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Te aim of this research work is to obtain the numerical solution of Fisher’s equation using the radial basis function (RBF) with
pseudospectral method (RBF-PS). Te two optimization techniques, namely, particle swarm optimization (PSO) and artifcial bee
colony (ABC), have been compared for the numerical results in terms of errors, which are employed to fnd the shape parameter of
the RBF. Two problems of Fisher’s equation are presented to test the accuracy of the method, and the obtained numerical results
are compared to verify the efectiveness of this novel approach. Te calculation of the error norms leads to the conclusion that the
performance of PSO is better than the ABC algorithm to minimize the error for the shape parameter in a given range.

1. Introduction

To obtain numerical solutions with the optimized results in
a variety of scientifc and engineering disciplines, researchers
have developed various methods. Algorithms based on
swarm intelligence have great potential in the feld of nu-
merical optimization, according to researchers Yagmahan
and Yenisey [1], Eberhart and Kennedy [2], Price et al. [3],
and Vesterstrom and Tomsen [4]. Swarm intelligence-
based algorithms [5] and evolution [6] are two signifcant
categories of population-based algorithms in the feld of
optimization. Optimization is the process of increasing the
advantages of a mathematical model or function while
minimizing its disadvantages. It is a combination of tech-
niques that enables us to improve the output of the system.
Te primary goal of optimization is to fnd an optimal or
nearly ideal solution with the least amount of computing
work. Te key to fnd the solution is to optimize parameters
connected to a mathematical model.

Several research felds adopt optimization approaches
for numerical simulation of various linear and nonlinear

partial diferential equations (PDEs) and also for optimizing
the parameters related to problematic models. Tere are
some well-known approaches of optimization such as ant
colony optimization (ACO) [7] is one of the optimization
algorithms that is a meta-heuristic algorithm inspired by the
foraging behaviour of ants and how they fnd the shortest
path between their nest and a food source. While it is
commonly used for combinatorial optimization problems, it
can also be adopted for numerical solutions of PDEs. Particle
swarm optimization (PSO) [2] is also a heuristic algorithm
inspired by the social behaviour of birds and fsh, where
individuals in a group (particles) cooperate and commu-
nicate to fnd optimal solutions to a problem. Bacteria
foraging optimization (BFO) [8] is stimulated by the for-
aging behaviour of Escherichia coli (E. coli) bacteria that
mimics the way bacteria forage for nutrients in their en-
vironment to fnd the optimal solution for a given opti-
mization problem. When adapting BFO for the numerical
solution of PDEs, it can efectively explore the solution space
for parameter settings that yield accurate and efcient nu-
merical solutions to PDEs. Tese nature-inspired meta-

Hindawi
Discrete Dynamics in Nature and Society
Volume 2023, Article ID 9964744, 10 pages
https://doi.org/10.1155/2023/9964744

https://orcid.org/0000-0002-3786-545X
https://orcid.org/0000-0002-8034-1475
mailto:homan_emadi@yahoo.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9964744


heuristic optimization algorithms have recently gained
popularity for developing an efective search algorithm.

Exploration and exploitation are two major de-
terminants for the development of successful optimization
algorithms for search mechanisms. A meta-heuristic opti-
mization algorithm efectively explores the solution space,
balancing between exploration (global exploration) and
exploitation (local refnement) to fnd near-optimal or op-
timal solutions for a variety of optimization problems.
Exploration involves the search for new, unexplored regions
of the solution space. It aims to discover potential solutions
that might be superior to the current ones. Exploitation
involves focusing on known promising regions of the so-
lution space to improve the quality of solutions. It aims to
refne and optimize the current solutions based on the in-
formation available. Researchers are motivated to develop
such population-based optimization algorithms because of
the abundance of natural resources. Tese population-based
optimization methods assess ftness and provide almost
perfect solutions to complex optimization problems.

