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By generating equivalent integral equations, we analyze the existence and uniqueness of solutions of bidirectional associative
memory cellular neural network (BAMCNN) with deviating arguments firstly. Secondly, the question of robustness of stability
(RoS) of BAMCNN with deviating argument is studied. Using the Gronwall inequality, we calculate the upper bounds of the
interference intensities that can maintain the initial stability of system. The perturbed BAMCNN will maintain its original stability
if the strength of one or more perturbations is less than the upper bounds that we calculated in this study. To demonstrate the
validity of the conjectural values, a variety of numerical illustrations are provided.

1. Introduction

As a kind of nonlinear dynamic system with structure law
and infinitely expandable dimension, cellular neural net-
work (CNN) is first proposed by Chua and Yang in 1988 [1].
Cells are the basic architecture of CNN which are essentially
similar analog circuits, grouped in any arrays which di-
mensions larger than 2. CNNs have adjacency, it is one of the
most significant properties of those systems, that is, every
unit connects with its neighbors in the same way. Its dy-
namics primarily exhibit chaotic, periodic, almost periodic,
and stable properties. We can refer to [2, 3] and any related
references.

Bidirectional associative memory cellular neural net-
work (BAMCNN) as a model of supervised learning in
artificial neural network, were first proposed by Kosko in [4]
in 1988. In application, it needs recurrent neural networks to
receive a set of neurons as an input and create a set of
outputs that related but different with inputs. Besides, the X-
layer and the Y-layer are the two layers of BAMCNNS.
Neurons in the same layer are completely linked to those in
the other layer, and there are no connections between
neurons in one layer. And its dynamical behaviors gain more
and more interests in recent decades because of its special

properties and usefulness in several domains, such as image
identification, the problem of optimization, and other areas
(5, 6].

Stability as one of the most important dynamical be-
haviors has received more extensive attention [7-16]. For
example, the global exponential stability (ES) of periodic
solutions of delayed BAMNN (DBAMNN) of cohen-
crossberg type in [7]. In [8], the ES of delayed impulsive
discrete-time stochastic BAMNN (SBAM) is investigated by
using Lyapunov theory and contraction mapping principle.
Several criteria of delay-dependent asymptotical stability
(AS) of uncertain BAMNN are derived in [9]. Liu et al.
explore the stabilization of uncertain BAMNN in finite time
in [10]. In [11], Chen and Cao et al. discarded the common
assumptions and some analytic techniques are used to es-
timate the exponential convergence rate of DBAMNN. By
constructing Lyapunov functions, the ES of stochastic
DBAMNN is studied in [12]. AS of a class of SBAMs is
investigated in [13]. In [15, 16], Zhu et al.’s further analysis of
the stability of delayed SBAM with Markovian jumping is
conducted.

It is worth mentioning that all the above researches are
all devoted to the stability of BAMNN without deviating
argument. However, for some complex physical problems,


https://orcid.org/0000-0001-8514-6698
https://orcid.org/0000-0002-9594-3874
https://orcid.org/0000-0003-2928-6703
mailto:1044806961@qq.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9570805

such as the problem of population dynamics [17], it is af-
fected not only by the delayed states but also by the advanced
states. The potential of anticipation in systems may be
viewed as a result of the analytical model’s complexity. This
additional complexity is discovered by treating the time
dimension as a degree of freedom accessible to the system
rather than as a given. Thus, neural networks with time
delays or stochastic disturbances cannot simulate this de-
sired outcome well, so the deviating argument theory is
introduced. Differential equation with deviating argument is
a hybrid of continuous and discrete equation that combines
the traits of differential and difference equations. Mean-
while, noise disturbances are inevitable in actual nervous
systems. All of these disturbances have a significant impact
on the stability of dynamical systems. Consequently, it is
essential to take into account stochastic neural networks
with deviating arguments. And many results of neural
networks or dynamical systems with deviating arguments
are obtained. For instances, the differential dynamical sys-
tem with deviating argument is discussed in detail in [18].
Wu and Zeng investigate the existence and uniqueness of
fuzzy neurodynamic system with deviating argument in [19].
Integral manifold and almost periodic solution of a class of
differential equation with deviating argument are discussed
in [20, 21], respectively. Akhmet et al. explored the stability
of several type neural networks with deviating arguments in
[22, 23]. In [24], Li investigates the ES of stochastic CNN
with deviating argument by using Lyapunov functional. In
[25], the stability of semi-linear stochastic differential
equation with deviating argument is discussed. We can find
that the majority of the researches included in the afore-
mentioned studies, however, focus on the stability of sto-
chastic dynamical systems or neural networks with deviating
arguments and no bidirectional associative memory. Few
studies have looked at the robustness of stability.
Robustness is the ability of a control system to maintain
a specific level of performance when certain parameters are
perturbed, and it is of great significance for the design and
application of system. As for the analysis of RoS, there are
lots of interesting outcomes, such as, Si et al. further studied
RoS of dynamical systems with deviating arguments in
[26-28]; Fang et al. analyzed the RoS of fuzzy CNN with
deviating argument in [29]. In [30], RoS of recurrent neural
network is investigated. But, few publications have explored
the robustness of stability for BAMCNN with deviating
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argument (BAMDA). This inspires us to finish this paper. As
far as we know, the literature has never addressed the issue of
RoS of BAMDA. The following are the works and contri-
butions in this article:

(i) This research investigates the necessary circum-
stances for the existence and uniqueness of BAMDA
solutions by constructing equivalent integral
equations.

(ii) The RoS of BAMDA and stochastic BAMDA
(SBAMDA) are investigated by using Gronwall
inequality and other inequality techniques, fur-
thermore, the upper bounds of the interval of de-
viating argument and the intensity of noise before
losing its stability are calculated. Furthermore, the
mutual constraint between the two disturbances is

highlighted.

(iii) With the use of the Gronwall-Bellman lemma and
inequality techniques, the academic framework for
developing BAMDA that fulfills performance
standards is provided.

