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We focus on fault-tolerant consensus for heterogeneous dynamics systems with static and dynamic leaders under input saturation
in this article. We apply theory of fnite-time stability to multiagent system cooperative control. Also, we use integral sliding mode
to overcome disturbance. Te primary goal is a set of second-order linear and second-order nonlinear agents moving along the
leader’s trajectory. We use topology graph to describe communication between multiple agents. By using integral sliding mode
control way, corresponding controller is introduced to make system stable. Finally, correctness of experiment was confrmed by
MATLAB numerical simulation.

1. Introduction

Recently, we have witnessed great progress in the devel-
opment of control systems. Due to characteristics of co-
operative control of multiagent systems [1–3], such as its
increasingly wide application and high execution efciency,
it is receiving increased attention from researchers. Multi-
agent systems have a wide range of applications, such as
formation of unmanned aerial vehicles, encirclement of
unmanned boats at sea, and containment control consisting
of leaders who can detect obstacles and followers who cannot
detect danger. Consensus [4–8] is the most fundamental
research question of cooperative control, which represents
that states of all agents reach the same state under the action
of the consensus control protocol, i.e., their state errors
converge to zero. Consensus issues can be categorized into
leaderless consensus [9–11] and leader-following consensus
[12–14] depending on the criterion of the number of leaders.

Depending on whether the leader will cause movement,
it can be divided into static leader [15] and dynamic leader
[16]. Te simple understanding is that the dynamic leader
has a certain speed, and the state of leader will cause certain
changes. Also, the static leader has no speed and will not
move. In [15], the authors designed new control protocols

and introduced a nonlinear feedback control to solve fnite-
time containment control with dynamic and static leaders.
Multiagent system with model uncertainties was introduced
in [16] to address chattering reduction containment control
problem.

Convergence time is a key research point in the study of
consensus, and based on convergence time of consensus of
multiagent systems, consensus can be categorized into as-
ymptotic time consensus [17, 18], fnite-time consensus
[19, 20], and fxed-time consensus [21, 22]. As the name
suggests, asymptotic time consensus is the consensus that
converges at an exponential rate over an infnite amount of
time. Regarding asymptotic time consensus, fnite-time
consensus is proposed because convergence time of as-
ymptotic time consensus is not well calculated. In [17], high-
order multiagent system with input quantization, actuator
faults, unknown nonlinear functions, and directed com-
munication topology were studied, and asymptotic con-
sensus was considered. Leader-following bipartite consensus
of Euler–Lagrange systems was investigated in [18] under
system uncertain and deception attacks. Finite-time con-
sensus can calculate its corresponding convergence time
compared to asymptotic time consensus. Convergence time
of fnite-time consensus is associated with primary value of
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state. Controller was designed by considering relative po-
sition, and velocity measurements were investigated to deal
with fnite-time input saturation consensus in work of [19].
Authors considered fnite-time output consensus in [20] of
dynamics system with directed network and disturbance.
According to this limitation, fxed-time consensus is pro-
posed and convergence time of fxed-time consensus is
independent on primary value. Because of the advantage of
fxed-time consensus, the study of fxed-time consensus is
more interested. Fixed-time consensus of heterogeneous
dynamics systems consisting of frst- and second-order
systems was regarded in [21]. Fixed-time consensus of
uncertain system was focused on with state constraints and
input delay in [22].

In research of dynamics system, a healthy actuator and
controller are generally studied. However, in real life, due
to the needs of industrial engineering and the age of the
actuator, some damage will inevitably occur.Terefore, it is
necessary to study the situation of how to maintain stability
of system when actuator fails [23–25]. In [23], under the
condition of considering actuator fails, authors in-
vestigated fuzzy fxed-time consensus of nonlinear dy-
namics system with adding-a-power-integrator method. In
[24], fnite-time consensus control of nonlinear discrete-
time system with Markov jump parameters and actuator
faults was focused on. In [25], leader-following consensus
of nonlinear dynamic system under actuator faults was
taken into account, and communication graph is directed
and connected.