Swarm intelligence (SI) is a feld of study inspired by the
collective behaviour of social insect colonies and other
animal societies. It explores the principles and models of
behaviour that emerge from the interactions of simple in-
dividuals within a group. Te connection between SI and
optimization lies in leveraging the collective behaviour
observed in natural swarms to create efective optimization
algorithms and strategies. SI uses social insect behaviour to
create algorithms or distributed problem-solving tools,
according to Bonabeau et al. [9]. Bonabeau studied only
social insects such as termites, bees, wasps, and ants. Social
species frst developed swarm intelligence through trial and
error. It simulates self-organizing swarms of interacting
agents. An immune system, ant colony, or bird fock are
swarm systems. Bees swarming around their hives illustrate
swarm intelligence. Based on honey bee swarm social in-
telligence, the artifcial bee colony (ABC) algorithm frst
described by Karaboga [10] in 2005, and in 1995 [2],
Kennedy and Russell proposed PSO for solving numerical
optimization problems. Honey bees’ search for nutritious
food infuenced the procedure of ABC, and the process of
PSO was attracted by the behaviour of social animals. Tese
population-based stochastic search methods are simple and
fast. Tese methods also solve complex, continuous, and
unbounded optimization problems with multimodal or
unimodal issues.

SI-based meta-heuristic algorithms are popular for
solving various optimization models as in [11] employed
a novel adaptive artifcial bee colony (A-ABC) algorithm that
can select the best search equation based on the current
situation in order to more precisely predict the transport
energy demand (TED), in [12] four diferent meta heuristic
algorithms used for natural gas demand forecasting based on
meteorological indicators in Turkey, [13] proposed a new
modifed artifcial bee colony (M-ABC) method that can
more precisely calculate Turkey’s energy usage by adaptively
choosing an optimal search equation and many more ex-
amples are there in biology, physics, evolution, and human
behaviour that inspire nature-inspired algorithms that

include ant colony optimization, artifcial bee colony, the
frefy method, particle swarm optimization, brain storm
optimization, sine and cosine algorithms, and genetic al-
gorithms. With inspiration from SI, many researchers ap-
plied these meta-heuristic algorithms for the numerical
simulation of various PDEs by optimizing the solution space.

For numerically simulating ordinary and partial difer-
ential equations, RBF has proven to be a useful basis
function. Numerical solutions to a nonlinear partial dif-
ferential equation are found in this study by employing
a mesh-free method based on radial basis functions (RBFs)
with ABC and PSO optimization techniques. Both opti-
mization strategies are used to determine the shape pa-
rameter (ϵ) related to RBF.

Te reaction-difusion equation is one of the most in-
triguing equations in physical processes. We concentrate on
the form of reaction-difusion, which is known as Fisher’s
equation.

vt − svxx � F(v), (1)

whose boundary and initial conditions are as follows:

v(x, 0) � v0(x) ∈ [0, 1], x ∈ (−∞,∞),

lim
x⟶−∞

v(x, t) � 1, lim
x⟶∞

v(x, t) � 0,

lim
x⟶±∞

v(x, t) � 0.

(2)

Many chemical and biological processes use F (v) = v

(1− v). Fisher [14] introduced this equation to demonstrate
a benefcent gene’s kinetic advance rate. Fisher’s equation
shows population evolution through opposing physical
phenomena. Fisher’s equation dominates genetics, tissue
engineering, growth models, and more in science and en-
gineering. Fisher’s equation was frst simulated using the
pseudospectral method developed by Gazdag and Canosa in
1974 [15]. Since then, many diferent approaches have been
developed to solve it, such as the Petrov–Galerkin fnite
element method processed by Tang and Weber [16], the
Tanh method by Wazwaz [17], and the homotopy analysis
method proposed by Tan et al. [18]. Other methods that have
been used to solve this problem include the alternating it-
erative method by Sahimi and Evans [19], the central fnite
diference algorithm by Hagstrom and Keller [20], the ex-
plicit and implicit fnite diference algorithms by Parekh and
Puri [21], the collocation of cubic B-splines by Mittal and
Arora [22], and the pseudo spectral approach by Bhatia and
Arora [23].

