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In this paper, a fractional model in the Caputo sense is used to characterize the dynamics of HPV with cervical cancer. Generalized
mean value theorem has been used to examine whether the infection model has a unique positive solution. The model has two
equilibrium points: the disease-free point and the endemic point. The examination of the system’s local and global stability is
provided in terms of the basic reproductive number (Z,,,). The global stability analysis has been carried out using an appropriate
Lyapunov function and the LaSalle invariant principle. The results demonstrate that in the infection model, if %, <1, then the
solution converges to the disease-free equilibrium, which is both locally and globally asymptotically stable. Whilst #,,,> 1, the
endemic equilibrium is considered to exist. Simulations are implemented via a finite difference method with Griinwald-Letnikov
discretization approach for Caputo derivative operator to define how changes in parameters impact the dynamic behavior of the

system using Matlab.

1. Introduction

The most prevalent sexually transmitted infectious agent in
both sexes worldwide is the human papillomavirus (HPV),
which gets its name from warts (papillomas) [1]. HPVs are
small DNA viruses that attack the cutaneous or mucosal
epithelium [2]. There are more than 170 different varieties of
HPV that have been found and categorized, and more than
40 of these viruses are the most widespread sexually
transmitted ailment in the world [3]. One of the main causes
of anal cancer, cervical cancer (CC), and other cancers is
HPYV. Each year, more than 400000 new cases are reported
worldwide, and more than 300 women’s lives were lost to
HPV-related causes in just 2018 [4]. Based on the severity of
clinical manifestations, genital HPV types are divided into
high-risk as subtypes (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58,
59, 68, 73, 82) associated with premalignant and malignant
cervical, penile, vulvar, vaginal, anal, head, and neck cancers;

and low-risk such as subtypes (6, 11, 42, 44, 51, 53, 83) that
cause warts or benign, highly proliferative lesions on the
genitals [5].

It has been determined that a high-risk HPV DNA se-
quence, notably HPV 16 and 18, which are present in around
70% of invasive cancers, is present in approximately 99.8% of
CC [6]. The World Health Organization (WHO) developed
a global strategy to hasten the elimination of CC by 2020 and
urged for its eradication as a public health problem in 2018
[7]. It classes as the fourth most frequent malignancy in
women, with an anticipated 604,000 new cases and 342,000
fatalities worldwide in 2020 [8].

Infectious disease modeling has drawn a lot of interest
recently in an effort to find cures for the diseases and ca-
lamities that have beset humanity [9]. A system of equations
with state variables and parameters is used in the mathe-
matical model to show the interconnectedness of theories
and observations and to investigate approximations and the
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effects of the parameters as well as anticipate the behavior of
the problem over a particular period of time [10] and provide
policymakers in public health with information on how to
carry out efficient infection control interventions [11]. The
fundamental quantities like as birth rates, transmission rates,
recovery rates, and mortality rates are expressed by pa-
rameters, which are constants incorporated into the equa-
tions [12]. Fractional-order differential equation models are
utilized as an alternative approach since integer-order dif-
ferential equations can’t adequately describe experimental
and field measurement data. More degrees of freedom and
the inclusion of memory effects are advantages of fractional-
order differential equation systems over conventional dif-
ferential equation systems. To put it another way, they offer
a useful tool for expressing memory and hereditary aspects
that were not inclosed in the classical integer-order system
[13]. A variety of fractional operator types are introduced to
obtain a deeper understanding of the behavior of the models.
These operators have various advantages and disadvantages
over each other, such as Riemann-Liouville, Caputo,
Caputo-Fabrizio, Hadamard, Katugampola, Atangana-
Baleanu, and many more [14]. Furthermore, unlike con-
ventional integer-order derivatives, fractional-order de-
rivatives such as the Caputo-Fabrizio derivative; have a non-
singular kernel property. This property makes it very evident
that when modeling realistically, the model’s future state
depends on both its current and past states [15]. Moreover,
the fractional-order explains some characteristics of the
dynamical system for the entire time and provides a com-
plete description of the system that covers the entire process
space, whereas the classical integer-order derivative ad-
dresses certain dynamic characteristics at a specific time [16].
The realization that the majority of challenging dynamical
systems are found to be non-singular is recently credited
with the enormous increase in the treatment of dynamical
systems with fractional-order derivatives. Additionally, they
have a lengthy memory, which allows them to provide
overall systems effectively [17]. The Mittag-Leffler function
and the exponential decay functions, respectively, are used as
the kernels of non-singular derivatives like the Atanga-
na-Beleanu and Caputo-Fabrizio fractional derivatives,
whilst the power function is used as the kernel of singular
derivatives like Caputo [18]. It’s hardly surprising that a lot
of models have been researched using fractional-order de-
rivatives given their enormous and wealthy properties. As an
illustration, Paul et al. [19] created and studied the SEIR
model using fractional-order Caputo derivatives, consid-
ering two time-lags: the time required to heal sick in-
dividuals and the temporary immune period. Jahanshahi
et al. [20] investigated a fractional-order SIRD model in
Caputo’s sense with time-dependent memory indexes to
include the multi-fractional properties of COVID-19.
Caputo fractional derivatives were used by Naik et al. [21] to
analyze a fractional-order model for the HIV epidemic’s
propagation with optimal control. Chu et al. [22] examined
the Holling type II form, a vector-host infectious illness
compartmental model with nonlinear saturated incidence
and therapy functions. Firstly, the model is formulated
mathematically as a nonlinear classical integer-order
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deferential system. To more accurately represent the dy-
namics of the disease, the subsequently extended the model
to the fractional order by utilizing the well-known Capu-
to-Fabrizio operator with an exponential decay kernel.
Atangana-Baleanu Caputo operator has been used in [9] to
examine the diabetes mellitus fractional-order model.
Qureshi [14] suggested using Caputo fractional-order op-
erator to create a novel epidemiological system for the
measles pandemic. In [23], a model of the dynamics of HIV
and malaria transmission with optimal control was created
using a Caputo fractional derivative. Owolabi and Edson
[24] used the Caputo operator and fixed point theory to
model and investigate tuberculosis (TB). Utilizing the
Caputo derivative, the dynamical analysis of a fractional-
order time-delay glucose-insulin model was carried out in
[25]. The researcher in [26] studied a variable-order frac-
tional mathematical model driven by Lévy noise describing
the model of the Omicron virus using the concept of Caputo
derivative. For additional information on several different
forms of fractional derivatives, see reference [27] as well as
the references cited therein.