Teoretically, any system can be stabilized if the control
is only large enough, but this is not realistic. Tis is because
we study the input saturation of the system [26–28]. In [26],
the authors demonstrate in detail that bipartite consensus of
linear dynamics system and input control was regarded as
saturation. Time-varying formation control of linear dy-
namics system could be achieved by authors in [27], and
input saturation was considered. In the work of [28],
consensus control of mixed second-order linear and non-
linear system was studied.

For a general system, each agent has the same model
and application environment. With the wide application of
dynamics systems, in many cases, the agents will have
diferent models or have diferent application environ-
ments. Terefore, it is important to study heterogeneous
systems [29–32]. In [29], the authors explored bipartite
output formation containment of heterogeneous linear
dynamics system. In [30], bipartite output consensus of
heterogeneous linear system was introduced, and fnite-
and fxed-time could be reached. Finite-time heteroge-
neous consensus was studied in [31] with integral sliding
mode control and pinning control methods. In [32], the
author studied tracking consensus for heterogeneous
group system based on switching topology and input
time delay.

Tus, based on some of the above articles, we study fxed-
time consensus control of heterogeneous nonlinear dy-
namics systems according to input saturation and actuator
fault. Main contributions are as follows:

(1) Compared to each agent having the same dynamic,
we are studying heterogeneous multiagent systems,
which mean that each agent has its own state
equation, but they can still satisfy consensus through
controller. Compared to homogeneous multiagent
systems, heterogeneous systems have more research
signifcance in practical applications.

(2) Compared to general linear or terminal sliding
modes, we use integral sliding mode. Te integral
sliding mode has better robustness and avoids the
drawbacks of the conventional sliding mode ap-
proach stage. Te use of integral sliding mode can
not only avoid singular phenomena but also achieve
better robustness performance.

(3) Compared to a normal controller, we are studying
a faulty system. When the actuator of an agent faults,
how to maintain system stability is the focus of our
research. When the input of the controller is too
large, the method of input saturation can be used to
solve this problem.

Te remaining parts of this work are structured as
follows. Section 2 introduces preamble and formulation of
problem. In Section 3, main results of analysis are provided.
Simulations results are provided in Section 4. Section 5
summarizes work done in this paper.

2. Preliminaries

2.1. Notion. Rpq, Rpq×mn means set of pq dimensional vec-
tors, and mn × pq means dimensional matrix, respectively.
Denote Ibm where bm is the dimensional identity matrix. ⊗ is
the Kronecker product. Defne sgn(p) � [sgn(p1), . . . , sgn
(pn)]T, where sgn(•) is signum function, and p � (p1,

. . . , pn)T.

2.2. Graph Teory. What is discussed in this section is
a topology with n followers and one leader. Tat topology is
denoted by G � (VG, EG, A), and graph G is a directed
graph, where EG ∈ VG × VG is the set of edges, VG � v0,􏼈

. . . , vn} represents the set of nodes, and A � [aij]

∈ R(n+1)×(n+1) is the weighted adjacency matrix of graph G.
Node indexes belong to a nonempty fnite index set
Γ � 0, 1, . . . , n{ }, and followers’ nodes belong to
Γ1 � 1, . . . , n{ }. A directed edge (vj, vi) ∈ EG in graph G

means that agent i can receive information from agent j, but
not conversely. Defne aij > 0 if (vj, vi) ∈ EG, and while aij �

0 otherwise. Degree matrix is D � diag (d1, . . . dn), where
di � 􏽐

n
j�1aij. Laplacian matrix L � [lij] ∈ Rn×n which is as-

sociated with A, defned as lii � 􏽐
n
j�1,j≠iaij and lij � −aij,

i≠ j, i, j � 1, . . . , n, and L � D − A. If there is a path between
any two distinct vertices, then directed graph G is called
strongly connected.

Connection weight between any of followers and a leader
is displayed by bi, i ∈ Γ1. If the i-th follower is connected to
the leader, then bi > 0; otherwise, bi � 0. Let B � diag
b1, . . . bn􏼈 􏼉.
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2.3. Some Useful Lemmas and Defnitions

Defnition 1 (see [33]). Connected graph with leader is
connected if there exists one or more agents in G that can
connect to the leader via an edge.