In this paper, the ABC and PSO algorithms with RBF
applied to Fisher’s partial diferential equation are used to
fnd the best shape parameter of RBF by minimizing the
error, and the RBF-PS method is used for numerical sim-
ulation of Fisher’s equation by converting it into an ordinary
diferential equations (ODEs) system. MATLAB is used for
optimizing the parameter ε and for numerical approxima-
tion of Fisher’s equation. In this work, the results are ob-
tained by the present hybrid approach in the form of error
norms-L∞, L2, andLrms and shape parameter values at
diferent time intervals, which are more comparable to the
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results available in the literature.Te errors obtained by PSO
are less as compared to the errors obtained by the ABC
algorithm; thus, PSO values of shape parameter are good in
comparison to the ABC’s results.

Te structure of the paper is as follows. Section 2 de-
scribes the ABC algorithm in detail, with pseudocodes for all
the phases, and also presents the complete process of ABC.
Section 3 presents the explanation of the PSO algorithmwith
pseudocode, and the obtained results of the two problems of
Fisher’s equation by the novel hybrid approach are discussed
and compared in Section 4. Section 5 concludes the present
article with the details of key fndings and the future scope.

2. Artificial Bee Colony (ABC) Algorithm

Te artifcial bee colony (ABC) algorithm was invented by
Karaboga [10] in 2005. Te algorithm seeks the nectar-
rich fower region (optimal solution). Employed bees
(busy), onlookers, and scouts structured the swarms in the
ABC algorithm. Te swarm that fnds the best food supply
is more likely to be followed by the others. ABC re-
members a user’s best location, as in the process of PSO.
Te bee travels to a new location and evaluates it in
comparison to its current favourite place. If the new site is
better, the old one is forgotten and the new one is re-
membered.Te recollection remains unchanged.Te ABC
algorithm begins with deploying bees in the beginning
and dispersing them in diferent locations. All employed
bees are those actively foraging for nectar or pollen.
Employed bees bring food information back to the hive
and share it with curious bees. Onlooker bees wait in the
hive for scout bees to report new food sources. To share
food supply information, employed bees danced in
a designated area. Te dancing bee’s dance depends on the
food source’s nectar. Onlooker bees monitor the dance
and choose a food source depending on its trustworthi-
ness. Before returning to the beehive, employed bees
communicate the information with onlooker bees, which
chose the most likely to follow. So, better food sources
attract more bees than poor ones. When a food supply is
exhausted, all employed bees become scouts. Scout and
employed bees pursue exploitation and exploration
processes.

In this algorithm, each food source is a potential solution
to the problem, and its nectar amount indicates the ftness
value’s estimate of its quality. For each possible food source,
there is exactly one busy bee, and the total number of food
sources is equal to the total number of employed bees. Based
on the following related probability value pi defned, an
observer bee selects a food source.

pi �
fiti


Np
t�1fitt

, (3)

where the ftness function (objective function value) of ith

solution is fiti evaluated by employed bees that are pro-
portional to the optimal solution and Np is the number of
food sources. Due to the process, employed bees share the
whole information with the onlooker bees. Utilizing the

probability values of the employed bees, a roulette wheel
selection method is used. Te likelihood of being chosen by
onlooker bees increases with the amount of nectar a worker
bee shares. With the aid of the chosen employed bee, the
onlooker bee travels to a new site Vi using the following
formula:

Vi � Xi + φi Xi − Xj . (4)

Here, the present position is denoted by Xi, employed
bee selection is represented by Xj, and φi is selected ran-
domly from −1 to 1 for fnding the food sources in the region
of Xj. Any bee that is not capable of fnding a better food
source after several iterations is replaced with a scout bee Xk.
Te scout bee summoned to replace the unsuccessful bee
fies about any random or uncharted area to investigate its
surroundings using the following equation:

Xk � lb + φi(ub − lb). (5)

Here, ub and lb are upper and lower bounds, re-
spectively, and randomness lies between 0 and 1. Again, the
process is repeated with employed bees. Te parameter limit
(the number of cycles) is used for a location that cannot be
enhanced during the fxed cycles. Tese three steps of the
algorithm ABC, with their pseudocodes, are as follows.

