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Tis article investigates the practical exponential stability and design problems of conformable time-delay systems. Sufcient
conditions that confrm the practical exponential stability and design of the proposed class of systems are given by utilizing an
adequate Lyapunov–Krasovskii functional (L-KF). Tese conditions are expressed in the form of linear matrix inequalities (LMI)
which could be solved by using solvers in LMI Toolbox of MATLAB. Two numerical examples are given to illustrate the ap-
plicability of the proposed results.

1. Introduction

Te concepts of fractional derivation and fractional in-
tegration are often associated to Riemann and Liouville,
while the question of the generalization of the notion of the
derivative of fractional orders is older since 1695. More than
300 years later, we are only beginning to overcome the
difculties. Many famous researchers have studied this
subject such as Leibniz and L’Hôpital (1695), Fourier (1822),
Abel (1823), Liouville (1832), Riemann (1847), and Ross
(1975). During the past three decades, more interest has been
attracted to fractional calculus and other felds of application
have diversifed. In recent years, fractional diferential
equations (FDEs) have found applications inmany problems
in physical. As in most of the time, these equations cannot be
solved exactly except when we know some particular so-
lutions or else we refer to the study of existence and
uniqueness of solutions using some fundamental theorems
of functional analysis (the Banach contraction theorem) for
the other FDEs (Riemann–Liouville and Caputo) (see
[1–15]).

Te derivations and the integrations of the integer order
are interpreted physically and geometrically in a clear way in
general.Te shortcomings of these interpretations have been
recognized in several international conferences on fractional
calculus. Te absence of an answer to this question has
rendered the theory of fractional derivation and integration
very mysterious. Terefore, there was always one of the open
problems. Fractional diferentiation and integration are
generalizations of integer-order diferentiation and
integration.

For this, it would be very interesting to have the physical
and geometric interpretations of the fractional-order op-
erators which will provide a place for classical in-
terpretations of whole-order derivations and integrations.
Te physical interpretation of fractional integration and
diferentiation relies on the use of two types of time: the
cosmic time and individual time; on the other hand, the
classical diferential and integral calculus is based on the use
of the mathematical time.

Khalil et al. [1] introduced a new fractional derivative
called the fractional conformable derivative. Tis new
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concept is very interesting. Later, this theory is developed by
Abdeljawad in [8], who gave the defnitions of the con-
formable derivatives to the left and to the right of the higher
order, the exponential functions, the Gronwall trans-
formation inequality, and the Laplace transformation for
conformable fractional calculus.

Indeed, there are a few works on the study of the
practical stability of conformable FDEs (see [9, 11]). To the
best of our knowledge, there is no existing work about the
practical stability of conformable systems with delays, and
motivated by the previous works in the literature, our article
covers this gap by using the LMI method.

Te main highlights of this article are as follows:

(i) A L-KF for the conformable time-delay systems is
proposed.

(ii) Study the exponential practical stability and design
for a class of conformable time-delay systems.

(iii) Using the LMI technique to show our main results.

Te content of this article are organized as follows:
Section 2 is devoted to some preliminary defnitions. In
Section 3, we prove our main results. In Section 4, we present
two applicable examples to illustrate our results.

2. Preliminaries

Notations used are as follows: I represents the identity
matrix, ‖.‖ stands for the Euclidean norm of a vector,

Sym(Θ) and diag(Θ,Θ) refer to Θ + ΘT and Θ 0
0 Θ􏼢 􏼣, re-

spectively. λmin(Θ) and λmax(Θ) stand for the minimum and
the maximum eigenvalues of Θ, respectively.

Defnition 1. [8] Given a function ξ defned on [l,∞], then
the conformable fractional derivative starting from l of ξ of
the order β is defned by

T
β
l ξ(χ) � lim

ς⟶0

ξ χ + ς(χ − l)
1− β

􏼐 􏼑 − ξ(χ)

ς
, (1)

for all χ > l, β ∈ (0, 1). If T
β
l ξ(χ) exists ∀χ ∈ (l, b) for some

b> l and lim
χ⟶ l+

T
β
l ξ(χ) exists, then by defnition

T
β
l ξ(l) � lim

χ⟶ l+
T
β
l ξ(χ). (2)

Remark 1. If l � 0, the defnition of the conformable frac-
tional derivative and integral above will be reduced to the
result in [1].