Finally, we list the organizations of this paper. Section 2
introduces the model as well as the lemmas we utilized to get
the key outcomes. In Section 3, we will investigate the ro-
bustness of BAMDA we proposed. And not only do we make
a research on the robustness of SBAMDA but also we derive
the maximum of noise intensity and the max extent of the
deviating intervals in Section 4. Besides, several numerical
instances are given in Section 5 to demonstrate the theo-
retical values.

Notations: Denote N = {1,2,---}. R, R*, and R" repre-
sent the space of real number, positive real number, and
n-dimensional vectors, respectively. |-| denotes the Eu-
clidean norm of a real vector. Complete filtered probability
space (Q, F,{F,},., P) embraces all P-null sets, where
filtration {F,}, ., is right continuous and satisfies the usual
conditions. Scalar Brownian movement O (t) is defined at
(Q, F,{F,},50 P). E represents the mathematical expec-
tation operator.

2. Introduction

The following system is under consideration in this part, it is
formed by BAMCNN with deviating arguments:

D, (1) = -a,®,(t) + Y b, Q,(¥, 1)+ ¢, (¥, (©01)),

u=1

W, (1) =-d,¥,(t)+ ) e, Y, (D,(1) +
v=1

where ©,(t) eR, ve{l,2,---,w}, and ‘I’H (1) e R,
u €1{1,2,---,¢} represents the v th cell and y th cell of time ¢,
respectively; positive numbers a, and d,, represent the rates
of the v th and y th cell adjust to their electricpotential to the

1)

w

Z hy Y, (9, (0(1)),

S
u=1
v=1
static state when loss connections with other cells and inputs
from the exterior at time £. b,, and c,, are arbitrary numbers,

and they represent the connection strength between the v th
and y th cell at time 7, respectively; e, and h,, are contrary to
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the definition of b,, and c,,, which are the connection
strengths between the y th and v th cell at time ¢, respectively.
Besides, Q, (-) and Y, (-) are nonlinear activation functions
of p th and v th neuron at time t, respectively, and they satisfy
Q# (0) =0and Y, (0) = 0. ®(¢) is a deviating function with

D, (1) = -a,d, ( t)+ZbW (T, (0) +

¥, (1) =

Obviously, system (2) has equilibrium point (0, 0).
Because of the arguments may change their deviation
characteristic during its movement, thus, the system is
delayed or advanced. Consider the interval [2}5, 2}5 )& eN,
then, ©(t) = ®§, thus, when ¢ satisfies %), <t < ®Z‘, that is,
O (t) >t, then O (¢) is an advanced argument. As the same
time, if ®§<t<2)5+1, that is, ®(t) <t, then ®(t) is an
delayed argument. Therefore, we call it mixed type.

We use the following notations for the purpose of
simplicity:

W
ml = max1§v§w|av|’m2 = maxlsySQAy Z bvy >
Y=

4. (3)

» My = maXls,usg

w
my = maxlsﬂgAﬂ Z Cop

Mg = Max; ., 2, Z |hw

ms = max1<v<w‘-‘v Z ' [w
=1 u=1

The following are the presumptions we will require for
this paper:

(i) Al: There are two positive constants A, and &, such
that
|2, -0, (D] <Al - 71, W
Y, ) - Y, (D] <&l - 71
and this assumption implies that
Q,(0)=Y,(0)=0

(ii) A2: There is a ) > 0 satisfies 9 =9, <2
(iii) A3: M <1;

(Dv (t) =

¥, (1) =

,,(t)+ZeW , (@, (1) +

0, J |:—a D, (u) + Z b,, M(‘I’” (u)) + Zc: Coy H( (®;)):|du’

O(t) = O, whent € [9;,9;,,), where { € N and sequences
{@5} and {2}5} satisfy that 9); <O; <9, Y — 00, and
— 00, if £ — 0.
Furthermore, from (1), we can get the undisturbed
system as follows:

ZC: (%, (),
- 2)
2 1o, (8, ).
(iv) Ad: 9 (2M, + M,) exp(M,9) < 1;
where
M = max {(m, + ms + mg)9, (m, + my + my)Y},
M, = max {m;, mg}, (5)

M, = max {m, + mg,m, + m,}.

Remark 1. If assumptions A3 and A4 hold, then M, <1 and
M, <1, and then we can derive that M, %) exp (M, %)) < 1 and
PIM, + M, (1 + M) exp(M,9)] < 1.

In this paper, we presume that the solutions of the model
(1) we proposed above are continuous. Generically, it is
discontinuous for the right-side of (1) at the moment
t= 2)&1, & e N, because of the discontinuity of deviating
function at the moment. Thus, based on our assumptions
above, the solutions of the equations are viewed as con-
tinuously differentiable at the interval [2);,%e,,), &€ N.
That means (1) is satisfied by @ (¢), ‘I’(t) on (g Vei1)> E e N
where (@ (1), ¥ ()" = (D, (t),---, D, (), ¥, (t),- ¥,
(1)) denotes the solution of equation ). Besides, ) (t) and
W (t) exists one side derivative at ), and & € N which de-
notes that [®] = 35_, D, |, D¢ <De1> and Y <OF <Ypyy.

Lemma 1. Let assumptzons Al to A4 hold, then, for any
initial values (®y,¥,)", there exists a unique solution
(@ (), ¥ (£))" such that ®(t,) = Oy, ¥ (t,) = ¥,

Proof. Existence: For all &eN, we assume that
@S<®E <ty <%g, and denote D, (ty) = d)g and ‘Pﬂ(to) =
for simplicity.
Frrstly, for t € [Ye, Yey1) t € RY, then

(6)

w

0 +J [—d ¥, (u) + Zeﬂv (@, (u)) +Zthv( (@;))]du.

