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Bézier Cubics and Neural Network Agreement along a Moderate
Geomagnetic Storm

Emre Eroglu 1 and Mehmet Emir Koksal 2

1Research Department, Armoya Institute of Technology, Besiktas 34337, Istanbul, Türkiye
2Department of Mathematics, Ondokuz Mayıs University, Atakum 55030, Samsun, Türkiye

Correspondence should be addressed to Mehmet Emir Koksal; emirhindawi@gmail.com

Received 31 July 2023; Revised 28 February 2024; Accepted 9 March 2024; Published 26 March 2024

Academic Editor: Chengming Huang

Copyright © 2024 Emre Eroglu andMehmet Emir Koksal.Tis is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Te discussion models the IRI-2012 TECmap over amoderate geomagnetic storm period (5 days) in February 2015 and compares
the yield of the models. Te models are constructed with the help of cubic Bézier curves and machine learning. In a sense, the
comparison of a classical and mechanical approach with a modern and computer-based one is a considerable experience for the
paper. Te parametric curve approach governs models of piecewise continuous Bézier cubics, while the models employ only the
TEC map. Te design is separated into curve components at every fve-hour curvature point, and each component is handled
independently. Instead of the traditional least squares method for fnding control points of cubics, it utilizes themean of every fve-
hour of the piecewise curves of the TEC data. Accordingly, the prediction error can be controlled at a rate that can compete with
the modern network approach. In the network model, 120 hours of the solar wind parameters and the TEC map of the storm are
processed. Te reliability of the network model is assessed by the (R) correlation coefcient and mean square error. In modeling
the TECmap with the classical approach, the mean absolute error is 0.0901% and the correlation coefcient (R) score is 99.9%.Te
R score of the network model is 99.6%, and the mean square error is 0.71958 (TECU) (at epoch 47). Te results agree with the
literature.

1. Introduction

One of the layers of the upper atmosphere is the ionosphere
which is ionized by cosmic-solar radiation. It covers about
60 to 700 km above the Earth’s external sheet. Tis sheet is
critical for diferent forms of signal transfer, as it refects and
refracts radio waves, allowing long-distance communica-
tion. Radio waves are electromagnetic waves that occur with
radio frequency. Tey permit data to be carried in the at-
mosphere without utilizing tangible links such as wires. Te
D layer (about 60–90 km), the E layer (90–150 km), and the F
layer (150–500 km) are ionosphere layers. Te F layer is
composed of two layers named the F1 (150–200 km) and F2
(200–500 km) layers. Besides cosmic rays from space, X-ray
and ultraviolet radiation from the Sun ionize atoms and
molecules in the ionosphere [1–6] by causing free electrons
and ions. Te movement of the sun reasons regular daily

changes such as maximum ionization during the daytime
and reduced ionization at night in the ionosphere. Te
ionosphere’s ionization levels vary with the seasons, infu-
enced by changes in solar radiation angles and Earth’s
magnetic feld. Ionization levels in the ionosphere vary with
the seasons due to fuctuations in the magnetic feld of the
Earth and diferences in the angle of incidence of sunlight.
Solar activities, a geomagnetic storm (GS), and space
weather conditions also afect the ionosphere. Solar activity
refers to diferent events and procedures happening on the
Sun, which can have substantial impacts on Earth and space.
It follows an approximately 11-year cycle known as the solar
cycle or sunspot cycle. Te solar wind is an electromagnetic
stream of charged particles constantly emitted by the Sun,
and it interacts with Earth’s magnetosphere-ionosphere
coupling. A GS [7–14] are disturbances in the Earth’s
electromagnetism caused by changes in the solar wind,
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which have potentially signifcant impacts on the electro-
magnetic stability of the atmosphere [15, 16]. Te GS
commences with a coronal mass ejection (CME). Te CME
resembles a spray blasted with very high pressure. Charged
massive energy-dense plasma bursts from the Sun to the
Earth with the CME. Tese solar wind particles originating
from coronal holes on the Sun’s surface interfere with
Earth’s regular electromagnetic oscillation. Tese efects are
an impact from space toward the Earth. Finally, the iono-
sphere is afected by volcanic movements and anthropogenic
efects. Tese two types of efects are observed from the
Earth’s crust to the atmosphere [17].