Many researchers created mathematical models to
represent the ailment’s dynamics, which helped them to
propose ailment control strategies and characterize the
dynamics of co-infection with other infectious ailments. The
dynamics of HPV and CC (HPV-CC) with preventative
strategies including screening, vaccination, and re-
vaccination were described using an ordinary differential
equation model developed in [28]. Chakraborty et al. [29]
developed a mathematical model to analyze how vaccination
affects the dynamics of HPV infection prevention and
looked into the viability of a vaccination strategy, illustrating
analytically and numerically how vaccination can ensure
a predictable preventive policy against disease transmission
among sexually active individuals who are more likely to
develop CC from high-risk and low-high-risk papilloma-
virus strains, whilst the same mathematical model in the
fractional-order with Atangana-Baleanu derivatives was
studied, and numerical solutions were obtained using the
Adams-Bashforth-Moulton method by [30]. The most
crucial epidemiological aspects of HPV infection and related
cancers were incorporated into a two-sex deterministic
mathematical model that was developed by the researchers
in [31]. The model included catch-up vaccination for adults
and school-based vaccine administration for teenagers to
evaluate the population-level effects of HPV immunization
programs. The center manifold theorem, normal forms
theory, and the next-generation operator were all used to
thoroughly study the model’s dynamics. For several con-
ceivable scenarios, they created an optimal control problem
to identify the best HPV vaccination deployment method.
They proved that there are optimum control issue solutions
and used Pontryagin’s Maximum Principle to describe the
prerequisites for optimal control solutions. Akimenko and
Fajar studied the stability of the age-structured model of CC
cells and HPV dynamics [32]. In [33], the author has
researched how antiviral treatments affect the spread of
cervical cancer. The model includes two pharmacological
therapies. The function of the first one is to prevent new
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infections, while the second’s function is to prevent viral
replication. The numerical outcomes have demonstrated the
role of the provided medication in regulating HPV infection
and cancer cell growth rate. In [34], the mathematical model
for the dynamics of HPV transmission in-host in the
presence of an immune response represented by Cytotoxic
T-lymphocytes cells has been studied; the model presented
taking into account the effects of latent HPV infections, and
the dynamics of the model were successfully analyzed. A new
mathematical model of CC based on the age-structured of
cells at the tissue level has been put out by researchers in
[35]. Goshu and Alebachew [36] created a mathematical
model for the spread of CC transmission disease in the
presence of vaccination and therapy. Omame et al. [37]
created and presented a coinfection classical integer-order
model for syphilis and HPV with cost-effectiveness analysis
and optimal control. While the fractional-order in the
Caputo-Fabrizio sense of the coinfection model for HPV
and Syphilis is investigated using the nonsingular kernel
derivative [38]. HPV and Chlamydia trachomatis coin-
fection mathematical model with cost-effectiveness optimal
control analysis has been formulated and examined. It has
been investigated how HPV screening, Chlamydia tracho-
matis therapy, and both diseases’ preventive measures affect
the management of their coinfections, the consequent
prevention of malignancies, and pelvic inflammatory disease
[39], and Nwajeri et al. [40] researched the fractional-order
with Caputo derivatives of the codynamics model for HPV
and Chlamydia trachomatis, and created the numerical
simulations utilizing the fractional predictor-corrector
method. In [41] they developed an optimal control strat-
egy for the HPV-Herpes Simplex Virus type 2 codynamics
model that minimizes the cost of implementing controls
while also minimizing the number of infectious individuals
over the intervention interval. The Runge-Kutta forward-
backward sweep numerical approximation method was used
to implement the optimal control systems.

In light of these accomplishments, we are inspired to
investigate the HPV-CC model in this study with the Caputo
fractional-order operator, which is best appropriate for

P(g(x) = G(s) = j:oe*xg(x)dx -

Definition 2. MittagLeffler function is defined as

v
Ew(y)—;)r(wnﬂ), yeCR(w)>0.  (2)

Definition 3. Mittag-Leftler function of two parameters
(generalization of Mittag-Leffler function) is given by

v )
E,,(y)= Z(;ir(wn oy € C,R (w)>0. (3)

modeling biological and physical facts. The motivation to
continue our investigation with the Caputo derivative which
is a modification of the Riemann-Liouville definition is that
this type of fractional operator has advantages concerning
other present derivatives; the Caputo derivative of a constant
function yields zero, which is usual in mathematics. The
Caputo operator first solves an ordinary differential equa-
tion, then it takes a fractional integral to get the desired
fractional derivative order. More crucially, Caputo’s frac-
tional differential equation allows the use of local initial
conditions to be included in the derivation of the model, and
finally, the inclusion of the memory effect on the Caputo
derivative.

The purpose of this study is to investigate the dynamics
of the fractional-order of the HPV-CC model, using the
Caputo derivative. The organization of the paper is as fol-
lows: Some essential definitions and fractional calculus
properties are given in Section 2. The fractional HPV-CC
model is introduced in Section 3, along with proof of the
solutions’ existence and uniqueness. In Section 4, it is shown
that the suggested model is locally stable at the disease-free
and endemic equilibrium points. The global stability of the
suggested model at the disease-free and endemic equilib-
rium points is examined in Section 5. In Section 6, we
construct a finite difference scheme for the suggested model
and show that it maintains the boundedness and positivity of
the solutions to the investigated model; here, we will discuss
the asymptotic stability of this scheme. To demonstrate the
applicability and effectiveness of the finite difference
method, some numerical simulations for the suggested
model are shown in Section 7, and the final Section is de-
voted to the conclusion.

2. Preliminary Concepts

Some basic results pertaining to fractional calculus are
presented in this section.

Definition 1. Laplace transform of the function g(x) is
defined by the following improper integral,

lim J. e g(x)dx, seC,Re(s)>0. (1)
m—00 J
Lemma 4. For c € R and w,v>0, we acquire
. Sw—v
g(yV— Ew,v (Cyw)) = P (4)

Definition 5. Riemann-Liouville fractional integral of order
B>0,a>0 of a function g: R,;, — R is defined by

g (x) ==Lr (x-§PVg(®dé, x>a. (5)

r'(B)Ja



Definition 6. Caputo fractional derivative of order
B>0,a >0 fora function g (x) where g € C" ([a, 00), R) and
m = [B] is given by

§DLg (x) = I; D" g(x)

“Tm-p

Definition 7. Caputo fractional derivative on the half axis
R,, of order >0 of a function g(x) € C"([0,00),R) and
m = [f8] is defined as follows

0Drg (%) =1

When 0< <1, (7) takes the the following form

! J: (x-6Pg (5)de, x>0. (8)

cpp —
eI 0= p)

3. HPV-CC Model Formulation

This work examines a modified version of the classical
integer-order HPV-CC model that was previously examined
in [42]. The model’s classes have been defined as follows: The
total individual population who are sexually active at time ¢,
denoted by (N, (t)), is divided into five compartments:
susceptible individuals (S(#)), individuals exposed to HPV
(E, (1)), infectious individuals showing no symptoms of
HPV (AP (t)), infectious individuals showing symptoms of
HPV (I » (t)), and individuals infected with CC (C (¢)). Thus,
N, () =St +E, (&) + A, () +1,(t) + C(2).