=1



We denote 0-norm as [P (#)], = maX(e; | 1D @],
¥ ()l = maxe; Y @l and we let

z,(t) =20+ Ji |:—a z,(u) + Z b,,Q M(V (u)) + Z Cop

Discrete Dynamics in Nature and Society

z(t) = (2, (t),- -+, 2, (1), v(t) = (v, (£),---, v (£)), simplic-
ity. And we transform (1) to the following equation:

S

p w
Vﬂ (t) = V;)l + Jt |:—dﬂ‘l/y (u) + Z e/w v(z (u))+ Z h.m’ 7/( ( ))]du

Then, we construct the following sequences 2, (¢) and
v, (t), where 20(t) = @9, vﬂ (t) = ‘I’ﬁ such that

[ -2 ) = Ji [-a,(2 () - 2 (1)

9(v," )]

S

+ Z bw [QH(V; (u)) -

*,ZCW[%L(@;»—mw(@;))]}du,

t
AORTACE L [, (v, ) = (1)

(8)

+ Z ey [Yv (2, (w) - Yv(z:fl (u))]
v=1

N Zl ha [V, (2(07)) - X, (207 (€7))] }du_

Furthermore,
|27 @) -z, 0] < X |a, |9, ) - 27 ()]
r=1

+ii2)b

A, v; (u) - v;_l (u)|

W

=1 p=1

+ Z‘i Zl D|eyu| Ay V;((a:;) - V;_l((ag)
v=1p=

< ;|av|2)|zz (u) - z:,_l (u)|

IR MW ADEEA O]
u=lr=1

£ Y ey vi(0F) - v (€5)]

=
]
—
=
]
—

(9)

Similarly, we also have

Q‘H(Vﬂ(@;)) du,
u=1 (7)
AOREAD]
13
= 3 B0 )
u=1
[ r 1 (10)
+ Z Z 2) yv IZ (u) (u)'
v=1pu=1
’ Zl Zl plpmcH Z;(Gg) - Z:’_l((ag) '
y=1p=
Then,
N ESGEEAGI
<m Y|z, () - z)! ),
+(m, + m3)¥)'|v; () = v, (”)"0’
(11)

V;H () - V; (t)“o
<m,|vi, ) - v, W),
[ +(m5 + mg)Y||2, (W) - 257" (W),

Let M = max{(m, +ms+mg)Y, (m, + my +my)Y},
then we can get

I - %0, +

< M["zz (w) -2 W), +

v;+1 ®) - V; (t)”o

(12)
- @l |

Moreover,
1 1
I () - 2, @), + v (t)—v;(t)”o

< Mr[”Zi () =2, @lly + v ) - v, (“)"o]

<3+ 4 m D] + 4 9

<M (o] +| ] )
(13)

Thus, (z (1), v())T is the solution of (7) on [®¢,t,]. Then
condition Al implies that @ (t) and ¥ (¢) can be continuous
on 2)&1'
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Using the same method, we can continue @ (¢) and ¥ ()
from t = 9;,, to t = O,,, and then to ¥;,,. Therefore, we
complete this proof of existences by mathematical induction.

Uniqueness: For simplicity, we denote ®@'(t)
= O(t;t), @), V(1) =¥ (t;t, P, O () =D(t; t%, D2?),
Y2 (1) = ‘{’(t;t%,‘l’z), and we assume (@' (#),¥!(t))" and
(@ (1), ¥? ()" are solutions of (1), where ®!, ¥!, ®?, and
W2 are initial values and ¢, € R*.

From (1), then

(o' () - ()] <o’ - o7
+ Jt [mIHCD1 (u) — @ (u)" + mZH‘PI (u) — p? (u)“

+m;|¥(07) - ¥ (@)

ds],
' (- @] <]¥' - ¥

t
¥ j [ %" () - W2 ()] + s (1) - @ @)

| +mg@'(0F) - @*(e5)

]du.
(14)
From (14), then
@ (1) - @* @) +] ¥ (1) - ¥* (1)
<{lo" - o] +|¥' +¥?)

¥ [m3g)||®1(®§) - o%(e})

|

+ Jt [(m1 + rns)“d)1 (u) - ®* W)

mgY|¥'(F) - ¥*(e5)

+(m, + ””4)"‘{’1 (u) - ¥ (u)"]du.

Let hy (t) = O (1) - ©* (D) + 1" (1) — V> ()],
h, = @' - %] + W' +¥?|, and h, = @' (©F) - ©* (O}l
+]¥! (®F) - ¥ (©7)l, then (15) can be recorded as

hy (1)< {y + M, Dby} + Jt Mo, wdu.  (16)

0

Applied Gronwall’s inequality, we can get

hy (t) <{hy + M, Dhs}lexp (M,9), (17)
and when t = @;, we have
hy <{h, + M, 9hs}exp(M,9), (18)
then
h(<—SPOLY) (19)

1 - M, exp(M,9)

On the hand, if (@' (¢), ¥ (1))T = (D2 (), ¥2(¢))! and
t € [9e Ygi ], similarly we can get

5
| 1 2 t 1 2
o' - 07 < | 0 @) - 0]
¥ () = ()] + my | (07) - ¥P(©5) ]du,
1 t
[ =< | e @) - v ol
| +ms 0" () — 07 ()] + mg|0' (07) — () ]du.
(20)
We can obtain (21) as follows
hy < M, 9h, + Jt Mh, (w)ds. 1)
to
Combine (19)-(21), we can get
h, <9 (2M, + M,) exp (M,9)h,. (22)

Obviously, we can see that A5 contradicts (22), and then
the uniqueness of solutions of system we proposed is proved
fort € [9;, Ye,1]- And it is evident that the extension of the
uniqueness of solutions on R is available. O

3. Deviating Argument Impacts on Stability

Let us introduce the definition of globally exponentially
stable (GES) first.

Definition 1. The states of (2) are GES, if for all £, >0 and
¥ (0) € R™, there are A >0, and B >0 such that

|®, O]+, ()] < Aly Ol exp (-B (¢ ~ 1)), £ 21,
(23)
where y(0) = (D (t,), P (t,))" = (D (t,), ¥ (ty))" is the ini-
tial value of system (2).

Another assumption must be met before we can proceed
to our major results.

(i) A5 2A/BM, exp [2h (M, + M,)] + A exp (-Bh) < 1.

To reach our primary results, we first present the
following lemma.

Lemma 2. Let Al to A4 hold, then there exists a Q >0 such
that

10 (@I +1Y (@ @) <QUPON +IV DN,  (24)

where O(t) = (D (t),--',d)#(t)) and
Y(t) = (¥, (t),---, ¥, (1) are the solutions of equation (1),
and Q = {1 - Y[M, + M, (1 +M,9) exp(M, )]} .