Seeking simplicity, we note Tβ: � T
β
0.

Let us consider the following fractional system:

T
βξ(χ) � F(t, ξ(χ), ξ(χ − τ)), χ ≥ 0,

ξ(χ) � φ(χ), χ ∈ [−τ, 0],
(3)

where ξ(χ) ∈ Rn is the state vector, τ stands for time delay,
and φ(χ) is the initial condition.

Defnition 2. Te system (3) is called practically exponen-
tially stable (p.e.s) with the convergence rate δ, if there are
positive scalars C, δ, and ϱ such that

‖ξ(χ)‖≤C‖φ‖Eβ(−δ, χ) + ϱ,∀χ ≥ 0, (4)

where Eβ(−δ, χ) � e− δχβ .

3. Exponential Practical Stability and
Stabilization Criteria

In this section, the following time-delay system with the
conformable derivative is considered.

T
βξ(χ) � Gξ(χ) + Hξ(χ − τ) + M](χ) + h(χ), χ ≥ 0,

ξ(χ) � φ(χ), χ ∈ [−τ, 0],
(5)

where ξ(χ) ∈ Rn is the state vector, τ stands for time delay,
](χ) ∈ Rm is the control input, φ(χ) is the initial condition,
G, H ∈ Rn×n, M ∈ Rn×m, and h(χ) ∈ Rn.

Assumption 1. Suppose that the function h(χ) is bounded
‖h(χ)‖< α.

Firstly, we study the stability analysis of the system (5)
when the control input ](χ) � 0.

Theorem 1. Under Assumption 1, for given positive scalars σ
and υ, if there exist positive defnite matrices P and Q such
that the following LMI is satisfed:

Sym(PG + σP) + Q PH P

∗ −e
− 2σ

τβ

β Q 0

∗ ∗ −υI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (6)

then the system (5) is p.e.s. with the convergence rate σ.

Proof. Let us consider the L-KF

V ξχ􏼐 􏼑 � ξT
(χ)Pξ(χ) + 􏽚

χ+τ

χ
s
β− 1

e
2σ sβ/β− χβ/β− τβ/β( )ξT

(s − τ)Qξ(s − τ)ds. (7)

For χ > 0, we get

2 Discrete Dynamics in Nature and Society



T
β
V ξχ􏼐 􏼑 � 2ξT

(χ)P T
βξ(χ)􏼐 􏼑 + χ1− β

(χ + τ)
β−1

e
2σ (χ+τ)β/β−χβ/β−τβ/β( )ξT

(χ)Qξ(χ)􏼒 ,

− χβ− 1
e

− 2στβ/βξT
(χ − τ)Qξ(χ − τ),

−2σχβ− 1
􏽚
χ+τ

χ
s
β− 1

e
2σ sβ/β− χβ/β− τβ/β( )ξT

(s − τ)Qξ(s − τ)ds􏼡,

≤ 2ξT
(χ)P T

βξ(χ)􏼐 􏼑 + ξT
(χ)Qξ(χ) − e

− 2στβ/βξT
(χ − τ)Qξ(χ − τ)

− 2σ 􏽚
χ+τ

χ
s
β− 1

e
2σ sβ/β− χβ/β− τβ/β( )ξT

(s − τ)Qξ(s − τ)ds,

≤ 2ξT
(χ)P(Gξ(χ) + Hξ(χ − τ) + h(χ))

T
+ ξT

(χ)Qξ(χ) − e
− 2στβ/βξT

(χ − τ)Qξ(χ − τ),

− 2σ 􏽚
χ+τ

χ
s
β− 1

e
2σ sβ/β− χβ/β− τβ/β( )ξT

(s − τ)Qξ(s − τ)ds.