2.1.EmployedBeePhase. For the generation of new solutions
in the employed bee phase, the following are some points to
be remembered:

(1) Te number of employed bees is equal to the number
of food sources

(2) Tere is an opportunity for all of the solutions
(3) A partner is randomly selected for the generation of

a new solution
(4) Te current solution and partner should not be

the same
(5) Modifcation of a randomly selected variable is

important for the generation of a new solution

X
j
new � X

j
+∅ X

j
− X

j
p . (6)

where X
j
p � jth variable of pth solution

Xj
new � jth variable of a new solution
∅ � the random variable lies between −1 to 1
Xj � jth variable of the current solution

(6) Boundedness of the newly generated solution

X
j
new � lb if X

j
new < lb,

X
j
new � ub if X

j
new > ub.

(7)

After generating a new solution within the boundaries,
we must assess the objective function value and fnd its
ftness via the relation. To update the current solution, we
greedily select the newly generated solution. We track trial
failures for each solution. If the new solution is worse, we
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increase the trial by one; if it is better, we reset it. Now, this
better solution counts in the population.Te pseudocode for
the employed bee phase is given as follows:

Input = objective function, p, ft, trial, lb, ub, Np= s/
2 = no. of food source/employed or onlooker bees,
s= swarm size
for i= 1 to Np

Selected a partner (p) randomly such that i is not
equal to p

Selected a variable (j) randomly and update jth
variable

Xj
new � Xj +∅(Xj − X

j
p)

Bound modifed j (xj
new)

Evaluate objective function (fnew) and ftness (ftnew)
Accept Xnew, if ftnew greater then ftness and Set

trial = 0. Else increase trial by one.
End.

2.2.Onlooker BeePhase. In this phase, there is a condition of
probability for bees to exploit a particular food source. As we
know the ftness of each food source, for each food source,
we calculate the probability which is determined as follows:

pi �
fiti


Np
t�1fitt

, (8)

where fiti and probi are ftness and probability of the ith
solution, respectively. A solution with a higher ftness value
will have a higher probability. Te pseudocode for the
onlooker bee phase is as follows:

Input� obj. Function, f, p, ft, trial, lb, ub, Np� s/
2, prob.
Setm� 0 & n� 1(m is onlooker bee & n is food source)
While m less then Np

Generate random no. r
If r less then prob.
Randomly select a partner (p) s.t. n is not equal

to p
Selected a variable (j) randomly and update jth

variable
Xj

new � Xj +∅(Xj − X
j
p).

Bound modifed j (xj
new)

Evaluate objective function (fnew) and ftness
(fitnew)

Accept Xnew, if ftnew greater then ftness and Set
trial� 0. Else increase trial by one

m�m+ 1
End
n� n+ 1
Modify n� 1 (if n>Np)

End.

2.3. Scout Bee Phase. As every solution is associated with an
individual trial, we need to specify a parameter limit that is
a user-specifed integer value. For entering the solution in
this phase, the value of trial should be greater than the limit
and trial of the abandoned solution is reset to zero. Not every
solution passes through the scout phase. Te limit of so-
lution can be calculated as Np∗ d because of d-dimensional
problem space. Scout phase can occur only when trial
counter of at least one solution is greater than the limit. Te
pseudocode for the scout bee phase is as follows:

Input� obj. Function, p, ft, trial, lb, ub, limit.
Identify food source (t) whose trial> limit.
Replace Xt with p as Xt � lb + φi(ub − lb)

Evaluate the objective function (ft) and assign ftness
(ftt)

2.4. Complete Pseudocode for the ABC Algorithm. ABC ini-
tializes bee swarms and repeats until stopping criteria are
met. ABC optimizes iteratively. Employed and onlooker bees
agree on exploitation, while the process of exploration is
performed with scout bees.