Proof. Without losing  generality,
Y <O; <t <Yy, then O(¢) = O;.
From (1), then

suppose  that



owi<fo(e)]+ 3| || 1-a0,w
v=1 3

3 0,0,(1,0) S e (3,01 i
" - (25)
I¥ 0l < |¥(e;)

w
+)
p=1

L); [_dﬂ\yﬂ (u)

e

+ ) e, Y, (@, (W) + ) hWYv(CDV((ag‘))]du :
L v=1

=1

From (25),

t
o (1)l <|o(e;)] + L)* [0 Gl + a9 @l + (5 )| |t
&

(26)
Similarly,
v @)l < e (e;)] + J; [m4|I‘P(u)|| + mg® (w)] + m6||q>(@;)||]du,
(27)
Then
lo @I +1¥ ol <|o(e;)] +|¥(e;)
+ j; [ (my + ms )| ()] + (my + my) ¥ ()]
3
smg0(©7)] + m ¥ (©;)] (28)

< (9 + 1) |o(e;)] +]¥(e:)

|

+ J ML (1D @)l + 1Y ()l ds.
(¢]

4

By applying Gronwall-Bellman Lemma

[0 +1¥ ()1 < (1+ M, D) exp (M, ) [ |o(7)] + | ¥(@5)] |
(29)

Similarly,

|o(e2)] +[¥(e7)]

<o @117l +M,9( |o(0;)

+[v(er)

)

M, j (1D ()] + 1 ()1,
o;
(30)

therefore,
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[o(e:)] +[ ()
<o @l +1¥ Ol + M,9( ()] +|¥(e;)]) o
+ M, (1+M,9)exp(M,9)
*(le(@n)] +|¥(e:)])
Substituting (29) and (30)
|o(e7)] +|e(e;)| <o @i +¥@mn, (32
where Q={1-9[M, + M, (1 + M,9) exp (M,
M. O

Theorem 1. Let assumptions A1-A5 hold, then, BAMNN (2)
is GES, when ) < min {h/2,2)}, where

AM, (1+ Q) exp [2h(M, + M, Q)] + Aexp(-B(h- D)) X
3 =1
(33)

h>ln2[,
B (34)
1

S ={1- 90, w1 D) exp(.9)])

Proof. For simplicity, we denote @ (t;t,,D,) and
Y (t;t,, D) as @(¢) and ¥ (¢). From BAMNN (1) and (2),

w

>

v=1

Yo, ) -, )] =
v=1

JZ [-a,[®, () - &, ()]

¢ 3 b, [0,(%, ) - 0,(F, )]

p=1

G

+ 2 6 (¥, (O ) - (¥, () |} du | >

u=1

< S t
AR AC B REAL AT XD
p=1 u=11 7o

3 e [ Y, (@, () =Y, (®, ()]
v=1

+ 2 [Y, (@, (0(u) = Y, (&, () ] }du .
v=1
(35)
Then,
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w

I|<D(t)—&>(t)||sj { |a,||®, () - D, ()
t, 1

Y=

+
Mn
Me

by,

A/A'\Pw () - ¥, (”)|

=
Il
—_
=
l
—_

Me

CW‘»

+
M

<
]
—_

AJ¥, (@w) - F, () }du,

1 _ . ~ (36)
w@-F@ls | 4 |dv,w -7,
ty | 4=l
+ Z Z €y E‘v|®v(u) - &)y (Ll)'
=1 p=1
+ 3 1|8, ®, (@ () - B, (w)] }du.
=1p=1
In what follows,
I () = DI+ (1) = F (1)l
t w S 5
< J Z |:lav| + Z eyv Ev |CD1/ (u) - (D'y (u)|
fo | »=1 u=1
* [‘d#| £ [bw AM]"PM -9, (”)‘
p=1 »=1 (37)

+
Mn
Me

CW

A, ©W) -, ()

=
Il
—
=
l
—

hy,

w <
)
1u=1

E,,]CDV (@ (w) -, (u)| }du.

Then,
1D () - DI +I¥ (1) - F @)

< j M, I () = B ]l +1¥ () - T (@)l

+M, 1Y (@ (1) = F ()]l +1®(© () - ® (w)]}du.
(38)

From (24) and Definition 1,
D) - DI+ (t) - P (@)

S Jt {(My + MQ)[I1D () = ® W] +I1¥ (u) - F (w)ll]}du,
+ Jt AM, (1 +Q)ly (0)ll exp (-B (s —t,))ds

< L {(My + M Q)[|1D (w) - D ()| +I1¥ () — ¥ (w)]|]}du
+A/BM, (1 + Q)] (0)].
(39)

Using  the  Gronwall-Bellman  Lemma, for

to+Y<t<ty+2h,

(1) = DOl +1¥ (1) = F (D)

UM, (1+ Q) exp 20, + D)o 0

B
then for t) + h — P <t <t,+2h -9, we have
DI+
<@ &) - DI +1¥ (1) = F @O +1D O] +IP (1)l
<A/BM, (1 + Q) exp [2A (M, + M, Q)]lly (0)]l (41)
+ Wexp (=B (7 - P))lly (0)]
= Ry (0)ll,

where

_AM, (1 + Q) exp [2h(M, + M, Q)]

i B (42)
+Aexp(-B(h-9)).

N

From Q(Q) = A/BM,(1+Q)exp [2h(M, +M,Q)]+
Wexp(-B(h—9)), it is obvious that Q(co)>1 and
Q(1) <1, besides, for parameter Q, Q (R) is increasing, thus,
undoubtedly, we can find a unique Q€ (1, +00) to satisfy
QR =1

From P(9)=9[M, + M, (1 + M,9)exp(M,)], we
can easily obtain P (%)) which is also strictly increasing, thus
a unique %) can be fonded such that P()) = 1, then Q =
{1-9[M, +M,(1+MD)exp(M,; )]} € (1,+00) and
VY € (0,?), so there must be a unique % such that
Q(9) = Q, hence, when 9 < %), we can obtain X< 1.

