6: Comparative analysis of the accuracy of the two
autoencoders.

Classifcation accuracy/(%) ROSIS-3 data HySpex data
Stacked autoencoder (SAE) 92.12 94.02
Stacked sparse autoencoder 93.41 94.92
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Figure 13: Comparison of classifcation speed under GPU parallel
computing.
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classifcation accuracy was further improved to 93.41% and
94.92% by modifying the model to a stacked sparse
autoencoder. To shorten the long training time of the deep
learning algorithm, GPU computing was applied to the
classifcation model, improving classifcation speed by more
than seven times.

Trough comprehensive experimental analysis, we
found that the hyperspectral image classifcation model
based on a deep learning algorithm can obtain better
classifcation accuracy than the traditional classifcation
model. However, some problems with the deep learning
algorithm still need to be addressed. For example, the se-
lection of model hyperparameters and the number of
neurons and layers in the hidden layer have a large impact on
the classifcation accuracy. Tat is, the selection of model
parameters is complicated and has a large impact on the
classifcation performance. Second, the deep learning al-
gorithm is complicated, and under the same hardware
equipment conditions, its performance varies considerably.
How to improve the optimization algorithm accuracy while
reducing its computing time will also need to be studied
further.
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