Initialisation of input parameters� ft, t, lb, ub,
limit, Np.

(1) Initialization of population parameter (p)
randomly.

(2) Calculate the objective function value (f ) and the
ftness value (ft).

(3) Locate trial counter� 0.
(4) for i� 1 to t

Evaluate the employed bee stage.
Determined probability
Apply the onlooker bee phase for generating

food sources.
Memorise the best food source.
If trial> limit
Enter into Scout bee stage

End
End

3. Particle Swarm Algorithm (PSO)

Kennedy and Eberhart [4] invented PSO as a popular swarm
intelligence technique in 1995. PSO is efective in solving
optimization problems by changing the paths of particles.
Particle movement is mostly stochastic and deterministic.
Social animals, focks of birds, marine animal communities,
and swarms infuence this optimization strategy. Swarms are
population particles that transfer information to improve
the search solution and discover the global optimum in this
nature-based swarm optimization technique. Each particle’s
position is their best experience. Particles’ worldwide best
position is their fnest experience. When it fnds a target
better than all others, a particle alters its best position. Each
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n-particle has a new best solution during iterations. Tis
method fnds the best solution among all possible solutions.
Tis process continues until the set iteration or the goal is

not met. In this algorithm, the velocity Uk+1
i and the position

Xk+1
i of the ith particle are updated as follows:

V
k+1
i � V

k
i + a1 ∗ random∗ Pbesti − X

k
i  + a2 ∗ random∗ Gbest − X

k
i ,

X
k+1
i � X

k
i + V

k+1
i ,

(9)

where Vk
i is the velocity of particle i at k

th iteration, a1, a2 are
real parameters, random is a random number, whose value
lies between 0 and 1, Xk

i is the ith-particle position at kth-
iteration, Pbesti is the personal best position of particle i, Gbest
is the global best position of whole search space.

3.1. Pseudocode for the PSO Algorithm. Enter values of pa-
rameters: a1, a2, ftness, lb, ub, Np, and t.

(1) Initialization of population (P) randomly and ve-
locity Ui of particle i.

(2) Calculate the objective function (f ).
(3) Assign Pbesti as P and fbest as f.
(4) Evaluate fnest ftness solution and allocate the so-

lution to Gbest and ftness to fbest.
for t� 1tot
for i� 1 to Np

Determine the velocity Ui

Determine the new position (Xi)
Bound Xi

Find objective function value
Update the population by including Xi & fi

Update Pbest and fpbest

Update Gbest and fgbest

End
End

PSO is a computational technique that iteratively opti-
mizes a problem to reduce error. It is a statistical method
used to determine parameter values. To fnd the optimal
answer to an optimization problem, the particles commu-
nicate, share their knowledge, and follow a simple rule. It is
an innovative method for evaluating the best shape pa-
rameter value of RBF using the nonlinear partial diferential
equation. It is a global search optimization strategy and
ofers numerous characteristics in the parameter space.

4. Numerical Applications

In this section, the numerical solution of Fisher’s equation
using the RBF pseudospectral method is obtained for the
applications of the above novel approach. Two problems of
Fisher’s equation are solved numerically using the present
approach, and their results are calculated using the diferent
error norms: L∞, L2, Lrms, absolute errors along with the

shape parameter values. A comparison of the obtained re-
sults is presented for the efectiveness and applicability of the
proposed method. First, derivatives are approximated using
RBF, and then solutions are determined by MATLAB
software with version R2022a using both the algorithms with
the intel (R) Pentium processor and the window 7 operating
system. Te cubic radial pattern basis is taken as a basis
function for the numerical simulation of the equation. Te
initial parameters for both the algorithms are as follows:
number of decision variables� 1 and values of lower and
upper bounds of decision variables are 0 and 1, respectively.
Same sets of values are used for obtaining the shape pa-
rameter that minimizes the errors in both the problems of
Fisher’s equation.

Te process of the proposed approach is shown
graphically in Figure 1.