Defnition 2 (see [34, 35]). System _ys � h(ys) is nonlinear,
with h(0) � 0, ys ∈ Rn, where h(·): Rn⟶ Rn is a continu-
ous function. If system’s equilibrium point is zero and is
Lyapunov stable in a fnite time, it is stable for a fnite time.
Finite-time attractive means that there is a function Th(ys0)

such that limt⟶Th(ys0)ys(t, ys0) � 0 that x(t, ys0) � 0,
∀t≥Th (ys0), where ys(t, ys0) is the solution of system
starting from ys(0) � ys0. If the system is fnite-time stable
and fxed-time attractive, then it is called fxed-time stable.
Fixed-time attractive requires that there is a constant Th

such that pervious fnite convergent time Th(ys0) satisfes
Th(ys0)≤T for all ys0 ∈ Rn.

Defnition 3 (see [36]). A vector fled f(ys) � (f1(ys), . . . ,

fn(ys))
T is said to be homogeneous in the 0-limit or∞-limit

with associated triple (rp, kp, fp) where rp � [rp1,

. . . , rpn] ∈ Rn is weight, kp is degree, and fp is approxi-
mating vector feld, if kp + rpj > 0, and then, function fi(ys)

is homogeneous in 0-limit or∞-limit with associated triple
(rp, kp + rp, fp) for each i.

Lemma 4 (see [36]). For _ys � f(t, ys), ys(0) � ys0, suppose
that f(ys) is homogeneous in the 0-limit or ∞-limit with
associated triples (r0, k0, f0) and (r∞, k∞, f∞). If the origins
of system _ys � f(ys), _ys0 � f0(ys), and _ys∞ � f∞(ys) are
global asymptotically stable, then the origin of
_ys � f(t, ys), ys(0) � ys0 is fxed-time stable when condition

k∞ > 0> k0 holds.

Lemma 5 (see [35]). Nonlinear dynamics system is
_xs � h(xs) with h(0) � 0, xs ∈ Rn. If there exists a positive
defnite continuous function Vh(xs) such that _Vh(xs)≤ −

αhV
ph

h (xs) − βhV
qh

h (xs), where αh, βh > 0, 0<ph < 1, qh > 1,
then the origin is fxed-time stable equilibrium of system and
settling time satisfes Th ≤ 1/αh(1 − ph) + 1/βh(1 − qh), and
Vh(t) � 0 for arbitrary th >Th(xs(0)).

Assumption 6. Communication topology among followers
is directed. For any follower, there is at least a directed path
from leader to follower.

Assumption 7. Nonlinear dynamic continuous function
fi(xi, vi, t) is assumed to be bounded and satisfed

f xi, vi, t( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ c1 xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + c2 vi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (1)

where c1 and c2 are any nonnegative constants.

Assumption 8. Te i-th follower agents bounded unknown
disturbance δi satisfes

δi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤φ< +∞. (2)

2.4. Problem Formulation. Consider a set of dynamics
system includingm(m< n) second-order systems with linear
terms and n − m second-order systems with nonlinear terms.
Let Fs− � (1, . . . , m), Fs+ � (m + 1, . . . , n), and Fsn � (1,

. . . , n).
Dynamics equation of the follower is pictured as

_xi � vi,

_vi � ui,
􏼨 i ∈ 1, . . . , m{ },

_xi � vi,

_vi � ui + fi xi, vi, t( 􏼁 + di,
􏼨 i ∈ m + 1, . . . , n{ },

(3)

where xi ∈ Rn is position, vi ∈ Rn is velocity, ui ∈ Rn is
control input, fi(xi, vi, t) is nonlinear dynamics, and di is
external disturbance.

In this paper, loss of efectiveness was concerned about
actuator faults. Assume that the leader is not subject to
actuator faults. Also, ua

i is the actual control input, which is
expressed by ua

i � ciui, where ui is ideal input and ci is
unknown faults, where 0≤ ci ≤ 1.