Susceptible individuals acquire HPV infection with an
infection force of

1= %pqp(r3Ap + r4IP) )
P~ N >
p

where, 9%, represents the rate of HPV infection trans-
mission, q, represents effective contact rate, r;, and r,
represent the relative infectiousness of A, and I, re-
spectively with (r; <r,).

With probability g where 0<g <1, individuals in class
E,, develop to individuals in class I,,. individuals in class E,,

$(0) = Sy, E, (0) = E 5,

The reason for examining the fractional-order case is the
noteworthy uniqueness of these fractional-order systems
with hereditary qualities and non-local features (memory)

1 I (-

a

1 Y gy mpn)
5, =m0

A,(0)=A
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o ©)
Wg(f)df, m-1<f<m.

79 (8)dE,

x>0,m—-1<f<m. (7)

develop to individuals in class A, with probability (1 - q).
After experiencing an HPV symptom, individuals in class A
proceed to individuals in class C with a rate w;. Individuals
in class I, compartments may have CC with the rate of
development «;. Based on the formulations and pre-
sumptions mentioned above, the HPV-CC model takes the
following form (associated biological parameters of the
model are shown in Table 1) [42]:

[ dS(t)
7 =7 —(/\p +‘bl)S,

dEcgt(t) =ApS =+ wE,,

< dA;t(t) (0) = (1=, - (ws + )4, (10
dldpt(t) (t) = qnE, — (a3 + )l
% =a3l, + wyA, —uC,

With the following non-negative initial conditions,

IP(O) =1

20:C(0)=C,. (11)

0>

that have not been observed with the integer-order differ-

ential operators commonly found in biology. Additionally,
mistakes resulting from overlooked parameters can be
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TaBLE 1: Biological description of parameters used in HPV-CC model (10).

Parameter Description

s Recruitment rate of individuals

%, Transmission rate

qp Contact rate

T3 Relative infectiousness of asymptomatic individuals

Ty Relative infectiousness of symptomatic individuals

q Probability of exposed individuals developing into symptomatic individuals

w Progression rate from asymptomatic individuals to those having cervical cancer
3 individuals

" Progression rate from symptomatic individuals to those having cervical cancer
3 individuals

Y Natural mortality rate of individuals

n Mortality rate of the exposed individuals

minimized by modeling real-life processes with fractional-
order differential equations [21]. As a result, our suggested
fractional-order model for HPV-CC using the Caputo de-
rivatives is:

§DS(t) = (A, +p)S,

(DVE, (1) = 1,8 - (n+ wE,,
1 ngAP (t) =(1-qmE, - (w; +u)A, (12)
6DIT, (6) = gnE, - (s + W),

‘DPC(t) = a I, +wyA, - uC.

Subject to the initial conditions (11), where (€ 0,1],
N,(t) =St +E,(t) + A, (1) +1,(t) + C(t), and (S(t),E,
(t),AP (t),I‘D (t),C(1)) € R;O. If f=1 then Model (12) re-
duces to Model (10).

Biological parameters in Model (12) have been modified
to make sure that the left and right-hand sides of the model
have the same dimension (¢t7#) as follows (the schematic
diagram of Model (13) is shown in Figure 1):

DIS(t) = — (M + 4P)s,

GDIE, (t) = Ms—(n + WP)E,

1 eDEA, (1) = (1- 9’ E, - (uf + 4F)A, (13)
ngIp(t) = qnﬂEp —(ocg +‘uﬁ)1p
‘DPC (1) = oc/;Ip + wap ~ifc

here, )Lf) = (%,4, (r/;Ap + r’glp)/Np).

3.1. Existence and Uniqueness of Non-Negative Solutions.
Consider the following initial value problem of autonomous
nonlinear Caputo fractional-order derivative system

DPg(t) = f(g (1), B € (0,1),

combined with the initial condition

vVt >0, (14)

g(0) =g, >0, (15)

where g, € R" and the function f (g(¢)): R" — R",n>11is
called vector filed.

Theorem 8 (see [43]). Suppose that f(g(t)) attains the
following conditions:

(i) £(g(t)) and (0f/0g)(g(t)) are continuous,
(i) If (g <2+ jllg(®Il, 2 7 € (0, +00),

For almost each t € R and every g € R". Then, the so-
lution of (14) and (15) is not only existent but also unique on
[0, +00).

Lemma 9 (see [44]). (Genemlzzed mean value theorem)
Assume that g(t) and CDtg(t with 3 € (0, 1) are continuous
for each t € [0,b] and t € 0, (b] respectively, then, one has

8(t) =g(0)+—( Dig) (Pt y € [0,1],V1 € (0,b].

LB
(16)

Lemma 10 (see [45]). Assume that g(t) € C[0,b] and
CD g(t) € (0,b] with € (0,1).

(i) If ong(t)ZO,Vt € (0,b). then g(t) is increasing
vt € [0,b].

(i) If f)ng(t)So, Vt € (0,b). then g(t) is decreasing
vt € [0,b].

Theorem 11. For any initial condition fulfilling (15), System
(14) has a unique solution g(t) = [g, (t), g, (t),. ..,gn(t)]
on t >0. Additionally, g(t) is still in RY, and bounded.

Theorem 12. Model (13) has a unique solution on [0, +00)
for positive initial conditions (11) and this solution is still in
R3, for every t >0. Furthermore, N, (1)< P /ub.

Proof. Let us reformulate Model (13) in the form of Caputo
fractional derivative system of order (€ 0,1], as follows
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i
FiGURe 1: Schematic diagram of HPV-CC model (13).

S
‘DPg(t) = f(g(t) = ( +B,g(t) + ~ B28(0), vt 20, with g(0) = g, € RZ, (17)

where f: R> — R,

g(t)= (S(),E, (1), A, (1), 1,(¢),
cw)’, ¢ = (x8,0,0,0,0)7, PR

—u 0 00 0
0 -4 0 0 0
B,=| 0 (1-qp -d 0 0 |,
0 g 0 -& 0
0o o0 w4 (s
00 —%Pqprf ~Byqprs 0
00 %pqprf Qgpqprff 0
B.=[oo0 o 0 0
00 0 0 0
00 0 0 0

Here a = 1 + uf, d:w§+yﬁ, andé:a§+yﬁ.