(8)

then

T
β
V ξχ􏼐 􏼑 + 2σV ξχ􏼐 􏼑≤ 2ξT

(χ)PGξ(χ) + 2ξT
(χ)PHξ(χ − τ) + 2ξT

(χ)Ph(χ) + 2σξT
(χ)Pξ(χ) + ξT

(χ)Qξ(χ)

− e
− 2στβ/βξT

(χ − τ)Qξ(χ − τ).
(9)

It is obvious that for any positive scalar υ, we have

2ξT
(χ)Ph(χ)⩽ υ‖h(χ)‖

2
+
1
υ
‖Pξ(χ)‖

2
. (10)

Since ‖h(χ)‖< α, we get

2ξT
(χ)Ph(χ)⩽ υα2 +

1
υ
ξT

(χ)PPξ(χ). (11)

Ten,

T
β
V ξχ􏼐 􏼑 + 2σV ξχ􏼐 􏼑≤ ϑ(χ)

TΞϑ(χ) + υα2, (12)

where

Ξ �

Sym(PG + σP) + Q +
1
υ

PP PH

∗ −e
− 2σ

τβ

β Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ϑ(χ) �

ξ(χ)

ξ(χ − τ)

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (13)

By applying the Schur complement, (6) is equivalent to
Ξ< 0 which implies that

T
β
V ξχ􏼐 􏼑 + 2σV ξχ􏼐 􏼑≤ υα2. (14)

According to Lemma 1 in [11], there exists μ> 0 such
that

V ξχ􏼐 􏼑≤V(ϕ)Eβ(−δ, χ) + μ, (15)

where μ � α2]/2σβ.

Furthermore, it is clear from (7) that

V(ϕ)Eβ(−2σ, χ)≤ λmax(P) +
τβ

β
λmax(Q)􏼠 􏼡‖ϕ‖

2
Eβ(−2σ, χ).

V ξχ􏼐 􏼑≥ λmim(P)‖ξ(χ)‖
2
.

(16)

Ten, we get

‖ξ(χ)‖≤

���������������������

λmax(P) + τβ/βλmax(Q)􏼐 􏼑

λmin(P)

􏽶
􏽴

‖ϕ‖Eβ(−σ, χ) +

�������μ
λmin(P)

􏽲

. (17)
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Te proof is completed. □

Secondly, we study the stabilization problem of the
system (5) based on the following feedback controller:

](χ) � Fξ(χ), (18)

where F ∈ Rm×n is the gain of the feedback controller.
In this case, the closed-loop system is expressed as

follows:

T
βξ(χ) � (G + M × F)ξ(χ) + Hξ(χ − τ) + h(χ), χ ≥ 0,

ξ(χ) � ϕ(χ), χ ∈ [−τ, 0].

(19)

Theorem  . Under Assumption 1, for given positive scalars σ
and η, if there exist positive defnite matrices X and R,
a matrix Y such that the following LMI is satisfed:

Ψ �

Sym(GX + MY + σX) + R + ηI HX

∗ −e
− 2σ

τβ

β R

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0,

(20)

then the closed-loop system (19) is p.e.s with the convergence
rate σ. Furthermore, the feedback control gain matrix is
obtained by using the relation F � YX− 1.

Proof. Following a similar line in the proof ofTeorem 1, we
get that for any positive scalar υ, we have

T
β
V ξχ􏼐 􏼑 + 2σV ξχ􏼐 􏼑≤ ϑT

(χ)Γϑ(χ) + υα2, (21)

where

Γ �

Sym(PG + PMF + σP) + Q +
1
υ

PP PH

∗ −e
− 2στβ/β

Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(22)

Defne η � 1/υ, X � P− 1, R � P− 1QP− 1, and Y � FP− 1,
we get

T
β
V ξχ􏼐 􏼑 + 2σV ξχ􏼐 􏼑≤ ϑT

(χ)diag(P, P)Ψdiag(P, P)ϑ(χ) + υα2. (23)

Te rest is similar to the proof of Teorem 1. □

Remark 2. In [16], the authors have studied the practical
exponential stability of system (5) for the case when β � 1.

Remark 3. Tis work presents the frst attempt for practical
exponential stability and stabilization for conformable time-
delay systems. When restricted to β � 1, the major

contribution of this work compared with [16] is that ξ(χ)

converges to a ball of radius ∆ � α
�����������
]/2σβλmin(P)

􏽰
which can

be minimized by adjusting the parameter υ.