Following are the formulae used for the calculation of the
errors:

Absolute error � vexact xi, t(  − v xi, t( 


; 1≤ i≤N,

L∞ � max vexact xi, t(  − v xi, t( 


 ; 1≤ i≤N,

L2 �

�����������������������

h 
N

i�1
vexact xi, t(  − v xi, t( 



2




,

Lrms �

�����������������������

1
N



N

i�1
vexact xi, t(  − v xi, t( 



2




.

(10)

4.1. Test Problem 1. Taking one dimensional Fisher’s
equation (1) with F(v) � v2(1 − v); as vt � vxx + v2(1 − v) on
the domain [0, 1] with initial condition and exact solution
are, respectively,

v(x, 0) �
1
2

−
1
2
tanh a +

�
2

√
x

4
 ;

v(x, t) �
1
2

−
1
2
tanh a +

�
2

√

4
x −

1
�
2

√ t  .

(11)

Numerical simulation of problem 1 is carried out by
taking Δt� 0.0001, N� 21 at time interval 0.2, 0.5, 1. Table 1
represents the computed error norms: L∞, L2, Lrms by ABC
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and PSO algorithm and comparison is carried out with
results in the literature [24, 25]. It can be seen from the
results that the errors are less by the PSO algorithm com-
parative to the ABC’s approach. Te obtained results in
Table 1 are compared to the results calculated by other
numerical methods available in the literature. By optimizing
the errors, the shape parameter resulted in a value 0.018062
using PSO and 0.065821 using ABC at which the best errors
occur. Te values of the shape parameter at diferent T for
Δt� 0.0001 and N� 21 are given in Table 2. Comparative
analysis of absolute errors using both the algorithms at

N� 21 and Δt� 0.0001 with time 0.01, 0.02, and 0.03 as
shown by Table 3 which concluded the errors are less by the
PSO algorithm in comparison to ABC. Figure 2 demon-
strates the graphical solution for 21 node points with
Δt� 0.0001 on domain [0, 1].

4.2.TestProblem2. We consider the general Fisher’s (1) with
F(v) � v(1 − va); as vt � vxx + v(1 − va) with domain [0, 1],
whose exact solution and initial condition are given as
follows, respectively:

v(x, t) �
1
2

+
1
2
tanh −

a

2
�����
2a + 4

√ x −
a + 4
�����
2a + 4

√ t   

(2/a)

;

v(x, t) �
1
2

+
1
2
tanh −

a

2
�����
2a + 4

√ x  

(2/a)

.

(12)

Fisher' s Equation

Solve numerically using RBF

RBF to be dealt for
the shape parameter Find shape parameter PSO and ABC

Minimize Error as
Objective function

Solution by RBF-PS
method

Figure 1: Graphical representation of the proposed approach.

Table 1: Comparison of error norms of problem 1 with Δt� 0.0001 and N� 21 on varied T and iteration� 71.

Time (T) Methods L∞ L2 Lrms

0.2

ABC 8.4869e− 05 1.1884e− 05 1.6641e− 06
PSO 1.2639e− 05 2.7580e− 06 6.0185e− 07
[24] 2.1050e− 05 4.4750e− 03 3.6330e− 03
[25] 1.0500e− 06 7.0220e− 07 1.6040e− 07

0.5

ABC 7.4960e− 03 1.6358e− 03 3.5695e− 04
PSO 1.2542e− 04 2.7369e− 05 5.9725e− 06
[24] 1.7360e–05 4.4440e–03 3.8210e–03
[25] 1.1240e− 06 8.4700e− 07 1.8480e− 07

1.0

ABC 3.0199e− 03 6.5900e− 04 1.4381e− 04
PSO 1.3587e− 04 2.9649e− 05 6.4700e− 06
[24] 1.1030e− 05 2.6900e− 03 2.4640e− 03
[25] 1.2030e− 06 9.4990e− 07 2.1540e− 07

6 Discrete Dynamics in Nature and Society



Table 4 represents the comparison of the results obtained
by ABC and PSO algorithm with results in the literature [26]
for a� 1 with Δt� 0.0001 at N� 21 along with exact

solutions. As shown in Table 5, a comparison of diferent
error norms calculated by both the algorithms at
Δt� 0.00001, N� 21 with various time intervals 0.001, 0.002,

Table 2: Shape parameter (ε) values of problem 1 with diferent T at Δt� 0.0001 and N� 21.