So when 9 < min(h/2,9), setting K = -In(R)/h, we
obtain

IOl +¥1 < exp (~AR)lly (0)]l. (43)

From the uniqueness of the solutions we have proved
before, we get

|l (¢ o @o)|| +[[¥ (250, o) |
=@ (t;tg + (S = Dh, Dty + (S = Ditst, )| (44)
¥ (80 + (S = DY (1 + (S = Dy, )]

where & € N. Thus, by (43) and (44) we can be obtained for
t>ty+Sh -9,

|l (£: to, @) +[[¥ (250, %)
=@ty + (S = DA, @ (ty + (S — Vs £, D))
+W (£ + (S = DA, (£ + (S — D £, 'F,))|
<exp (—hR)[|O (¢, + (S = D)k to, Oy )|
¥ (£ + (S = Do, ¥y )| ]
= exp (-hR)

x[|D(t;2y + (S = 2)h, @ (t, + (S = 2)h; 19, @)



AW (£t + (S =2,y (tg +(S — 2y, ¥y))]]
. (45)
<exp (~ShR) Iy (0)].

Thus, for all t>t;+ 72 -9 and & € N can be found to
satisfy to + (S - Dh -9 <t<t, + Sh -9, and

D (Ol +11% (£)]
<exp(-R(t - t,)) exp (R (= D))y (0)].

Clearly, (46) is also hold for t, <t <t; + h — %), then, the
perturbed system (1) is GES. O

(46

4. Noise and Deviating Arguments
Impacts on Stability

We will analyze the stability of SBAMDA in this part, the
system is expressed as follows:

do, (t) = [ a,® (t)+wa EAG)

+ZCW (Y, (©@)) |dt + D, (5dU (t),

(47)
dwt):[ NHZ% , (@, (1)

Y RACHE (t))):|dt + Y, (DO (1),

v=1

where @, (), ¥, (), a;, d bv > Copr €y h > Q(-),and Y () are
same which is deﬁned 1n (1) < is the intensity of distur-
bances. Based on Section 2, (47) has an unique state
(D (1), ¥ (1)) for any initial value (CDO,‘{’O)T.

Then, we give the definition of MSES (MSES) of
system (47).

Definition 2. System (32) is said to be MSES if there exists
2 >1 and B >0 such that

E(”CD(t) +|¥ 1)’ )

_ _ (48)
< ?[E(||CD02+||‘I’02) exp(—% (t- to)),

where (@ (t), ¥ (¢))" and (D, ‘{’O)T are the state and initial

value of the SBAMDA (47), respectively.

Definition 3. System (32) is called almost GES, if for any
t, € RY, @, €eR’, ¥,eR¥ the Lyapunov exponent
limsup In (| (£; £, @Il + ¥ (2; £9, ¥o)l)/2 <O.

t — 00

Remark 2. It is obvious that, from the definitions above, the
mean square GES follows from the almost sure GES, but the
opposite is not true. On the other hand, if A1 holds means
that the MSES implies almost sure exponential stable
(ASES).
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Therefore, we give some assumptions we need in this
part as follows:

(i) A6
M;+9(3+M;) (M, +M;)exp{9 (M, + M;)} < 1.
(49)
(ii) A7
290 exp (~2Bh) + B4Q, W 5{: S <1,
(50)
where
M; = max {92)2m§, 92)2mé}
4 = max {99m7 + 3Z%,99m; + 327},
M, = max {92)m2,92)m5} (51)
Q, = max {m{ +mz, m; + mi},

Q, = 2 2
, = Max /s, Mg .

In the next lemma, we will explore the relationships of
state of system (47) and deviating function ® (¢).

Lemma 3. Let assumption AI-A6 hold, then exists @>0
such that

E(|o @ (1) +]¥ (0(1))?)

(52)
< GE(||© (1)*+]¥ (1)),

where
6=3(1-) ",

(53)
®=M;+9(3+M;) (M, +M;)exp{9 (M, + M)}

Proof. Since t € R, thus, there must be a positive constant
& e N, satisfied ¢t € (2:, Ye.1) then O(2) = @’g, from (32),

[ o)<

t
N J [yl @)l + my ¥ (w)]
G)f

IO (u)dU (u)],

+m3||‘{’ 0; " du+ o

1% 0l < |¥(

o;

t

Y (u)dO (u).

J
. j [ ()] + mgll ()]
J

+mg|@(6;) || du+ o

(54)

Furthermore,
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2 [ t
i@l [o(e;)] <1 @i+ j@ my | @)l + ¥ ()]
#\ [|? ‘ 2 2 2 2
<3e|o(e;)| +99 | E[m}|o v
cssfatenf o8 [ loifoco? nifecs o)+, 2o
smi | (e;)| ]du+3wzj EJl® ()2 du ‘ ‘
s¥(0) |w(e; ||<||\P(t)||+j® [my 1% @]l + ms @ (w0
<3E|0(0;) +3(39m’ + T2) Jt B0 (u)du (07 + J; TV (1)d0 ()|
©; {
, (%5) (59)
+99) J@; E[m2 [ (u)? + m2 ¥(; )] du Similarly,
<3E|0(0; ) + 99’ mE|¥(0})’ Elo(e;)| <3E10 I + 9*m2E|e(e;)|
t
+3(3@m§+s2)r EJl® (1) du +(92)mf+3‘52)J®§ EI® @l du (g
®;
t
9Ym; | EIY (w)l*du,
vogn [ v @lPdu oown | o; A (Ol
©;
Similarly, Ew(6;)| <3EN¥ ()1 + 99°mE|0(e; )|
B O +(9¥)mi+3f§iz)J;* BN @Pdu )y
4
J E[mi|[¥ )" + m3|® (u) +9Ym; j; E|[® ()] du.
4
+mé ]du " 3¢2J EII (1) du Then, from (58) we can have
*\2 *\2
<3E|¥(0; ) + 99*m2E|(e; ) Elo(e;)’ + El¥(e;)
, <3(E|® ()" + E|¥ (1))
3(39m; +2°) | EIYw)ld . .
+3(39m; + )I@; Wi +M3(E||(D(®£)2 +E“\I’(®f)2>
t t (62)
+99m; J@; E|© (w)|*du. + (M, + M) J@; (E|® (u)* + E|¥ (w)*)du
(56)

<3(E|® ()" + E|¥ (1))
Then, + <1><E||c1>(®§)2 + E'|\11(®§)2),

E|®(t)* + E|¥ (1)
where @ = M5 + 9 (3 + M;) (M, + Ms) exp {9 (M,+ M;)}.