One of the most reliable tools (parameters) that allow the
observation of the above-mentioned regular or irregular
changes is the TEC map [2, 9, 14, 18–25]. Te TEC is
a measure of the whole amount of free electrons present in
a cross-sectional feld of the Earth’s ionosphere between
a satellite and a receiver on the ground. It is a vital parameter
in ionospheric research and is commonly employed in
navigation systems, space weather monitoring, and atmo-
spheric science [12, 13, 26–29]. Te TEC (TECU) map,
where 1 TECU corresponds to 1016 electrons per square
meter [2], symbolizes the integrated electron density along
the cross-section [30] between a transmitting satellite and
a receiving ground-based receiver. Te GNSS, IRI, . . . etc.
data providers ensure TEC data collected from ground-
based receivers globally. Te signals from these satellites
are afected by the ionosphere, and by analyzing the delays in
the received signals, TEC can be estimated.

Tis essaymodels, estimates, and compares the TECmap
(from the IRI-2012) of a moderate (Dst� −55 nT) GS period,
dated February 2, 2015, with Bézier curves (BC) [31–34] and
an artifcial neural network (NN). Te reason why the essay
commences with the IRI [9, 35–37] TEC atlas is that it does
not need interpolation. An illustration of the interpolated
TEC atlas can be noticed in the validation subsection of the
modeling part.Te reader can frequently encounter IRI TEC
map models or comparisons in the literature. Although the
essay demonstrates the TEC estimation through modeling,
its goal is to draw attention to the Bézier curve. Analyzing
data obtained from OMNI is hourly.

BC developed by Pierre Bézier in the 1960s is com-
monly employed in graphics, geometry, . . . etc. for char-
acterizing and controlling smooth curves. A BC is
a parametric curve illustrated and represented by a set of
control points. It smoothly forms the shape characterized
by these interpolated control points. Te beginning and
end control points must be on the curve.Te degree of a BC
refers to the number of control points minus one point.Te
frst-degree BC, also known as a linear curve, is a straight
line part specifed by two control points.Te second-degree
BC, also known as a quadratic curve, is specifed by two
control points. Te third-degree BC, also known as a cubic
curve, is specifed by four control points. A BC lies wholly
within the curved exterior of its control points. Tis
property provides that the curve stays within the region
specifed by the control points. Te reliability of the BC
model estimation results is evaluated by the absolute mean
error (ME) score.

Te NN [9, 11, 14, 23, 38–45] model is an instrument
that imitates the human brain and converts inputs to out-
puts. Te data set sent to the input layer is processed in the
hidden layer and presented to the output layer as expected
products. Neural neurons provide interaction and com-
munication between layers. Te number of neurons must be
preferred just enough to avoid memorization. Te causality
principle [30] governs approaches for the NN iteration. In
the NN, the solar wind parameters are marked as the cause,
and the TEC map is marked as the efect. By the causality,
solar wind parameters are the inputs of the NN model and
the TEC map is the output of the NN model. Te NN uses
the backpropagation iteration of Rumelhart et al. (1986) via
the Scaled Conjugate Gradient (trainscg) training algorithm.
Te TEC data of the paper is from the North-Mid-Atlantic at
52.635° N and 31.884° W. Reliability of the NN model es-
timation results are evaluated by the correlation coefcient
(R), themeans square error (MSE (TECU)), and the ME.Te
results agree with the literature [10–13, 36, 46].

Te frst part of the work presents the related previous
works, the following part reports GS data and dynamic, the
third part presents models, and the last part exhibits the
conclusions of the work.

2. Data

Tis work models and associates the TEC (TECU) map from
IRI-2012. For the TEC map, the North-Mid-Atlantic
(52.649°N–31.902°W) coordinates are selected.

Te solar wind parameters that form the inputs of the
artifcial neural network (NN) model are the magnetic feld
Bz (nT) component, the electric feld E (mV/m), the dynamic
pressure P (nPa), the proton density N (1/cm3), the solar wind
speed v (km/s), and temperature T (K). Figure 1 illustrates
these parameters and the SYM-H index throughout fve days
(120 hours). Te February GS is located central of the fve
days (from SPEDAS).