Time (T)
ε

ABC PSO
0.2 0.065821 0.065599
0.5 0.077052 0.291291
1.0 0.094752 0.018062

Table 3: Comparison of absolute errors of problem 1 at N� 11, Δt� 0.0001 with varied time T.

X
T

0.01 0.02 0.03 0.01 0.02 0.03
ABC PSO

0.1 7.9581e− 07 7.1076e− 06 1.2974e− 05 1.0359e− 08 7.9851e− 09 3.3186e− 10
0.2 7.2611e− 07 1.8189e− 06 2.9827e− 06 3.2868e− 09 1.4958e− 08 7.5032e− 08
0.3 1.8184e− 07 1.5313e− 06 2.2719e− 06 6.3746e− 09 4.0134e− 09 4.8178e− 09
0.4 5.9365e− 08 3.5776e− 06 6.3239e− 06 3.0546e− 09 1.3058e− 08 5.8104e− 08
0.5 8.8167e− 09 5.1369e− 06 8.6968e− 06 7.1879e− 09 1.8792e− 09 6.1799e− 08
0.6 2.5911e− 08 5.4938e− 06 8.5366e− 06 3.4203e− 09 1.3243e− 08 5.1268e− 08
0.7 4.1140e− 08 4.9160e− 06 8.4974e− 06 1.1938e− 10 1.1625e− 08 2.1215e− 08
0.8 4.3687e− 07 2.9209e− 06 6.4768e− 06 6.5021e− 09 3.6290e− 08 8.7129e− 08
0.9 1.4408e− 06 6.2425e− 07 1.8456e− 06 1.6344e− 08 5.7144e− 08 8.0607e− 08

Numerical solution

0.12

0.11

0.1

0.09

0.08

0.07

0.06

v 
(x

, t
)

0 0.2 0.4 0.6 0.8 1x
1

0.5

0

t

× 10-3

Figure 2: Numerical simulation of problem 1 with N� 21, Δt� 0.0001, and ∆t≤ 0.001.

Table 4: Comparison of numerical and exact solutions of problem 2 at N� 21 and Δt� 0.0001 with time T.

X T
Numerical solution

Exact solution
PSO ABC [26]

0.25
0.5 0.3341 0.3301 0.3341 0.3340
1 0.4559 0.4554 0.4557 0.4557
2 0.6842 0.6786 0.6839 0.6839

0.5
0.5 0.3057 0.3034 0.3057 0.3057
1 0.4255 0.4248 0.4255 0.4255
2 0.6582 0.6536 0.6592 0.6592

0.75
0.5 0.2782 0.2769 0.2783 0.2783
1 0.3949 0.3944 0.3954 0.3954
2 0.6308 0.6271 0.6333 0.6333
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Table 5: Comparative study of error norms at Δt� 0.00001 and N� 21 with time interval at iteration� 71.

Methods T L∞ L Lrms

ABC 0.001 3.54e− 10 1.06e− 10 3.22e− 11
PSO 0.001 1.44e− 11 3.15e− 12 6.87e− 13
[23] 0.001 4.13e− 11 1.45e− 08 3.16e− 09
ABC 0.002 1.23e− 09 3.72e− 10 1.12e− 10
PSO 0.002 4.18e− 11 9.13e− 12 1.99e− 12
[23] 0.002 2.97e− 11 3.98e− 08 8.68e− 09
ABC 0.003 2.26e− 09 6.81e− 10 2.05e− 10
PSO 0.003 8.01e− 11 1.74e− 11 3.81e− 12
[23] 0.003 1.00e− 11 7.53e− 08 1.64e− 08
ABC 0.004 2.80e− 09 8.44e− 10 2.54e− 10
PSO 0.004 1.01e− 10 2.20e− 11 4.81e− 12
[23] 0.004 9.43e− 12 1.21e− 07 2.63e− 08

Table 6: Values of shape parameter values (ε) with time intervals at Δt� 0.00001 and N� 21.