Dynamics of leader is
_x0 � v0,

_v0 � u0,
􏼨 (4)

where x0 ∈ Rn is position, v0 ∈ Rn is velocity, and u0 ∈ Rn is
control input, correspondingly.

To organize the above systems (3) and (4), it can obtain

_xi � vi,

_vi � ciui,
i ∈ 1, . . . , m{ },􏼨

_xi � vi,

_vi � ciui + fi xi, vi, t( 􏼁 + di,
i ∈ m + 1, . . . , n{ }.􏼨

(5)

(5) becomes a matrix of

_x � v,

_v � cu + f + d � u +(c − I)u + d + f � u + D + f,
􏼨

(6)

where D � (c − I)u + d describes so-called lumped faults, in
which external disturbances and actuator faults are included.

Also, defne

x � x1, x2, . . . , xn􏼂 􏼃
T
,

v � v1, v2, . . . , vn􏼂 􏼃
T
,

c � c1, c2, . . . , cn􏼂 􏼃
T
,

u � u1, u2, . . . , un􏼂 􏼃
T
,

f � 0, · · · 0, fm+1, . . . , fn􏼂 􏼃
T

,

d � 0, · · · 0, dm+1, . . . , dn􏼂 􏼃
T

,

D � D1, D2, . . . , Dn􏼂 􏼃
T
,

s � s1, s2, . . . , sn􏼂 􏼃
T
.

(7)

We can get the following assumption for nonlinear
dynamics of this agent.
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Assumption 9. Following nonlinear continuous function
fi(xi, vi, t) is supposed to be bounded and satisfes

fi xi, vi, t( 􏼁 − f0 x0, v0, t( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ α1 xi − x0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + α2 vi − v0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

(8)

where α1 and α2 are any constants other than negative
numbers.

System error is defned as

exi � 􏽘
n

j�1
aij xi(t) − xj(t)􏼐 􏼑 + bi xi(t) − x0(t)( 􏼁,

evi � 􏽘
n

j�1
aij vi(t) − vj(t)􏼐 􏼑 + bi vi(t) − v0(t)( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i ∈ 1, . . . , n{ }.

(9)

Matrix form of the error (9) is

ex � (L + B)⊗ Im( 􏼁􏽥x,

ev � (L + B)⊗ Im( 􏼁􏽥v,
􏼨 i ∈ 1, 2, . . . , n{ }, (10)

where 􏽥x � x − 1n ⊗x0, 􏽥v � v − 1n ⊗ v0.
Te consensus error can be obtained by (10):

_ex � ev,

_ev � (L + B)⊗ Im( 􏼁 u + f + D − 1n ⊗ u0( 􏼁.
􏼨 (11)

According to error, integral sliding mode is designed as

si � evi + 􏽚
t

0
p1exi(s)

ρ1/π1 + p2exi(s)
δ1/σ1 + p3evi(s)

ρ2/π2 + p4evi(s)
δ2/σ2􏼐 􏼑ds, (12)

where pi > 0, ρi > πi, δi < σi, ρ1/π1 � ρ2/2π2 − ρ2, δ1/σ1 � δ2
/2σ2 −δ2.

According to (12), _si can be obtained that

_si � _evi + p1exi(t)
ρ1/π1 + p2exi(t)

δ1/σ1 + p3evi(t)
ρ2/π2 + p4evi(t)

δ2/σ2 . (13)

Te saturated protocol is written as

u � (L + B)
− 1 ⊗ Im􏼐 􏼑 − tanh sig(s)

κ1( 􏼁 − tanh sig(s)
κ2( 􏼁 − p1ex(t)

ρ1/π1􏽨

− p2ex(t)
δ1/σ1 − p3ev(t)

ρ2/π2 − p4ev(t)
δ2/σ2 (L + B)⊗ Im( 􏼁 1n ⊗ u0 − α1|x| − α2|v| − 􏽥D( 􏼁],

(14)

where κ1 > 1, 0< κ2 < 1.