It is clear that vector function g(t) satisfies the first
condition of Theorem 11. The second one needs to be
proven. From System (17), we get,|| ng gl <
IS+ (IBy Il + I(S/N )IIB,IDIg ()l Hence, the second con-
dition of Theorem 11 is proven. Next, we need to prove that
this solution is nonnegative. From (13), we have
§DIS(B)ls-o = 7P >0, §DJE, ()lg,o = A5S20 for all $>
0,1y, Ay By C20, §DFA, (D4 o= (1-@)PE, 20 for all
E,>0,6DIT, (0, o= qE,20 for all E,20, §DC
(Dlceo = a51, + whA, >0 for all I, A,>0.

We conclude that the solution of Model (13) will remain
in R, based on Lemmas 9 and 10.

Finally, we demonstrate that the solution is bounded.
Adding Model’s (13), results in

(DIN, () =7 = 4PN, (1), (19)

Taking Laplace transform in (19) into account, we get
ZIN, (O} (s) = N, (0) (P11 (P + uP)) + (nPIs (P+ uP)).

Consequently, we have N, (t) = (nﬁ/yﬁ) - ((ﬂﬁ/yﬁ) -
N, (0)Eg (—4tF).

It follows that as t — oo, 0<N,< (nﬂ/‘uﬁ), This
completes the proof. O

4. Local Stability

In this section, the local stability analysis of equilibrium
points will be covered.

Theorem 13. The equilibrium points of Model (13) are lo-
cally asymptotically stable if the following Matignon condition
is satisfied

larg(1; ()| >ﬁg, ji=12,...,5 (20)

where A (J) stands for the class of all eigenvalues (1) of the
Jacobian matrix (J) of Model (13).

4.1. Local Stability Analysis of Disease-Free Equilibrium Point.
Model's (13) equilibrium points are derived by setting
Model’s (13) right side to zero. The disease-free equilibrium
point is given by T = (S.E,, Ay, Iy, C.) = ((Fluf),
0,0,0,0).

The threshold value of Model (13) which is known as
a basic reproduction number (£,,) can be computed using
the next-generation matrix (G) indicated in Van den
Driessche and Watmough [46]. The transmission matrix
(F p) and transition matrix (Vp) of Model (13) are obtained
respectively as follows

B
ApS
F oo 0
p 0 ’
0
: 21
ak, (21)
) ~(1-q'E, +dA,
VP_ B .
—qn E, +el,
B

-3l - waP + yﬁC
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Then, we compute the derivative of matrices F,, and V'
with respect to infected classes at T",, and we get Jacobian of
F, and V, respectively so that

0 ‘%Pqpr3 %’Pqprf 0
0 0 0 0
F,= :
0 0 0 0
0 0 0 0
(22)
a 0 0 0
~(-q" d 0 0
v, = _
0 0 ¢ 0
0 -uf —df 4
—_‘uﬂ 0
-
INO) = 0 (1-g)
o aqf
L o 0

here, N, (t) = (S(), E,, (1), A, (£), I, (), C (1))
Then the characteristic equation of the linearized Model
(24) is

The aforementioned matrices are utilized to determine
R, for Model (13) using the spectral radius (p). That is,

Rp, = p(G) = p(F,V,1), and is given by
B B, B’
2, = 200" (A-arerand)
ade

Theorem 14. T, is locally asymptotically stable if R, <1
and unstable if R, > 1.

Proof. The linearization matrix of Model (13) around T;, is:

—Qgpqprl; ~Byqpty 0

.%pqpré; .%’pqpr{f 0
-d 0 o | (24)
0 —-e 0
wh o

The necessary and sufficient conditions on three-order
Routh-Hurwitz determinants such that the zeros of (26)
have negative real parts or (20) to be satisfied are 8,,0; >0

2 and 0,0, — 0;>0.

(Hﬁ + A) (’13 +0, A+ 0,A + 63) =0, (25) It is easy to show that
whereél—a+d+e,62—ae+ed+ad %Pqpnﬁ((l q)r3 O, =a+d+e>0, (27)
+qr4) and 0; = ade (1 - #,,).

= uf .
It is clear that A, = —uP are negative. The three o, = étdé(l % ) S0if R <1, (28)
remaining eigenvalues are the roots of the characteristic pe pe
equation
and
A +0,0% + 0,0 +0;, =0. (26)
S B ,a,1
3,0, - 0; = éd(a +d+é)<1 + f;‘l,’;” ((1 —qrhe’ + grfa ))
¢ (29)
+ a(dz ra+d) @+ é))(l - %) S0if R, <1,

All stability conditions have been met, then, T', is locally
asymptotically stable if #,, <1 and unstable if #,,>1. O



4.2. Local Stability Analysis of Endemic Equilibrium Point.
The endemic equilibrium point of Model (13) denoted by

T}, = (8, E}, A}, I}, C*), where §* = (7 1uf) (1 R,,), E =
(P18) (R, - DIR,), Ay = (1-q) (nPnPlad) (R, - 1)/
R,), T = q(ifnflae) (R, - DIR,), C* = (nfnflufade)
((1- @) + qdod) (R, - 1)IR,).

Theorem 15. T} is locally asymptotically stable if R, >1
and unstable if R, <1.

Proof. The linearization matrix of Model (13) around T}*,, is
IR R LR YR M
35 -3 -a - By -3
0 (1-q4f -d 0o 0o | (30
o g o

Lo o W o 4
=W ((-R,2+ Ry~ VIR, Fs = (R, - 1)/
W (R, - D) UR,), T =

3Ny )l =

here J7
* _ B
‘%po)r 33 - (f%’pqp%

~(Byayth i (R - D)WUR,), and i = (A,
-1’IR,,).
1
T1T:,T3-T1-TT3=——
%,

e |l @rd o @0,

dey (a+d+e)<
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Matrix (30) eigenvalues yield the following fifth-degree
polynomial equation

A+ YN+ TN+ TN+ T A+ T,)=0  (31)
=a+d+ée+yfR,, T,=ad+ae+de+ (a+d
+ é)yﬁ%pﬂ - (%pqpnﬂ/%pn) ((1- q)r’;Z + qrf:), g
E+d)R,) W+ 2denf (R, - DIR,) — (B,a,nfufl
3{3 )((1—q)r3+qr4) and I O—ade((% 1)/@ )
The following eigenvalue is easily obtamed —y The

remaining eigenvalues are the roots of the characteristic
equation

where T

L= (dé+a

TN+ TN+ T A+T, =0. (32)

The necessary and sufficient conditions on fourth-order
Routh-Hurwitz determinants for the zeros of (32) to have
negative real parts or (20) to be fulfilled are 7,7 ,,75>0
and 7,9, -T2 -T,T3>0.