<(3+ M3)<E'|<D(®;)2 + E”‘I’(@g )2> (57) Then combine with A6, we have
+ (M, + M) r@ (E|® w)? + E|¥ (u)*)du. Elo(e;)| + Efe(e;)|
5 <3(1-a) '(E|o®)’ + E|¥ )) (63)

Applying the G I-Bellman L ,
pplying the Gronwall-Bellman Lemma = G(E|o (1) + E|¥ (1)°).

2 2
E"(D (6)"+ E"‘P (t) Therefore, (63) holds on the interval [2);, 9, ,), since the

< (3+M;)exp {9 (M, + M;)} (58)  randommicities of ¢ and §, thus, V¢ € R*, V& € N, (44) also
. . holds. Therefore, the proof is completed.
X<E”®(®g) + E"‘P((“)g) ) In what follows, the implications of both deviating ar-

guments and stochastic disturbances on the stability of
At the same time, BAMNN (2) is examined. O



10

Theorem 2. Let Al to A7 hold and BAMNN (2) is GES, then,
SBAMDA (32) is MSES and also ASES if |Z|<%/V2,
9) < min {h/Z,@}, DY, ) <1, where T and 9 are the
unique positive solutions of the following two transcendental

equations, respectively,
~2
29C exp (—-2Bh) + %h(‘iz N 42Q2h>

X exp {8h<‘i’2 +3Qh+ 36Q2h>} -1, (64)

20, exp (2hQ,) + 490 exp(-2B(h- D)) = 1,

where
B> 1n<z§[2)
——
- 21 [12th +24hQ, G+
1= = ,

B
Q, = 12hQ, + 48hQ,G + 2%,

®=M;+9(3+M,;) (M, +Ms;)exp {2)(M4 + MS)},

M, = max {9@2m§, 9@2m§},
M, = max {9%1? +1.5%°,99m’ + 1.5@2},
M = max {9@;11%, 9@m§}.
(65)
Proof. From (2), (24), (25), and (47),
[ Elo) - o)
<6(t—t,) L {meH(D(u) - O ()’
+m B (u) - ¥ (w)” + m3E||¥ (© ()
9 ()} du + 232 Jl BI® ()P du
) 0 (66)

t
T }du 27 [ B0l du
tO

<6(t—t,) L [m2EI (w) - F ()]

+m3E||® (u) - @ (u)* + m|| @ (O (w))

t
& )+ 237 | EIYGolPdu
to

Furthermore, we can obtain

Discrete Dynamics in Nature and Society
E|o() - @) + E|¥ (1) - T (1)

t
<6(t-t,) L (12 + m2)El® () - B @)

H(m + ) ENY () — ¥ ()| |du

+6(t—t,) ji 2B (O ) - Fwlidu O

v6(t 1) [ mEBIO© @) - (e

+232 J: [E]® (u)? + E|¥ (u)?]due
Then
E|o () - @)’ + E|¥ (1) - ¥ (1)
<[6(-t)Q +42’] | [EI® ) - ® )l
+EI (1) = ¥ ()] ]du + 12(t - t,)Q,@
x JZ [E]® @) + E|¥ ()] du
+[12(t - £,)Q, +4%7]
< [E|® (u)? + E|F (] du
<[6(t—1)Q, +24(t - £,)Q, 0 + 4%’
x ﬁ [E[®@ (w) - ® (u)* + E|¥ (u) - ¥ (u)*]|du
+ 90IB (- 1) [6( — 10)Q, + 12(t - £,)Q,6 +227]
x (E| @, + E[¥,?).
(68)

Applying Gronwall-Bellman Lemma, for

to+ 9 <ty <t+2h, we can get that

E|©(£) - DI + EI¥ (1) - F ()

219

<=
B[124Q, +24hQ, @ + 22|

x exp {2h[12hQ, + 48hQ, @ + 47|} (69)
x(Eloo + B[
= 0, exp (200,)(E| o[ + E¥o[ ).

Thus, for t)+h - Y <t <t,+2h -9,



Discrete Dynamics in Nature and Society

E|o )’ + E|¥ (1)
<20, exp (21, ) (E|®,° + E|¥,°)
+ 290 (E| @, + E|[¥,?) exp(-2B (¢ - 1))

5 _ (70)
< {291 exp (2h02,) + 290 exp (~2B (1 - g)))}

x E([|@,"+|¥,%)
= (9. DE(|0, +¥,?).
where

D(Y,2) = 20, exp (2h€, ) + 29" exp (—2B (1 — Y)),

21U

" B[12hQ, + 24hQ,@ + 2%

Q

Q, = 12hQ, + 48hQ,@ + 43
(71)

Therefore, we have
49
D(0,%) = 29 exp (-2Bh) + = h(T* + 42Q,h)
B (72)

x exp {8h(T* + 3Q,7 + 36Q,h)},

and we can easily get (72) is strictly increase for <.
From the assumption A7, we can easily obtain that

(0,0) = 29" exp (—2Bh)

=~2.2 (73)
, 168Q,9°5” exp {8h(3Q, + 36Q,1)}

B

On the other hand, we can easily get D (0, 00) > 1, thus,
suppose that D(0,Z) = 1. So, when |Z|<Z, D (00, T) > 1,
and D(0,2)< 1. Besides, we denote
(9, %) = M, +9 (3 + My) (M, + M)
exp {9 (M, + M;)}, we can easily get ® (%), T) is increasing
for 9). Then, from A6, we know that @ (%), T) <1, so exists
a 9 such that @(9,¥)=1, so, when 9<9,
®(9,2) <1 holds.