3. Main Result

Theorem 10. According to Assumptions 6 and 9 hold. In-
troducing (12) as sliding mode, achievement of s � 0makes ex

and ev converge to 0 in fxed time.

Proof. When s � 0, one can get

_exi � evi,

_evi � −p1exi(t)
ρ1/π1 − p2exi(t)

δ1/σ1 − p3evi(t)
ρ2/π2 − p4evi(t)

δ2/σ2 .
(15)
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Consider candidate Lyapunov function

VS �
1

1 + ρ1/π1
ex

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1+ρ1/π1 +

1
1 + δ1/σ1

ex

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1+δ1/σ1 + ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
.

(16)

Taking derivative of VS yields

_VS � 2p1 ex

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
ρ1/π1 ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 2p2 ex

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
δ1/σ1 ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 2 ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 _ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� 2p1 ex

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
ρ1/π1 ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 2p2 ex

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
δ1/σ1 ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 2 ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 _ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� 2p1 ex

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
ρ1/π1 ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 2p2 ex

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
δ1/σ1 ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

+ 2 ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 −p1ex(t)

ρ1/π1 − p2ex(t)
δ1/σ1 − p3ev(t)

ρ2/π2 − p4ev(t)
δ2/σ2􏼐 􏼑

� −2p3ev(t)
ρ2/π2+1

− 2p4ev(t)
δ2/σ2+1

.

(17)

Terefore, evi converges to 0 asymptotically. Moreover,
based on equation (15), it has exi converged to 0 asymptotically.

Considering pi > 0, ρi > πi, δi < σi, ρ1/ π1 � ρ2/2π2 −ρ2, δ1
/σ1 � δ2/2σ2 − δ2, error system (9) in 0-limit is written as
follows:

_exi � evi,

_evi � −p2exi(t)
δ1/σ1 − p4evi(t)

δ2/σ2 .
(18)

So V0 � 2p21/1 + δ2/σ2|ex|1+δ2/σ2 + |ev|2, and its de-
rivative is

_V0 � 2p2 ex

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
δ2/σ2 ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 2 ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 _ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� 2p2 ex

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
δ2/σ2 ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 2 ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 −p2ex(t)

δ1/σ1 − p4ev(t)
δ2/σ2􏼐 􏼑

� −2p4ev(t)
1+δ2/σ2 .

(19)

Also, error system (9) in ∞-limit is written as follows:

_exi � evi,

_evi � −p1exi(t)
ρ1/π1 − p3evi(t)

ρ2/π2 .
(20)

So V∞ � 2p21/1 + ρ1/π1|ex|1+ρ1/π1 + |ev|2, and its de-
rivative is

_V∞ � 2p2 ex

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
δ2/σ2 ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 2 ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 _ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� 2p1 ex

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
ρ1/π1 ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 2 ev

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 −p1ex(t)

ρ1/π1 − p3ev(t)
ρ2/π2􏼐 􏼑

� −2p3ev(t)
ρ2/π2+1

.

(21)

Terefore, it is obtained that both the 0-limit and
∞-limit systems (18) and (20) are globally asymptotically
stable.

Finally, homogeneity of bilimit systems (18) and (20) will
be involved.

For 0-limit, and according to Defnition 3, one can
obtain r1 + k0 � r2, r2 + k0 � r1δ2/σ2 � r2δ1/σ1, and let
r2 � 1, one can get k0 � δ1/σ1 − 1< 0, δ1/σ1 � (1 − k0)δ2/σ2,
δ2/σ2 � δ1/2σ1 − δ1. Similarly, for∞-limit case, it can obtain
that k∞ � δ1/σ1 − 1> 0, ρ1/π1 � (1 − k∞)ρ2/π2, ρ2/π2 � ρ1
/2π1 − ρ1. Tus, fxed-time stability is achieved by
Lemma 4. □

3.1. Dynamic Leader. In this part, the main research is about
dynamics leader.

Theorem 11. Suppose Assumptions 6 and 9 hold. For systems
(4) and (3), controller is designed as (14), and sliding mode is
shown as (8), and then, system will reach sliding mode surface
s � 0 in fxed time.