It is simple to establish that
T 1T ¢>0if R, > 1.

Finally, we show that 7,9, 5 - 71 - 7,93 >0.

J5>0, and

2 (@Pn—1>
Y —H)i
pe 3% pe %,

—H)— 'dé(%Po—l>]

+adeuP (d + é)ﬁpc[ (a+d+o)%,, - z#ﬁ(%o - 1)]

rad+e)@ard+ é),f%po(a(d FOR,, - H)

F(d+ e)yﬁz%o[(}le%;o

+d;” [a;ﬁ%“ +4HR, +H<% 1)]

pe

a(,. 1))

(33)

+de(a+d +é)y/3[(aél vae+de)R,, - H]

+(a+d+ é)zyﬁ2

2.2 J; (‘%Po_l>
+2d e yﬁ[(qﬁ+w§+(x3)9?po+2yﬁ]7

.| (@ + &), - H]

R

Po
T 2aded (o + éi+é)(él+é)<9?P - 1) vde(ard+ e R,
R -1 2
o+ P ( pe ) ooy pH :
H(Zde+y H>T+(a+d+e)y3{f >0,if #,,> 1,

Ppe Ppe
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where H = %pqpnﬁ((l - q)rf + qrfz). T}, has just been
demonstrated to be locally asymptotically stable if &#,,>1
and unstable if £, <1. O

5. Global Stability

In this section, we examine the global stability for model
(13) by building appropriate Lyapunov functions. In order

*

to show global stability, we take the function 0<Y (z) =
z—-1-1n(z),Vz >0 into consideration.

Lemma 16 (see [47]). Assume g(t) € R, be a continuous
function. Then, for any time t >0

g DY (g (1) < (1 ——) cDPg(t), g" € Ryp, VB € (0,1). (34)

g
g(t)

Theorem 17. T, is globally asymptotically stable whenever

Proof. Suppose the following Lyapunov function:

B a0 b
) )+Ep(t)+<#;3y+l>Ap(t)
a

(35)

Ry, <1
. . S
V(1) =V, (N, (1) = SOY( (ot)
bp
+<M+ 1>Ip(t) +C().
ae
Clearly, V5, (£)>0,YS(t), E, (), A, (£),1,(£),C(£) >0

and V; (t)IT; =0.

SDIV (8) = S.oDEY (S(1)) + oDIE,

a

Calculate ng V; (t) along the solution of model (13) as

Bar .
(t)+<%+1 cDPA, (1)

RB,q,r i
+<7"qu2 Ll 1>3D§1P(t) +<pfe()

S.
< (1 —%>(ﬂﬁ L+ #)s o)

+ M8 -(n +i)E, (1)

ad

B, B
+ <M+ 1)((1 - B, (6) —(uh + )4, (1)

B B
(2 Yt -y 0)

+ a1, (D) + wWhA, (D) - WP C(h)

(s -s.)

- \" ) B
Y 0] + APSO

_ Byaph
a

(A, (1) + 41, (1))
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Mﬂ<ggpq 1 (%ﬂ) —1>Ep(t)

—WP(A,(1)+1,()+C(1))

YOECAR
(e

S(t)

N, () S
_ BB pr/ e
.“AP< a ‘uﬁ)

Therefore, 9?[, <1 guarantees for all S(1),
E, (1), A, (1), I, (t),C(t) >0 that ‘D V () <0,Vt>0.

Moreover 1t is easy to conﬁrm that CDﬁ V €3]] T, = =0.
Hence, T is the largest compact 1nvar1ant subset of

P
H = {N (t) € R>0' ODﬂV (t) = } We conclude that TP is
globally asymptotically stable provided #,, <1 as a result of

LaSalle’s invariance principle [48]. O

Vo0 =V, (N (0) =

4
2({1 + yﬁ)S*

+<%po - 1>Ep(t) -(A, () +1,(t)+ C(t))>

(S(t) -S"+E,(t) - E;)2 + s*r(s(t))

(36)

Theorem 18. T, is globally asymptotically stable when
Rp,> 1.

Proof. Let us construct the following Lyapunov function:

S*

(1) w A1)
+EPY< £ >+APY< P > (37)

+ QY(I" Et)> + Y(C(f) .
I, C

Obviously, V* (t) >0,VYS(t), E, (1), A, (1), I, (1),C(t)>0
and V* (t)|T =0. Evaluate CD/3 V* (1) along the trajectories
of model (13) yields

Df
V (t)<(a+‘uﬁ)8

(S -S"+E,(t) -

)ng(S(t) +E, (b))

*

+< S(*))CDpS(t)+< f( )) DJE, (t)

(38)

*

1 4 ‘DPA 1 L D1
< _A ))o t p(t)+< _W) tP(t)

_C e
(- Yt
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At T}, we possess = uPS* +a Ej,aE; = A;ﬁS*, dA; =
(1- Q)ﬂﬁE;, andel}, = qqﬁE;, where A;ﬁ = (% (rég A+
rAI5)/(S* + Ej + A% + I+ C*)). Then

pdp

. B *\2
Py N o ay o2 gS®-8)Y a4 R
ODpr(t)S (‘.1"'”)5* (S(t) S ) I S(t) (d+#)s*\EP(t) EP)

. sy S'E, E,0\ . WS g
+aE (t)<3_ST_WP(t)_T; —aEP(t)+aEP 5 +/\pS

* *\2 * *
XS B olBr0-E) +&A*<3—A7PEP(t3——AP(t)— b >

- » :
E, (1) E, T A, E,0

. E; LE, (t) I,(t E}
+dA;( 2 —2)+él;<3—&(*—¢——}’>
E,® I,0E, I, E,(0)

E! AC(t) A1) C*
oI p__ I D A
+elp(m 2) +w§AP(t)<3 ) * >

AT C(b)
rc *
+aé‘jp(t)<3_1’7(t)_11’7(t)_ C >

P
Ip(t)c* I; C(t)

2 \2
4 wf(AP ® :AP) N a/;(lp(t): Ip)