For February 02, 2015, moderate GS: Before detailing
this GS, it is suitable to glance at the physical causality of the
storm’s procedure. Te GS consists of three phases: Te
sudden commencement, the main phase, and the recovery
phase. When researchers discuss any GS, they usually work
a 120-hour [10–13, 46] time frame with hourly data. In this
frame, the GS hour is located in the middle of the time
interval. In the frst stage of these 120 hours, the solar wind
slows down and weakens. However, just after the wind speed
reaches its minimum value, unexpected accelerations in the
P (nPa) dynamic pressure and the N (1/cm3) proton density
happen. Tis sudden peak causes jets from the Sun outward,
which can exceed 800 km/s. With this jet (burst), the energy-
dense cloud of gas and particles is released into the in-
terplanetary hole. Tis event is a coronal mass ejection
(CME). Te GS commences with the frst CME. Depending
on the severity of the GS, more than one CME can be
observed before the event.With the bursting of the CME, the
high velocity plasmatic, electromagnetic particle cloud
reaches the upper atmosphere of the Earth and causes
magnetic disturbance. Te magnitude of this anomaly-
disturbance caused by GS is measured with the

2 Discrete Dynamics in Nature and Society



disturbance storm time (Dst (nT)) zonal geomagnetic index.
Te Dst (nT) score of −50 nT to −30 nT represents a weak
GS, a score of −100 nT to −50 nT shows a moderate GS, and
a score of −200 nT to −100 nT represents a severe GS. After
the frst (or more) CME, the Bz (nT) component of the
magnetic feld orients from northward to southward. In this
period, positive magnetic feld values are replaced by neg-
ative values. A few hours after the Bz magnetic feld indicates
the minimum rate, the Dst index also hits its minimum rate.
Tis sign belongs to the main phase period of the GS. Te
main phase causes intense magnetic-electric feld fuctua-
tions as well as the maximization of energy-dense plasmatic
particles in the upper atmosphere. Magnetic-electric feld
fuctuations can cause disruptions and potential damage to
power grids and pipelines, afect radio communications,
cause disruption or interruption of radio communications,
especially at high latitudes, cause drift in satellite commu-
nications, radiation hazards, and malfunctions in onboard
electronics, and afect the operation of satellites. Te
anomaly of electromagnetic oscillation can also afect
models of space weather forecasts. Te recovery phase ob-
served after the main phase is the return of the storm dy-
namics to the prestorm. GS conditions calm down, and GS
indicators return to prestorm values. In this period, the
magnetosphere-ionosphere coupling also regains its mag-
netic calm before the GS.

According to Figure 1, during the 5-day GS period, the
Bz (nT) magnetic feld oscillates between a maximum of
7.1 nT and a minimum of −9.9 nT. Te Bz feld marked the
smallest rate of −9.9 nT on February 2, at 00:00 UT. 6 hours
after the Bz feld points to its smallest rate, the Dst (nT) index
signs to its smallest rate of −55 nTat 06:00 UT.Tis situation

can be called the response time of the Dst index to this action
of the Bz magnetic feld. Generally, the response time is
around 1–3 hours in weak storms and around 3–7 hours in
moderate storms. Te frst CME of the February GS is
observed on January 31 at 19:00 UT, with the solar wind
speed descending to around 400 km/s. When the frst CME
explodes, the P (nPa) pressure jumps from 2.65 nPa to
3.37 nPa and theN (1/cm3) proton density jumps from 8.1 1/
cm3 to 10.1 1/cm3. A few hours later, at 23:00 UT, the P
pressure points to one of the high rates of 6.76 nPa and the N
proton density to its maximum rate of 20.5 1/cm3.

Te binary relation of the February GS is exhibited in the
Pearson correlation matrix table (Table 1). When the table
score approaches ±1, one observes a strong relationship.Te
hierarchical appearance of data and their scattering are
displayed in Figure 2.

One may see a strong binary correlation between the
Bz-E, the N-P, and the T-v. It it needed to recall that the
minus score shows an inverse correlation. Te binary re-
lationship established in Table 1 is determined by
equation (9).

Te cluster in Figure 2 may be seen at two headlines that
T (K) with others parameters and the TEC-Tassociation. It is
seen that there are three groups, E-T-v, P-N, and TEC-Bz

from Figure 2.