Proof. Choose a Lyapunov candidate function as follows:

V1 �
1
2
S

T
S. (22)

Diferentiating V1, we have

_V1 � s
T

_s

� s
T

_ev + p1ex(t)
ρ1/π1 + p2ex(t)

δ1/σ1 + p3ev(t)
ρ2/π2 + p4ev(t)

δ2/σ2􏼐 􏼑

� s
T

(L + B)⊗ Im( 􏼁 u + f + D − 1n ⊗ u0( 􏼁

+ s
T

p1ex(t)
ρ1/π1 + p2ex(t)

δ1/σ1 + p3ev(t)
ρ2/π2 + p4ev(t)

δ2/σ2􏼐 􏼑.

(23)
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Combining (14), one gets

_V1 ≤ s
T

− tanh sig(s)
κ1( 􏼁 − tanh sig(s)

κ2( 􏼁( 􏼁. (24)

Because of the fact that tanh(sig(x)κ) � sig(x)κ + o

(sig(x)κ),

_V1 ≤ s
T

−sig(s)
κ1 − sig(s)

κ2( 􏼁

≤ −sig(s)
κ1+1

− sig(s)
κ2+1

≤ −2κ1+1/2
V

κ1+1/2
1 − 2κ2+1/2

V
κ2+1/2
1 .

(25)

According to Lemma 5, sliding mode (12) for systems (3)
and (4) with controller (14) is fxed-time stable. Because of
V1(s)> 0 and _V1(s)< 0, (22) converges to 0. Also, s � 0 will
remain.

Te proof is completed. □

3.2. Static Leader. In the above, the main study is on dy-
namic leaders. Within this, there is a special case of a static
leader, where the speed of the leader is zero.

For a static leader, the velocity of the leader is zero, and
then the leader’s dynamic is

_x0 � 0,

_v0 � 0.
􏼨 (26)

Ten, one can get state error

exi � 􏽘
n

j�1
aij xi(t) − xj(t)􏼐 􏼑 + bixi(t),

evi � 􏽘
n

j�1
aij vi(t) − vj(t)􏼐 􏼑 + bivi(t),

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i ∈ 1, . . . , n{ }.

(27)

Matrix form of error is

ex � (L + B)⊗ Im( 􏼁x,

ev � (L + B)⊗ Im( 􏼁v,
􏼨

i ∈ 1, 2, . . . , n{ }.

(28)

Consensus error is obtained by (28):

_ex � ev,

_ev � (L + B)⊗ Im( 􏼁(u + f + D).
􏼨 (29)

Te same sliding mode control is used as (12), and the
consensus control topology can be designed as

u � (L + B)
− 1 ⊗ Im􏼐 􏼑 −tanh sig(s)

κ3( 􏼁 − tanh sig(s)
κ4( 􏼁 − p1ex(t)

ρ1/π1 − p2ex(t)
δ1/σ1􏽨

− p3ev(t)
ρ2/π2 − p4ev(t)

δ2/σ2 (L + B)⊗ Im( 􏼁 −α1|x| − α2|v| − 􏽥D( 􏼁],
(30)

where κ3 > 1, 0< κ4 < 1.

Theorem 1 . Suppose Assumptions 6 and 9 hold. For systems
(26) and (3), controller is designed as (30), and sliding mode is
shown as 8, and then, system will reach sliding mode surface
s � 0 in fxed time.

Proof. Choose a Lyapunov candidate function V2 � 1/2sTs.
Diferentiating V2, we have

_V2 � s
T

_s

� s
T

_ev + p1ex(t)
ρ1/π1 + p2ex(t)

δ1/σ1 + p3ev(t)
ρ2/π2 + p4ev(t)

δ2/σ2􏼐 􏼑

� s
T

(L + B)⊗ Im( 􏼁(u + f + D)

+ s
T

p1ex(t)
ρ1/π1 + p2ex(t)

δ1/σ1 + p3ev(t)
ρ2/π2 + p4ev(t)

δ2/σ2􏼐 􏼑

≤ s
T

−tanh sig(s)
κ3( 􏼁 − tanh sig(s)

κ4( 􏼁( 􏼁

≤ −sig(s)
κ3+1

− sig(s)
κ4+1

≤ −2κ3+1/2
V

κ3+1/2
2 − 2κ4+1/2

V
κ4+1/2
2 .