4. Illustrative Examples

4.1. Example 1. In this subsection, we examine a class of
system that can be described by the following model:

T
βξ(χ) �

0 1

−ω2
−2δω

􏼢 􏼣ξ(χ) +
0 0

ρ 0
􏼢 􏼣ξ(χ − τ) +

0

M sin(χ)
􏼢 􏼣, (24)

where ω � 3.1321, δ � 1.6762, M � 0.3, and ρ � 0.32.
Applying Teorem 1, we get a feasible solution by

choosingβ � 0.9, τ � 0.5, υ � 230, σ � 0.95,

P �
14.8903 7.9744
7.9744 7.4048􏼢 􏼣, and Q �

53.6000 54.3918
54.3918 55.7061􏼢 􏼣.

Now, we take the initial condition ϕ(χ) � 2 −3􏼂 􏼃
T

and ∀χ ∈ −0.5 0􏼂 􏼃. Te evolution of system states and
their phase diagram are shown in Figures 1 and 2,
respectively.

Now, we take β � 1,ω � 3.1321, δ � 1.6762, M � 0.1, ρ �

0.32, and τ � 0.5.Te objective is to compute ∆ the radius of

the ball in which ξ(χ) converges. Table1lists the computation
results.

From Table 2, it can be seen that the radius ∆ can be
minimized by adjusting the parameter υ.

Remark 4. It is noticed that the LMI conditions in Teorem
1 can be infeasible for the ordinary case (β � 1) and feasible
for some β< 1.

For example, we choose τ � 8, σ � 0.4, and υ � 10. If
β � 1, Teorem 1 fails to test the practical exponential
stability. However, we obtain the following set of the feasible
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zoom in

5 6 7 8 9 10
-0.04

-0.02

0

0.02

0.04

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 100
Time (s)

ξ2

ξ1

Figure 1: Evolution of system states ξ1 and ξ2.
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Figure 2: Behavior in the ξ1 − ξ2 plane for Example 1.

Table 1: Controller gain for various σ.

σ F

0.1 F � −4.1314 −0.5507􏼂 􏼃

0.5 F � −4.0365 −0.8756􏼂 􏼃

1.99 F � −28.0115 −0.9866􏼂 􏼃

Table 2: Comparison results of ∆ for Example 1.

Methods ∆
[16] 0.585
Teorem 1 for υ � 0.1 0.510
Teorem 1 for υ � 5 0.506
Teorem 1 for υ � 10 0.499

Discrete Dynamics in Nature and Society 5



solution for β � 0.7, P �
4.0478 1.2695
1.2695 1.3331􏼢 􏼣, and

Q �
4.5322 4.1400
4.1400 5.9155􏼢 􏼣.

4.2. Example 2. Consider a model of the form

T
βξ(χ) �

0 1

2 −1
􏼢 􏼣ξ(χ) +

0 0

1 0
􏼢 􏼣ξ(χ − τ) +

1

1
􏼢 􏼣](χ) +

0

0.1 sin(χ)
􏼢 􏼣. (25)

Te behavior of the open-loop system (25) without input
(](χ) � 0) is shown in Figure 3. It is seen that system (25) is
unstable.

By solving the LMI conditions in Teorem 2 for β �

0.9, τ � 0.5, η � 0.12, and σ � 0.95, we get the following
control gain: F � −4.9423 −0.8446􏼂 􏼃. Figure 4 shows the

-5
-4
-3
-2
-1
0
1
2
3
4

ξ2

1-1 0 2 3-3-4 -2-5
ξ1

Figure 4: Behavior in the ξ1 − ξ2 plane for Example 2 with control.
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Figure 5: Te evolution of state ξ1 for σ � 0.1, σ � 0.5, and σ � 1.99.
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Figure 3: Behavior in the ξ1 − ξ2 plane for Example 2 without control.

6 Discrete Dynamics in Nature and Society



behavior of the closed-loop system for the same initial
conditions in Figure 3.

Now, we compute the controller gains F for diferent
values of σ with the choice of β � 0.9 and τ � 0.5. Table 2 lists
the computation results.

Te evolution of the system state ξ1 is shown in Figure 5
for various σ.

5. Conclusion

Tis article discusses the exponential practical stability and
design of time-delay conformable systems. Some sufcient
conditions are presented to show the exponential practical
stability by using an appropriate L-KF and the LMI method.
Finally, two illustrative examples are presented to show the
applicability of our main result. In the future, combining
with the work in [17], we can extend our work to con-
formable time-varying delay systems.
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