3. Modeling

In the modeling part, the Bézier curve (BC) and the artifcial
neural network (NN) estimation model framework are
discussed for the TEC map of the moderate geomagnetic
storm (GS) on February 2, 2015.

Figure 1: Te SYM-H index, the Bz (nT) feld, the E (mV/m) feld, the P (nPa), the N (1/cm3), the v (km/s), and T (K) solarv wind
parameters for February 02, 2015 GS.
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3.1. BézierCurve (BC). Before presenting the BC, it is helpful
to take a look at the basic diferential geometric concepts.

Let f be a function and f: Rn⟶ R. If the function f has
partial derivatives at each point of Rn from the k. step and
these derivatives are continuous, it is said that the f function
is of the class Ck. Te set of all functions from the class Ck

from Rn to R is denoted in the form Ck (Rn, R). If the
function f has partial derivatives from every step at every p
point of Rn, it is said that the function f is of the class C∞ or
is a uniform (smooth) function.Te set of all functions of the
class C∞ from Rn to R is denoted in the form C∞ (Rn, R).
For p ∈ Rn, if the f function is smooth in at least one open
neighborhood of the p point, the f function is said to be of the
C∞ class at the p point, or it is a uniform (smooth) function.
Let φ be a function, and φ:Rn⟶ Rm, φ� (f1, f2, . . ., fm) is
m dimension. If the fi functions are uniform functions, then
the φ function is said to be uniform [47].

Let φ be a function and φ:Rn⟶ Rm, φ� (f1, f2, . . .,fm).
Te Jacobian matrix of the f function at a u point is as follows:

(Jφ)u �

zf1

zx1
(u) · · ·

zf1

zxn

(u)

⋮ ⋱ ⋮

zfm

zx1
(u) · · ·

zfm

zxn

(u)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

here (zf/zx) is a partial derivative.
Let α be defned α: I⟶ Rn, where I is an open interval

ofR. A uniform transform α is called a curve in theRn space.
When an α curve is given in Rn, n components of this
transformation, expressed by α� (α1, α2, . . ., αn) are men-
tioned. Te presence of partial derivatives for each com-
ponent, well as the Jacobian matrix, exhibits the uniformity
of the curve (function).

(x + y)n � 􏽐
n
k�0

n

k
􏼠 􏼡xkyn−k is an n-degree binomial

expansion. By this expansion, Bernstein polynomial is

B(u) � 􏽐
n
k�0

n

k
􏼠 􏼡(1 − u)n−kuk, where 0≤ u≤ 1.

For any u rate and any degree of the specifed curve
􏽐

n
k�0Bk,n � 1. One may see from this property the invariance

of the BC [31, 32] under afne transformation. Namely, the
association between the BC and its control points is in-
variant. A Bézier formula is

P(u) � 􏽘
n

k�0

n

k
􏼠 􏼡(1 − u)

n−k
u

k
Pk, (2)

here Pk is the control point, u is parameter 0≤ u≤ 1 form the
graph, and n is the degree of the formula. Te degree of the
Bézier depends on the control points’ number. n-degree
graph must be contained n+ 1 control points. Te P0 frst
and the Pk last control points must be the initial and end

Table 1: Binary relation of the variables.

Bz T N v P E TEC

Bz (nT) 1 −0.122 −0.058 0.014 −0.077 −0.984∗∗ 0.137
T (K) 1 0.046 0.694∗∗ 0.640∗∗ 0.196∗ −0.030
N (1/cm3) 1 −0.459∗∗ 0.752∗∗ 0.019 −0.164
v (km/s) 1 0.133 0.073 −0.012
P (nPa) 1 0.106 −0.136
E (mV/m) 1 −0.144
TEC (TECU) 1
∗∗ Te 0.01 level (2-tailed) and ∗ the 0.05 level (2-tailed).
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Figure 2: Hierarchical appearance of data (a) and scattering of data (b).
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points of the graph, respectively; but the other points
commonly do not touch the graph. One may see P(0)�

P(1)� 0 from equation (2). It needs show that whether the P0
frst and the Pk last points are on the graph. One can see
from the tangent. Te frst order derivative of Bézier’s
formula is presented by Teorem 1.