(31)
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According to Lemma 5, sliding mode (12) for systems (3)
and (4) with controller (30) is fxed-time stable. Because of
V2(s)> 0 and _V2(s)< 0, (22) converges to 0. Also, s � 0 will
remain.

Te proof is completed. □

4. Simulations

To verify validity of the proposed controller, we give two
examples to verify its validity. In this section, we give a to-
pology graph consisting of six followers and a leader whose
topology is satisfying the assumed conditions. Topology is
designed by Figure 1, where agents labeled as 1, 2, 3, 4, 5, and
6 are followers and labeled as 0 is the leader.

Example 1. First, we give the initial values of system. Te
initial value of followers position is x(0) � [4, 0.3, 2,

−0.3, 1.1, 0.04]T, and the initial value of followers velocity is
v(0) � [−10, 1.8, −1, 5, −0.05, −1.8]T. x0(0) � 3, v0(0) � 1
are the initial values of leader’s state. Ten, the nonlinear
function is fi � − sin(t), i � 3, 4, 5, 6, and then, the model
of the system can be written as

_xi � vi,

_vi � ciui,
􏼨 i � 1, 2,

_xi � vi,

_vi � ciui − sin(t) + di,
􏼨 i � 3, 4, 5, 6.

(32)

After having these data above, we simulate it by per-
forming simulation on it. We can get several pictures as
shown below.

Figure 2 shows the error graph of position and velocity,
and it can be seen that state error converges to zero in
picture. According to defnition, when state errors con-
verge to zero, then consensus is satisfed. According to the
trajectory of state and the trajectory of state error, we can
know that it can be seen our controller is efcient and
correct.

Figure 3 shows the position and velocity error change.
We can see that the position and velocity error can converge
to 0. When state errors converge to zero, then it is to meet
consensus. According to the position and velocity change of
agents and error, we can see that the consensus can be
achieved. Our controller is efective and correct.

Example 2. In this section, we consider the case of a static
leader. Figures 4 and 5 are obtained through simulation.

As shown in Figure 4, it is known that position and
velocity of the followers converge to leader’s position and
speed, consensus with leader’s dynamics. Again, because it is
a static leader, position and velocity of the followers con-
verge to 0. Actual is consensus with the theory.

As shown in Figure 5, error between followers’ position
and velocity and leader’s position and velocity converges to
0. According to defnition of consensus, the same conclusion
as in Figure 5 can be obtained. Terefore, it can be obtained

from Figures 4 and 5 that the systemwill realize to fxed-time
consensus in the case of a static leader and our controller is
efcient and correct.

0

1 2 3

456

Figure 1: Te interaction communication topology of 7 agents.

i=1
i=2
i=3
i=4

i=5
i=6
i=7

-800

-600

-400

-200

0

200

400

600

800

1000

v i

0.5 4.51.51 4 520 3.52.5 3
t

i=1
i=2
i=3
i=4

i=5
i=6
i=7

-10

0

10

20

30

40

50

60

70

80

x i
0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

t

Figure 2: State change of agents.
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5. Conclusion

In this section, we focus on a summary of the work done in
the whole article, as well as an outlook on what we would like
to do in the future. In this paper, we focus on fxed-time
consensus problem for nonlinear heterogeneous systems
under input saturation and actuator faults. In this article, we
mainly use a heterogeneous second-order system, which
mainly contains second-order linear system and second-
order nonlinear system. Fixed-time consensus with actuator
faults is addressed by using a sliding mode control approach.
Finally, simulations are used to verify that the proposed
controller is efective. In future work, one would like to study
heterogeneous systems that are in diferent locations on
land, sea, and air and study how these agents perform tasks
such as consensus and containment.
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