And because D (), T) is strictly increasing for ¥, so

<l

exists 9, D(,¥)<1 holds, when [T|<T/V2,
9 < min {1/2,9}.
Setting B = —In D/A, thus
Elo 0l + EINY ()1
(74)

<exp (—%h)E<||®0"2 + "\P0”2>'

11

By Theorem 1, the solution of (47) is unique, thus, there
is a K € N, such that

El® )] + ENY (1)
= E|® (£t + (F = Dh, & (tg + to + (F = D 10, )|
+E|¥ (t;ty + (F = DAY (1 + to + (F = D 10, ¥,))|

< exp(—?Bh){E“(D(tO ity + (T = Vs t, @)

+E|\¥ (t, + ty + (X - Dh; to’\yo)llz}

<exp (—%%h)E("(DO"z |, ;|2>,
(75)

holds for t >t, - A + Fh.
Thus, for any t>t, — %) + &, there is a # € N such that
to= Y+ (K -Dh<t<ty,-Y+Hh,

E|© (0)I* + EI¥ (1))

<exp(-B(t-t,) exp(BH-D) (75

< E([ooff +]% [ )

Clearly, we can easily get (76) is also hold for
to <t <ty —% + h. Thus, system (47) is satisfies Definition 2.
According to Remark 2, (47) is also ASES. O

Remark 3. Table 1 is a brief comparison between this paper
and existing literature. The factors we compare are RoS,
BAM, deviating argument (DA), the existence and
uniqueness of solutions (EU), ES, AS.

5. Examples

We provide a few instances in this section to demonstrate
the viability of the results in the earlier sections.

Example 1. Consider the following BAMDA, let w = ¢ = 2,
the parameters and the model of our example are as
follows:
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TaBLE 1: The brief comparison between this paper and existing literature.

RoS BAM DA EU ES AS
Xiang and Cao [7] v v
Sowmiya et al. [8] v 4
Sowmiya et al. [9] v v
Balasubramania and Vidhya [13] v v
Akhmet et al. [23] v v v 4
Wenxiang et al. [29] v v v
This paper v v v v v
1.5
1
N
< 05
g
B
= 0
g
< -05
=
=
-1
-1.5 : . . .
0 5 10 15 20 25
Time (t)
— ¢, v ()
— (1 — Y,
FiGURE 1: The states of (77) with {2)5} = &/10, {@5} = 2& + 1/20 in different initial values.
[0.5 0 0.004 0.003 Moreover, we have
A= ,B = ,
1 O 0.5] [0,003 0.004]
. £ 0.003 0.001 ] [0‘4 0 ] 0.0333 exp (0.3048) + exp (—0.09) = 0.9591 < 1. (78)
§ 0.0010.003 0 04 Besides, according to the comparison theorem, we know
E- 0.002 0.001 ] H = [ 0.002 0.003 } that the system without deviating argument
| 0.001 0.002 | 0.003 0.002 |’
([, (£) = —0.50, () + 0.004 tanh (¥, (£)) + 0.003 tanh (¥, (1)) @, (t) = =0.5® (t) + 0.04 tanh (¥, (¢)) + 0.03 tanh (¥, (1))
+0.003 tanh (¥, (@ (1)) + 0.001 tanh (¥, (O (£))), +0.03 tanh (¥, (t)) + 0.01 tanh (¥, (t)),
@, (t) = —0.5®, (t) + 0.003 tanh (¥, (£)) + 0.004 tanh (¥, (¢)) @, (t) = =0.50, (t) + 0.03 tanh (¥, (1)) + 0.04 tanh (¥, (t))
+0.001 tanh (¥, (@ (t))) + 0.003 tanh (¥, (O (1)), +0.01 tanh (¥, ()) + 0.03 tanh (¥, (¢)),
¥, (t) = —0.4¥, (t) + 0.002 tanh (@, (£)) + 0.001 tanh (D, (£)) ¥, (t) = —0.4Y, (t) + 0.02 tanh (®, () + 0.01 tanh (@, (£))
+0.002 tanh (@, (® (¢))) + 0.003 tanh (D, (O (1)), +0.02 tanh (P, (¢)) + 0.03 tanh (D, (1)),
W, (£) = —0.3%, (£) +0.001 tanh (®, (£)) + 0.002 tanh (®, (1)) ¥, (t) = —0.3¥, (¢) + 0.01 tanh (@, (¢)) + 0.02 tanh (@, (£))
+0.003 tanh (@, (@ (1))) + 0.002 tanh (D, (© (1)), +0.03 tanh (@, (£)) + 0.02 tanh (@, (£)),
(77) (79)

where {2)5} =¢/10 and {@5} = (2& + 1)/20. ) )
From the parameters, we have m, = 0.5, m, = 0.007, 'S GES with % =L B =03. -

my = 0.004, m, = 0.4, ms = 0.003, m, = 0.0015, M, = 0.016, Let A, =1, E, = 1, then we can get ) = 0.1393 from the

M, =0.5030, and % = 0.3. equation as follows:
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exp (0.39) - 0.09) +{0.0167 + 0.0167/[1 — Y[(0.503 (1 + 0.00059)) + exp (0.503))0.005]]}

(80)

exp{0.6(0.503 + 0.005{0.0167 + 0.0167/[1 — [(0.503 (1 + 0.00052)) x exp (0.5039)0.005]]} = 1.

Therefore, when 9) < 9) = 0.2476, according to Theorem
1, (47) is GES.

Figure 1 depicts the states of system (77) with
{2)5} = &/10, {@jz (2¢ +1)/20 in different initial values.
Since the length of interval of deviating argument we take in
system (77) is less than 0.1393, thus, BAMDA (77) is GES.

Example 2. Consider the following SBAMDA:

[0.5 0 0.001 -0.001
A = ,B = >
L 0 0.5 -0.001 0.001
[ 0.001 -0.001 05 0
C= )D = >
| —-0.001 0.001 0 0.5
[ 0.001 -0.001 0.001 -0.001
E= >H = >
L —0.001 0.001 -0.001 0.001

where the deviating when
t€[DeYe) §€N.