Theorem 1. P(u) Bézier curve’s derivatives is

P′(u) � 􏽘

n−1

k�0

n − 1

k
􏼠 􏼡u

k
(1 − u)

n−k−1
Ck, (3)

here C0 � n(P1 − P0), C1 � n(P2 − P1), C2 � n(P3− P2), . . . ,

Cn � n(Pk+1 − Pk) [48].Te rth order derivative of the Bézier’s
formula is (for u� 0 and u� 1)

P
r
(u)|u�0 �

n!

(n − r)!
􏽘

r

k�0
(−1)

r−k
r

k

⎛⎝ ⎞⎠Pk, (4)

P
r
(u)|u�1 �

n!

(n − r)!
􏽘

r

k�0
(−1)

k r

k
􏼠 􏼡Pn−k, (5)

here r is a parameter k≤ r≤ n. It can be seen from equation (4)
and (5) that the initial and end control points are tangent to
the curve.

Some BCs can be seen in Figure 3
In this study, composite Bézier plots are employed, each

of which is of the third order (cubic). Te third-order Bézier
formula and its matrix presentation are as follows:

P(u) � P0(1 − u)
3

+ 3P1u(1 − u)
2

+ 3P2u
2
(1 − u) + P3u

3
,

P(u) � u
3

u
2

u 1􏼐 􏼑1x4.

−1 3 −3 1

3 −6 3 0

−3 3 0 0

1 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.4x4

P0

P1

P2

P3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

4x1

,

(6)

here Pi are the control points and u is the parameter
0≤ u≤ 1. It is immediately apparent that this formation
denotes a curve. Let α be defned α: I⟶ R3, where I� (0,
1).

α(u) �

P0(1 − u)3

3P1u(1 − u)2

3P2u
2(1 − u)

P3u
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.4x1. (7)

Te Jacobian matrix of this matrix is

Jα �

−3P0(1 − u)2

3P1(1 − u)(1 − 3u)

3P2u(2 − 3u)

3P3u
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.4x1. (8)

Equation (8) reveals that the third-order structures
used in this study can be called curve. Te segmented curve
provides many conveniences in BC modeling. One may
realize that when the control point increases, the ease and
comfort of the manipulation opportunity decreases. When
the piecewise continuities of these curves are discussed, the
C0 continuities should be considered. If the curve is to be
modeled in two separate segments, the endpoint of the frst
curve must be the initial point of the second curve. Tis
state is the C0 continuity condition. In this problem, all BCs
provide the C0 continuity condition. It means that the
endpoint of the frst curve is located at the initial point of
the second curve, the endpoint of the second curve is lo-
cated at the initial point of the third curve, . . . etc. Tus, the
family of piecewise-continuous uniform composite curves
forms the BC (cubics). Te study models 24 diferent BCs
for the 120 hour TEC (TECU) map. By creating a piece-
wise-continuous curve family, it is reached from the part to
the whole. In this study, the average of the data is used to
determine the control points, unlike the traditional least
squares method. Except for the initial and endpoints of 24
diferent, C0 continuous BCs, the other control points are
determined by calculating the individual averages of the
TEC data for each curve segment.Tat is, for the frst curve,
the P0 initial and P3 endpoints are taken as the actual TEC
map, while the average of seven separate TEC data for the
P1 and P2 points is taken. Tus, the model of the curve
predicts each TECmap with the help of these control points
and diferent u parameters. Te TEC estimation results of
the BC model are notably remarkable. Te estimation
model curve predicts the TEC map for almost all hours of
the 120 hour storm period with an absolute mean error
(ME) of 0.0901 and a variance value of 0.0138. Te ME of
the estimated TEC can be determined by the
Error � 100. |(TECest − TEC/TEC)|, where TECest is the
estimated TEC value. In the BC model, the TEC map
average is 8.60085 TECU, and the estimated TEC map
average is 8.5837 TECU. Tis model deviates from this
error mean only in the 4 (four) hours. Just for these four
hours, it cannot make a successful prediction like other
hours. Te deviations of the 2nd, 75th, 110th, and 111th
hours can be observed in Table 2.

In addition to the ME score, it would be appropriate to
present the R correlation coefcient, which will also be used
in the NN model. R correlation constant is:

R �
Cov(x, y)

������������
Var[x]Var[y]

􏽰 , (9)

here cov(x, y) is covariance of x variable (actual TEC map)
and y variable (estimated TEC map), var[x] is variance of x,
and var[y] is variance of y variable. Te BC estimation R rate
is 99.96%. Figure 4 exhibits TEC (TECU), TECest (TECU)
maps with their error and R correlation coefcient. It seems
that the estimation outcomes are satisfactory.