T
Parameter (ε) values

ABC PSO
0.001 0.253516 0.253874
0.002 0.267221 0.251490
0.003 0.263530 0.253324
0.004 0.272190 0.253231

Table 7: Comparison of absolute errors of problem 2 with N� 11, Δt� 0.0001, and a� 1 at diferent T and iteration� 20.

X
ABC [23]

T 0.001 0.002 0.003 0.001 0.002 0.003
0.1 6.1583e− 11 1.7297e− 09 2.3772e− 09 2.684e− 10 4.563e− 09 1.798e− 08
0.2 1.4237e− 11 1.0123e− 09 1.4069e− 10 2.930e− 11 3.683e− 11 3.384e− 10
0.3 7.1848e− 12 4.8205e− 10 5.2623e− 11 3.477e− 11 2.240e− 11 1.830e− 11
0.4 6.4626e− 12 2.3021e− 10 1.9678e− 11 6.720e− 12 2.199e− 12 2.511e− 12
0.5 7.7925e− 12 1.1580e− 10 2.5276e− 12 4.654e− 12 3.591e− 12 2.555e− 12
0.6 1.1981e− 11 7.5733e− 11 2.4497e− 12 1.134e− 11 1.051e− 11 1.001e− 11
0.7 2.2177e− 11 8.3356e− 11 1.3942e− 12 1.974e− 12 2.707e− 12 3.189e− 12
0.8 5.0164e− 11 1.4345e− 10 6.0104e− 12 2.685e− 11 1.646e− 11 1.819e− 11
0.9 1.8208e− 10 1.6611e− 10 2.3064e− 10 2.758e− 11 4.511e− 10 1.749e− 09
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Numerical solution

Figure 3: Numerical simulation of problem 1 with N� 21, Δt� 0.0001, and ∆t≤ 0.001.
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0.003, and 0.004 and iteration� 71 is similar to results in the
literature [23]. Te analysis of the shape parameter values is
carried out in Table 6 which shows the PSO algorithm as the
best optimizer for error giving the value of shape parameter
as 0.251490. Table 7 presents the comparative analysis of
absolute errors of the problem by ABC with [23] at diferent
time levels which seems better than the available results.
Here, the optimised shape parameter value is 0.246477. Te
numerical solution is presented in Figure 3 for N� 21,
Δt� 0.0001 at various time intervals.

Using the current hybrid approach, two Fisher’s equa-
tions are solved numerically and the results are derived in
terms of various error norms, including absolute errors and
shape parameter values. Te comparison of the obtained
results is performed and presented to test the efcacy and
application of this novel approach.

5. Conclusion

In this paper, a novel hybrid technique is proposed for
computing the numerical solution of Fisher’s equation using
PSO and ABC optimization algorithms with RBF-PS. Using
PSO and ABC optimization algorithms, the concept of ideal
shape parameters is proposed because there is a discrepancy
between numerical stability and accuracy when using dif-
ferent radial basis functions. To show the accuracy and
efciency of the specifc method, two problems are solved
numerically. Based on their error norms and shape pa-
rameter values, the obtained results are compared with the
results available in the literature. Te obtained results are
more accurate in comparison to the results available in the
literature. Form the results, it can be concluded that PSO
gives more accurate results compared to the ABC algorithm
in terms of less errors. Furthermore, the present work can be
explored with various other optimization algorithms, such as
the genetic algorithm, the ant colony optimization algo-
rithm, the bacteria foraging optimization algorithm, and the
frefy algorithm. Tus, the work has scope to solve the
partial diferential equation existing in various other felds
with minimum errors.
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