4p I

sSW-s) @

NORRCET)
. RNON S*E; 7Ep(t) " 7S*Ep(t)
+aEP(t)<3 5 75(015?(0 —E; +)LP S()| 1 S(t)E;

s (1- S5 sy (3 2550 _l0_E, (39)
A,(DE, A, E,(®)

LE, () I,(t) E; E,
+é1;<37&*7ﬁ7 p >+a15;( L 71)
I,(0E, I, E,(® E, ()

(t)<3_M_AP7(t)_ C* )

ay N2 *\2
—ﬁ(S(t)—S ) —u S*<Ep(t)_EP)

tc* A; C(t)

Csfas) L\ Sw-sY d o
< "((awf's S5 a0 )

vapr (2 SE® _SOE, \ (3 A0 40 E
S(E, S'E,(t) LOE, A7 E,

P P P

LE,(t) I,(t) E; AC(t) A, (t) C*
8ol [ T i A AT _ A At
+eIP<3 Sk > +uhA, (t)<3 AGC A C(t)>
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which according to the arithmetic mean-geometric mean
inequality, is less than or equal to zero. Thus, %, > 1 ensures
for all S(t), E, (1), A, (1), I, (t),C(t) >0 that

DIV (£ <0, VE20. (40)
Further, it is clear that CDﬁ V* (t)] T = = 0. Therefore, Tf is
the largest compact invariant ’ subset of 1T,

{N (t) € IR>0' gDﬁV* (t) = O}. According to LaSalle’s in-
variance principle [48], T} is globally asymptotically stable
so long as &> 1. O

6. Construction of Finite Difference Scheme

To acquire numerical solutions for HPV-CC fractional-
order model (13), we create the finite difference scheme
in this section. To estimate the fractional derivative, one can
utilize Griinwald-Letnikov approach. The suggested finite
difference scheme maintains the positivity and stability of
the equilibrium points of the solution corresponding to the
continuous epidemiological models of fractional order.

Let t € [0, T], a finite interval. The usual notation t, =
kb, k=0,1,...,N and u(t,)=u, are used, where
0, = (T/N) and u; denotes the numerical solution of the
analytical solution of u(t) at the grid points t;.

Griinwald-Letnikov discretization approach based on
Caputo derivative is defined as

( 1 k+1 ®
_l; Sk+l - Z d] Sk+1*j 191];-180
o, j=1
1 k+1 ®
E EPk+1 Zd EPk+1 -j SB
t j=1
1 k+1 ®
) y App ~ d] Api j
t j=1
1 k+1 ®
y Tppn Zdj IPk+1—j_9ﬁ I
t j=1
1 k+1 5
B Ck+1 Zd Ck+1 -j 9€+1C0
L 8t j=1
here /V;k = (%,4, (r3A + r4 JIN, ), N, =S +E, +

APk+IPk+Ck

) “glpk 1+w§APk+1 -
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1 k+1 ®
§Dfu = F <“k+1 - d,'ﬁ Uper1-j — Kutho | VB € (0,1),

t j=1
(41)

@=«nf(§>ﬁ“=ﬁ and % = (jFT

(1-B)), 9 = (T (1 - p)),

where
j=12,...,k+1

Lemma 19 (see [49]). Suppose that € (0, 1), therefore the
coefficients d(-ﬂ) and Sﬂ fulfil for j>1 the properties

0<d](f)1<d .<de)=[3<1,
0<9ﬁ <9ﬁ< <9ﬂ
s Fﬂ—m (42)
B
YdlP =1
j=1

The finite difference scheme of Model (13) using
Griinwald-Letnikov discretization approach (41) is as
follows

~ (M, +#)S1r

k+1 P0> /\ Sk+1 Pk r

- 9‘1i+1AP0> ={- q)nﬁEPkH B dAPk+1’ (43)

— B ;
k+1 P0> =4an Epk+1 N eIPk+1’

/"ﬂckﬂ’



Discrete Dynamics in Nature and Society

Because each of these equations is linear in

Seer Ep, s Ap,, 0 1p,,» and Cpyy, hence through some cal-

culations the following explicit expressions can be obtained

1 k+1 ®
I =— a1
Pk+1 1+6/i3é [; J T Pk+1-j

k+1

1
Ck+1 [
1+ 8

6.1. Non-Negativity and Boundedness of Finite Difference
Scheme. This subsection examines a few characteristics of
proposed Scheme (44). Keeping in mind that system (13)
have unique non-negative solutions and also all the pa-
rameters are positive.

Zd Ck+1 -j ‘9€+1C0+8 “3 Pk+ 1+(wa§A

13

1 k+1 ® ]
Sk = m |:Zd Ske1-j t+ 9’;;150 + 8?71‘; >
B
Pkl 1+6’3 [Z Eppi k+1Epo+‘S Ao Skean |
1 ® 8 B
App = +o0d [Z di" Appi it ‘9£+1Apo +0 (L= Epp, |, (44)

Sﬁkﬂlpo * 5t ar Pk+1:|’

Pk+1 |

Theorem 20 (Non-negativity). Assume that in (44)

$=0,E, >0,A, >0,1, >0, and Cy>0, then >0,
0 Po Po ! .

E, >0,A, >0,1, >0, and C;>0 is satisfied for all

k=12,...,N.

Proof. The induction will be used to prove this theorem. For
k =0 in Scheme (44), we get

S, = m[dfﬁ’so+9§‘so+8§nﬁ]>o
Ep =+ :85& dPE, +%E, + af)tﬁosl] >0
14, = 1+6ﬁd[d(ﬁ)A +9/5A +6f(1—q)11ﬁEp1]>0, (45)
I’”_1+55 [d‘ﬁl + 91, + & qn’E ] >0,

1
1+ 00

1=

[ l(ﬁ)CO + 9?C0 + 6foc§1pl + 6fw§Am] >0
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We presume that in system (44), S§;>0,E,
>0,Apk>0,ka>0, and C, >0Vk<k+ 1. So, for k+1

1 k+1 ® 1
sklz—{ APse  + 9 S, + 8 | >0,
T (M + i) le PR

-

1 k+1 @
9P B8
[E d; Epk+17j+ Epo+ 8 A, Sk [ >0,

j25 1 +8fi1 = k+17po ]
1 k+1 @ s s
Apn =57 | 24 A+ oAy, + 8 (1 -r'E,, |>0, (46)
t? Lj=1