In this part, the NN model framework is discussed.
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3.2. Artifcial Neural Network (NN). In the NN demon-
strating of TEC (TECU) map, the solar wind parameters are
employed as the input and TEC map as the output [39].
Figure 5 pictures the NN background.

Te NN is a machine-learning prototype inspired by the
design and the mechanism of the human brain. Te NN is
used on many problems such as model formation, data
processing and estimation, image processing, language
processing, pattern-relationship building, etc. Te NN
architecture composes of layers that are interconnected by
artifcial neurons. If the interconnection is governed by
enough neurons, undesirable conditions such as memo-
rization or inability to learn are avoided [49]. If the NN
model cannot be fed by enough neurons, complete learning
does not occur. Similarly, if the NN model is fed by a big
amount of neurons, the model prefers to memorize, since
memorization does easier for the model instead of the
learning. Te NN framework be formed the input layer, the
hidden layer(s), and the output layer. Te data called input
is given to the input layer unprocessed and it is the frst

layer. Te cause-efect afnity should be the main structure
of all models according to the causality principle. In a GS
solar wind parameters are the cause and the zonal geo-
magnetic indices or the TEC is the efect. Te hidden layer
(s) comes after the input layer [39, 50]. Its name is hidden
because the training data and tools can not be directly seen.
Te hidden layer is the center of the learning zone. Te
training is accomplished by neurons. Each neuron in the
network operates a simple mathematics. It accepts data
from the input layer, applies a weighted sum of inputs, adds
a bias term, and then departs to the result through an
activation function. Te activation function provides
a nonlinear perspective to the NNmodel after the weighted
sum of the inputs is calculated and their biases are de-
termined. Typical activation functions are sigmoid-logistic
(results are observed between 0 and 1) function and tanh
(results are observed between −1 and 1). Weight and bias
specify the strength of the associations between neurons
described by weights. During the training, these weights are
iteratively adapted to minimize the diference between the
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Figure 3: Some Bézier curves.

Table 2: Deviation scores of four (4) hours.

Hour TEC (TECU) TECest (TECU) Error
2 2.7 3 11
75 3.2 3.099 3.16
110 19.8 18.304 7.56
111 19 18.591 2.15
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Figure 4: Te ME and R correlation constant results of the BC estimation model for the variables (without mentioned four hours).
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forecasted outputs and the actual targets. Bias is a sup-
plemental parameter that allows revising the activation
threshold of a neuron. Te last segment of the network is
the output layer. It produces outcomes-estimation of the
model. Tis paper’s outcomes are the IRI-2012 TEC
(TECU) map. In the NN model, training is one of the most
critical phases that reveal the stability of the model. Te
iterative approach of forward propagation, loss calculation,
or backpropagation is iterated over numerous epochs
(iteration) until the network comprehends to make accu-
rate estimations. By adapting the weights and biases during
the training procedure, the NN learns to generalize and
make forecasts on data, which is the ultimate goal of the
learning procedure. Te forward propagation approach
fows from the input layer to the output layer with iteration.
Te input variable is multiplied by the weights, and the
consequential rates transmit via the activation functions to
build the forecasts. In backpropagation, feedback is pro-
vided after each iterative step (epoch) to keep the error
score at a minimum and to yield accurate results. Te NN
performance is evaluated by means of the loss function and
its tools. Te loss function quantifes the diference between

the estimated results and the actual targets. Te standard
loss function employs the (R) correlation constant
(equation (9) and mean squared error (MSE) for classif-
cation and evaluation. Backpropagation is the approach of
revising the weights and biases of the NN’s variables to
minimize errors (deviation). Tis is accomplished by
computing the gradients of the loss involving the network’s
variables and then adapting the weights utilizing optimi-
zation methods like gradient descent or its variants. Te
gradient descent procedure orients the total iteration op-
erating the weights of the data. Newton’s procedure [51]
and gradient descent are traditional optimization tech-
niques in the backpropagation approach.