By computing the parameters, we can obtain A, =1,
g,=1, m =05 m,=0002 m;=0002 m,=0.5
ms = 0.002, mg = 0.002, Q, = 0.25, and Q, =4 x 10™°. Be-
sides, we let i = 0.8, by the comparison theorem, we can
obtain that the origin BAMCNN of (81).

@, (t) = -0.5®, (t) +0.001 tanh (¥, (t))

argument @ (t) = Oy,

—0.001 tanh (¥, (t)) + 0.001 tanh (¥, (¢))
—0.001 tanh (¥, (t)),

@, (t) = —0.5D, (t) + 0.001 tanh (¥, (t))
—0.001 tanh (¥, (t)) + 0.001 tanh (¥, (¢))
—0.001 tanh (¥, (t)),

1 (82)
¥, (t) = -0.5¥, (¢t) - 0.001 tanh (P, (¢))

[ d, () = ~0.5D, (£) + 0.001 tanh (¥, (1))
~0.001 tanh (¥, ()) + 0.001 tanh (¥, (© (¢))) +0.001 tanh (@ (1)) - 0.001 tanh (@, (1))
~0.001 tanh (¥, (8 (1)) + T, ()T (¢), +0.001 tanh (®, (1))
40, (1) = ~0.5, (1) — 0,001 tanh (¥, () (81) W, (t) = —0.5%, (t) - 0.001 tanh (®, (£))
+0.001 tanh (¥, (£)) - 0.001 tanh (¥, (® (£))) +0.001 tanh (, (£)) - 0.001 tanh (@, (1))
+0.001 tanh (¥, (8 (1)) + T, (1dV (1), [ +0.001 tanh (@, (1)),
1 aw,®) = —0.5%, (t) + 0.001 tanh (@, (1)) is Gﬁiﬁlﬁf&f‘;ﬁﬁ: 0.5.
—0.001 tanh (®, (1)) + 0.001 tanh (®, (®(1))) 2 exp (—0.8) +0.0017 exp (3.8408) = 0.9788 < 1. (83)
-0.001 tanh (@, (@ (1)) + TY, (1)dV (1), Substituting the parameters into (72), we have
d¥y, (t) = 0.5, (t) — 0.001 tanh (O, (¢))
+0.001 tanh (@, (t)) - 0.001 tanh (@, (O (¢)))
[ +0.001 tanh (@, (O (1))) + TY, (1)dU (1),
D(0,T) = 2exp(-0.8) + 6.4(T* + 1.344 x 10™*) exp(6.4(T* + 0.6001)). (84)

_ Let D(0,%) =1, thus, we have ¥ =0.006. Note that
T <T/V/2, that is T <0.0042, then substituting the other
parameters into D (%), ¥/+/2), then we can get

DD, T/INZ) = 20, exp (21, + 4% exp (-2B (1 - D)),
(85)
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The states of system (55)

0 5 10 15 20 25 30

Time (t)
— ¢, (0 — Y, (1)
— , (1) — Y,

FiGure 2: The states of (81) with € = 0.002, {2)5} =&/35, and
{@5} =2&+1/70 in different initial values.

where

21

%[nth +24hQ,Q + fiz] ’

Q, =

Q, = 12hQ, +48hQ, G + 2%,
Q; = max {mf + mg,mg + mi},
Q, = max {mg,mé},
@=3(1-),
@ =M, +9 (3 +M;) (M, + Ms) exp {@(sz + Ms)}7
Vi 32 2 ;2 2
M; = max {92} m3, 9%) m6},

M, = max {9@m§ +1.5%°,99m? + 1.5fi2},

N
[

5 = max {9@m§, 9@;712}.
(86)

Thus, we can obtain 9 =0.0117, recalling that
%) < min {#/2,9)}, and therefore, 2 <0.0117.

Hence, we can easily get for given stable system, when
&< IZI/V2, 2)< min {h/Z,@}, the perturbed system will
also be stable.

The states in Figure 2 is the states under the condition of
system (81) with ¥ =2/1000, {2)? = &/35, and {®E} =
(2& + 1)/70. It shows that if the T and ¥) are both lower than
we derived in this paper, then (81) will be exponential stable.

Discrete Dynamics in Nature and Society

1000

800 |
600
400

200 -

-200
-400 +
-600

-800

-1000
0

— ¢
— $,(®

— 0
— 0

FIGURE 3: The state of system (81) with T = 0.006, {2)5} = &/105,
and {©} = 2¢ + 1/210.

500

400

300 |

200

100 +

-100

-200 |

-300 +

-400

-500

0 5 10 15 2 2 30
— ¢, ®
— $,(1)

FIGURE 4: The state of system (81) with T = 0.002, {2)5} = &/50, and
{©¢} =26+ 1/100.

— ¥
— ¥,

In Figure 3, T =0.006>0.0042, ¥ =1/105<0.0117,
thus, the states in Figure 3 is not exponentially stable. And
Figure 4 shows the states of (81), when < = 0.002 < 0.0042
and 9 =0.02>0.0117 is bigger than we derived in this
paper, we can easily find that the states in Figure 4 has lost its
origin stability.

In Figure 5, we choose T =0.007>0.0042 and
9) = 1/20>0.0117, they are both bigger than the results we
derived in this paper, hence, the states of SBAMDA (81) is
not GES.
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1000

800 |

600

400

200

-200

-400 |

-600 +

-800

_1000 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

— $,0 ¥ (1)
— $,0 A

FIGURE 5: The state of system (81) with T = 0.007, {g)g} = £/20,and
{©¢} =28+ 1/40.

6. Conclusion

The robustness of the stability of BAMCNN with deviating
argument and noise is analyzed. The upper bounds of noise
and the deviating intervals must be limited in order to retain
the original stability. We may estimate these upper bounds
that we derived by resolving transcendental equations. Our
findings provide a theoretical underpinning for BAMCNN
designs and implementations. Future study may focus on
enhancing the upper limits and considering employing
classical approaches to optimize the computation process,
such as the LMI method and the Lyapunov function method.
Furthermore, more sophisticated structural disturbances,
such as Markov jump, impulses, state-dependent delays, and
so on, can be taken into account.
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