1 k+1 ®

_ B B

Lo = 5. > di Lo+ 9£+11P0 + 0 qn Epyy | >0,
1+ 6te =1

U RS s $
Ciiy = T o' |:Z d;"Cppyj + 9£+1C0 + 6{5043ka+1 + (Sfu%Akarl > 0.
1+ t‘bl j=1
O
Theorem 21 (boundedness). Assume that in Scheme (44)
So+E, +A, +1, +Cy=1. Then there exists a constant
+((k+1)/T(1-p) + 6
k1, = EHEEDTAZPIEOT 612, N e 0.1, (47)
1+6u
such that S, Epy s Ap, 5 1o, Crn <M (K + 1, B). here N, =S, +E,  +A,, +Ip, +C, and

NPk+1—j = Ske1j + EPk+1—j + APkJrl—j + IPk+1—j + Crprje

Applying the induction principle and utilizing Lemma
(19), it follows that for k =0

Proof. When each equation in Scheme (44) is multiplied by
its denominator, the result is

k+1 7(B)
Zj:ldj NPk+1—j+9£+1

1+8f;4/5

+5€7T/3

>

N (48)

Pk+1

dfﬁ) +9f+8f7rﬁ
S\ +E, +A, +1, +C, —W

(49)
B+ UT(1-p)+ A

1+ 00

= M(1,p).

For k =1, we have
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dl(ﬁ)(s1 +E, +A, +1, +C1) +d2(ﬁ) +9§+8§nﬁ

SZ+EP2+Apz+Ipz+C2: 1+6fyﬁ

. dPM(1,p) +dP + & + 6P’
1+(Sfy/3

M(LA)(dP +dP) + (T (1 - B)) +
<
1+8fyﬁ

(50)

 MApTE df +(ur@-p) + o
1+ (55(,45

CM(LA) + (/T (1 -p) + &’
- 1+8f‘uﬂ

B+QIr(1-p)+ &
) 1+ 00 “Hep

For k = 2, we have

dfﬁ)Np2+d§ﬁ)Npl+d§5) +9§+8€nﬁ

S3+Ep3+Ap3+Ip3+C3= 1+8’tgyﬁ

_ APM@p) +dPMLB) +df + 9+ o
1+ 85[,/3

M2 B)(dP +d? +dP) + (T (1 - p)) + o
<
1+ 8’?/4’3

(51)
M@AYE 4P+ (Ur (1 - p) + &
1+ SEyﬂ

M@ +UIT1-p)+
1+8f[4ﬁ

B B
. B+ (3/T(1 ﬂ))+5t”ﬁ::M(3,l3),
1+6f/4ﬁ

here, N, =8 +E, +A,,+I,,+C, and N, =§+ Now, we assume that for k=3,...,N -1, is
E, +A, +1, +C,.

M (k, B) + (1/T (1 - B)) + 8¢

S, +E +A +1 +Cp <
. ol 1+8f‘uﬁ

Pk+1 Pk+1 Pk+1

=M(k+ 1, 5). (52)

Thus for k = N, we get
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TABLE 2: Parameter values for the numerical simulations.
Parameter Value when %, <1 Value when %, >1 Source

b 16360000 16360000 Assumed
7 0.6 0.6 Assumed
n 0.21 0.21 Assumed

a, 0.011 0.011 [42]

w, 0.039 0.039 [42]
Ty 0.0531 0.590 Assumed
13 0.0376 0.376 Assumed
q 0.091 0.967 Assumed
%, 0.41 5.0 Assumed
qp Varied Varied Assumed
N+l () 8 In this section, we’ll simulate the solution to HPV-CC
Ny, = Yo dj N PN+1—£ ";‘91{7“ * afﬂﬁ fractional-order Model (13) using suggested Scheme (44).
1+8u The presented model’s parameter values are either extrap-
olated from earlier model studies or based on assumptions.
M (N, B) Z;":’l d](.ﬁ) +(1/T(1-P) + 657# Table 2 lists the values of these parameters for the two

< &P scenarios #,,<1 and &, > 1.
L+0p Proposed Scheme (44) is implemented with a time step
8 p size §, = 0.02, and figures of the numerical solutions are
< B+(N+1IT(1-p)+8m = M(N +1,p) presented using varied initial conditions that satisfy Theo-
1+ 5{5 ‘u/j T rem 22 and various values of q, and derivative order
(53) ﬁ(e"l%l]' f all sol d th lib

e convergence of all solutions toward the equilibrium
here, Ny =Sna + Epyy + Apy g+ Ipyy + e and point T is dep;gcted in Figures 2-4 across a range c()lf different
NPN+1—j = Snei-j t EPN+1—j + APN+1—j + IPN+1—j + Cne-je values for (€ 0,1] and qp- This result was attained when
Thus, Skt Eppyp Aprar Iy Crar < M (k + 1, B), R ,.< 1. The infected classes converge to zero over time
fork=0,1,...,N. O while the susceptible compartment (S(t)) rises initially and

6.2. Stability of Finite Difference Scheme. This subsection
investigates the stability of Scheme (44).

Definition 22. Scheme (44) is said to be asymptotically
stable, if there exist constants L, L,,L;,L,,andL; as
B— 17, such that §,,<L,E, <L, A, <L;I, <
L,,and Cy,, <L;, Leads for any arbitrary initial values
0<SO+EPO+APO+IPO+C0 =1l,and k=0,1,...,N.

Theorem 23. Assume that the supposition of Theorems (20)
and (21) are provided. Hence, Scheme (44) is asymptotically
stable.

Proof. According to Theorem (21), we deduce that Scheme
(44) is asymptotically stable. O

7. Numerical Simulations

There are no general techniques for solving systems of
fractional differential equations analytically, similar to the
classical theory of differential equations. The fractional case
is much more challenging to treat even approximately [50].
There are various techniques based on a continuous ex-
pansion formula for the fractional derivative that, in some
circumstances, can be used to approximately solve the
original fractional-order model [51].

then converges to S, = (7/uP). T}, is thereby shown to be
globally asymptotically stable. When #,,,> 1, all solutions
converge toward the equilibrium point T which is globally
asymptotically stable. This result is shown in Figures 5-7 for
a variety of (€ 0,1] and q,, values indicating that upon the
introduction of HPV, the susceptible compartment (S) over
time (t) gradually reduces and stays constant and can’t be
treated. While the exposed compartment (E,), the
asymptomatic compartment (A,), the infected compart-
ment (I p), and the compartment affected by cervical cancer
(C) gradually increase with time (t).