Tis paper’s NN model uses the equation (10) as an
activation function,

yij � 􏽘
n

k�1
wkjxik + bj, (10)

here w is the weight, y is the x-dependent variable of the
initiation signal, x is the input (dependent variables), and b is
the bias. Te sigmoid transfer function is:
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f(y) �
1

1 + e
−y, (11)

here f is the logistic function.
After the model examines by the equation (11) sigmoid

function, the TEC map is estimated as a result of the NN
with the linear function from the output layer. In the work,
fve days (120 hours) of data for the forecasting. Te NN
uses 84 hours (70%) of the data for the training, 24 hours
(20%) of data for the testing, and 12 hours (10%) of data for
validating. Tis paper prefers backpropagation iteration is
used for minimalizing of the NN prediction model’s
deviation-error. Te gradient descent approach orients the
total iteration using the weights of the variables. Te paper
selects the Scaled Conjugate Gradient (trainscg) training

algorithm for IRI-2012 TEC estimation. Tis work employs
35 neurons for interacting of the layers, R (equation (9) and
MSE (TECU) score for evaluating of the NN model. MSE
(equation (12) is:

MSE �
1
n

􏽘 yobserved − yestimated( 􏼁
2
. (12)

When the NN model concludes a task, it creates ap-
propriate outcomes. Te essay tries to avoid memorizing in
its repetitions. Iteration of the time series are fnalized after
iteration hold the stability of the training-test-validation
updates-epochs (Figure 6). MSE (TECU) reaches con-
stancy means that the iteration should fnish. Figure 6 ex-
hibits MSE rate and R correlation coefcient of the estimated
TEC scores for the GS on February 2, 2015.

Table 3: Some selected discussions.

TEC (TECU)
R correlation constant (%) MSE (TECU) Cited Year
99.0 3.9006 Tulunay et al. [20] 2006
91.6 3.2292 Ansari et al. [29] 2017
88.0 15.3664 Inyurt and Sekertekin [23] 2019
99.9 1.0600 Kumar Dabbakuti et al. [52] 2020
88.1 3.0835 Razin and Voosoghi [45] 2020
97.9 1.1881 Eroglu [9] 2022
98.8 2.0500 Eroglu and Nane [14] 2023
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Te average of the actual TEC (TECU) map across
120 hours of the NN prediction model is 8.6958 TECU and
the average of the estimated TEC map is 8.6871 TECU. Te
MSE (TECU) score is calculated as 0.71958 TECU at the end
of 47 iterations (epoch). Te R correlation coefcient is
calculated as 99.59%.

Observing the NN estimation results obtained in the
work together with the literature gives the reader the op-
portunity to compare. One can fnd some selected discus-
sions in Table 3. Figure 7 exhibits the training, validation,
and testing R scores of the modeling

For the February GS, the R values of this work are 99.8%
for the training, 99.2% for the validation, and 99.1% for the
testing algorithm. It is observed that there is harmony
among the R scores.

3.2.1. Validation of the Problem. Lastly, the reader can
witness the validation of the R correlation constant’s re-
liability and CODE TEC atlas modeling with diferent co-
ordinates. Is the R correlation score of the models obtained
randomly? Does the score relate to the event(s) of the
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Figure 8: (a) View of the 365 days (8760 hour) TEC (TECU) atlas of the 2017 year modeled by Bézier quadratics. (b) View of the 365 days
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problem? Or are the scores achieved by random? Accord-
ingly, the reliability and meaning test may be accomplished
with the traditional H0 null hypothesis. Tree individual
phases ought to be tracked:

(i) Te H0 hypothesis is claimed.

(ii) Te t score is computed.
(iii) Te score is compared with the table’s t-score. If

the t-rate is greater than the table score, the H0
null hypothesis is rejected. If it is smaller, it is
accepted.

(iv) H0 hypothesis: the R correlation constant is
a random rate.

(v) SR is SR �
���������������
((1 − R2)/(n − 2))

􏽰
provided that t�R/

SR and n is 120 hours. n − 2 means that the degree of
freedom. For the moderate geomagnetic storm, the
Bézier and ANN model’s TEC Atlas t-scores are
t� 2.43 and 2.41, respectively.

(vi) t-score is (from the table) 1.66 for the 95% conf-
dence interval and 2.36 for the 99% confdence
interval. Te considered t-rate is larger than the
table score. It means that the H0 null hypothesis is
rejected. Hereby, the R rate of the paper’s models is
signifcant and related to the problem. Tey are not
random.

If the reader glances at it from a diferent perspective,
(s)he can see that similar results can be conducted with the
CODE TEC atlas. In this part, the work exhibits the TEC
atlas (interpolated) collected from the CODE. Te CODE
GIMs’ span ±87.5° latitudinal and ±180° longitudinal
spectrum with a 2.5° × 5° spatial and hourly resolution [53].
Te TEC atlas interpolation is formed with the assistance of
four points nearest to the specifed location. Te latitude
and longitude gaps are determined as 35,000 N-37.500 N
and 25.000 E-30.000 E for the interpolation. Tis paper
presents all TEC atlas of the close neighborhood that
contains the Bodrum (36.929 N-27.414 E) region (Turkey).
365 day, hourly TEC data is from 2017. Te bivariate in-
terpolation is conducted on the specifed points [2, 54]. To
compute the related TEC data, the calculated scores are
divided by ten.

Te TEC atlas acquired and interpolated from another
zone (coordinate) for the validation of the model provides
acceptable outcomes like the H0 null hypothesis when
modeled with the procedure employed in the investigation.
Figures 8(a)–8(c) exhibits the outcomes.

Here TEC is the actual TEC data and TECest is the es-
timated TEC score. Figure 8 displays the model results of
365 days of the TEC Atlas for the 2017 year, with mean
absolute error. Te Bézier model of the TEC atlas is
established by second-order curves (Bézier quadratics). Te
visual of the Bézier curve in Figure 8 is a second-order
(quadratics), C0 class model formed by piecewise, seg-
mented, and continuous curves.Te ANNmodel is the same
model used in the study.

4. Conclusion

Comparing an artifcial neural network with a mechanical
curve package is an invaluable experience for the paper.

While the network is computer-based, the curve just
stands on a classical diferential geometry approach. One can
presently catch that the model results of the classical Bézier
curve agree with the neural network’s ones. Te success of
the Bézier curve in modeling hides in the harmony of
piecewise continuous curves with control points. Instead of
ftting a single curve to all TECmaps, working with piecewise
continuous curves, where each segment is a copy of each
other, minimizes the error. Te 120 hour TECmap is treated
with 24 distinct segments, and these segments obey the
causality of the geometric curve approach. Te prediction
outcomes of the curve model are evaluated with the mean
absolute error and R correlation coefcient. Te mean ab-
solute error of the TEC prediction model of the Bézier curve
is 0.0901% and the R correlation coefcient of this model is
99.9%.

Another contribution to the literature of the paper is that
the TEC map prediction results of the network model are
satisfactory. When the consequences of the paper are
compared with the discussions presented earlier, they are
competitive. Te network model is approached with
a mathematical perspective and the causality principle
governs the models. It means that the February moderate
storm solar wind parameters data are the cause and the TEC
map model is the efect. Te network model results are
evaluated with the mean square error and the R correlation
coefcient. While the R correlation coefcient score of the
results is 99.6%, the mean square error rate is 0.71958
(TECU) after 47 epochs (iteration).

With the excitement of introducing the Bézier TEC
(TECU) model to the reader for the frst time, the study
leaves some of its limitations to subsequent discussions. Te
efciency of the quadratic curve prototype of the model
should be discussed. Curves are selected from class C0. How
does the class C1 curve model with stricter rules afect the
Bézier prototype? How does the model work over the long
term (time interval)? Can this mechanical model, like the
neural network, produce the same efective results for many
more data sets? Te specifcation of control points that are
not on the curve is performed by averaging. Tis selection
needs diferent methods like the least square method. Te
Bézier model gives signifcant results in Euclidean topology.
Te results should also be checked for structures where the
topology changes. Achieving the same results in diferent
topologies will be strengthened the place of the model, which
does not require any preliminary preparation, in astro-
physical studies.

Today, the artifcial neural network approach has
a methodological infuence on space exploration. Estimating
the TECmap with the Bézier curve model, which is not often
encountered in the TEC-ionosphere modeling literature, has
the potential to ofer a diferent perspective in space weather
studies and Earth-ionosphere discussions.
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