Consider HPV-CC fractional-order Model (13) with
initial condition (5(0), EP(O),AP(O),IP (0),C(0)) =
(0.5425,0.2790,0.1600,0.0147,0.0038) and the values of
parameters when %, <1 given in Table 2 with
B =10.96,q, = 0.68. In this scenario, #,, =0.0051<1 and
hence, Model (13) has one disease-free equilibrium T°) =
(1.3747 x 107,0,0,0,0) and it is globally asymptotically
stable, which means that the disease disappears. This result is
illustrated in Figure 3. Similarly to the second scenario when
R,.>1 with f=0.96,9, = 6.8. We get R, =8.6474> 1.
Consequently, Model (13) has a unique endemic equilibrium
T}, =(1.5897 x 10°,8.9063 x 10°,1.0502 x 10°,2.9311 x 10,

7.0673 x 10*). Additionally, it is globally asymptotically
stable. This result is sketched in Figure 6 and illustrates the
continued prevalence of the disease among the population.
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FIGURE 2: Dynamics of model (13) when &%, < 1 applying scheme (44) at a time step size &, = 0.02 with five different initial conditions that
satisfy Theorem 23 as well as five different values of 3(€ 0,1], and g, = 0.68. All other parameters are as in Table 2 when %, <1. (a)
Dynamics of susceptible individuals. (b) Dynamics of individuals exposed to HPV. (c) Dynamics of individuals asymptomatic with HPV. (d)
Dynamics of individuals infected with HPV. (e) Dynamics of individuals having CC.
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FIGURE 3: Dynamics of model (13) when &, =0.0051<1 applying scheme (44) at a time step size §, = 0.02 with initial condition
(8(0), E, (0), A, (0),1,(0),C(0)) = (0.5425,0.2790, 0.1600, 0.0147,0.0038) and f3 = 0.96, q, = 0.68. All other parameters are as in Table 2
when Rp, <L (a) Dynamics of susceptible individuals. (b) Dynamics of individuals exposed to HPV. (c) Dynamics of individuals
asymptomatic with HPV. (d) Dynamics of individuals infected with HPV. (e) Dynamics of individuals having CC.
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= (0.5425,0.2790, 0.1600, 0.0147, 0.0038). q, = 0.75 and all other parameters are as in Table 2 when %po < 1. (a) Dynamics of susceptible
individuals. (b) Dynamics of individuals exposed to HPV. (c) Dynamics of individuals asymptomatic with HPV. (d) Dynamics of individuals
infected with HPV. (e) Dynamics of individuals having CC.
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F1GURE 5: Dynamics of model (13) when &%, > 1 applying scheme (44) at a time step size &, = 0.02 with five different initial conditions that
satisfy Theorem 23 as well as five different values of (€ 0,1], and g, = 6.8. All other parameters are as in Table 2 when %, >1.
(a) Dynamics of susceptible individuals. (b) Dynamics of individuals exposed to HPV. (c) Dynamics of individuals asymptomatic with HPV.

(d) Dynamics of individuals infected with HPV. (e) Dynamics of individuals having CC.

Figures 4 and 7 provide the numerical results for the
distinction between fractional and integer orders. Figures 4
and 7 demonstrate that, in comparison to classical integer-
order models, differential equations with fractional-order
derivatives have wealthy dynamics and more accurately
depict biological systems.

Drawing from the preceding discussion and the nu-
merical results presented in Figures 2-7, we deduce that f3
may be influenced by an individual’s prior experience with
or understanding of the illness. Consequently, the numerical
results validate that differential equations with fractional-

order derivatives explain biological systems more accurately
than classical integer-order models.

Depending on the values of the parameters mentioned in
Table 2, Tables 3 and 4 show how g, has an impact on
decreasing and increasing & ,, respectively. The prevalence
of HPV-CC is influenced by the level of interpersonal
contact within a community (q,,).

By analyzing these variations, we may predict more
about how fractional orders affect the model’s dynamics
and how crucial the parameter g, is in influencing pop-
ulation dynamics. Moreover, Figures 2-7 present results
that provide a basis for additional investigation and re-
finement of the model, which could result in the devel-

opment of more potent disease control and prevention

techniques.
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FIGURE 7: Numerical results showing a comparison between integer-order model (10) and fractional-order model (13) with 8 = 0.99 and
0.89 applying scheme (44) at a time step size J, =0.02 with initial condition (S(O),EP (O),AP (0),IP (0),C(0)) =
(0.5425,0.2790,0.1600, 0.0147,0.0038). q,, = 7.5 and all other parameters are as in Table 2 when %, > 1. (a) Dynamics of susceptible

individuals. (b) Dynamics of individuals exposed to HPV. (c) Dynamics of individuals asymptomatic with HPV. (d) Dynamics of individuals
infected with HPV. (e) Dynamics of individuals having CC.

TasLe 3: Impact of changing g, on &, in the case of disease-free.

ﬂ Ty T3 9 '%p qp %po
0.75 0.0129

0.70 0.0121

0.70 0.0531 0.0376 0.091 0.41 0.65 0.0112
0.60 0.0103

0.55 0.0095

TasLE 4: Impact of changing q, on £, in the case of epidemic.

B Ty 3 q ez p qdp X po
7.5 11.2018
7.0 10.4550
0.70 0.590 0.376 0.967 5.0 6.5 9.7083
6.0 8.9615
5.5 8.2147

8. Conclusion and Future Directions stability was provided in terms of the basic reproductive

number (Z,,). Using LaSalle invariant principle and the
In this article, we proposed a fractional-order HPV with  appropriate Lyapunov function, the analysis of global sta-
cervical cancer (HPV-CC) model with Caputo derivative of  bility had been conducted. The results demonstrated that in
order (€ 0, 1]. This dynamical model was more compatible  the infection model, if &, < 1, then the solution converged
for describing biological phenomena with memory than the  to T°, which was both locally and globally asymptotically
integer-order model. Some mathematical results related to  stable. Whilst %, > 1, T7, was considered to exist. To de-
the model are presented. The local stability of the model for ~ termine how changes in parameters affect the dynamic
Ry, <1 and X, >1 was given. The model had two equi-  behavior of the proposed system, simulations were con-
librium points: the disease-free point (T*)) and the endemic structed using a finite difference scheme with Griinwald-
point (T7). The examination of the system’s local and global ~ Letnikov discretization approach for Caputo derivative
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operator. The outcomes acquired demonstrated that the
finite difference method is a precise and effectual technique
to obtain the numerical solution of the suggested nonlinear
fractional-order HPV-CC model.

In future work, the presented model after being modi-
fied, will be integrated with HIV-AIDS; employing nonlocal
and nonsingular kernel operators such such Caputo-
Fabrizio. The generalized Adams-Bashforth Moulton
method will be applied for the numerical simulations.
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