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In this article, we consider a class of nonlocal p(x)-Laplace equations with nonlinear boundary conditions. When the nonlinear
boundary involves critical exponents, using the concentration compactness principle, mountain pass lemma, and fountain
theorem, we can prove the existence and multiplicity of solutions.

1. Introduction

In this article, we study the following problem:

_A(J Vuul P dx>Ap(x)u = B(JQF(x, u)dx)f(x, u), x€Q,

a p(x)

20U
Vel P ) 23 = g(x,u),

where Q ¢ RY (N >3) is a bounded domain with smooth
boundary, 0/0v is the outer unit normal derivative, A, u =
div (|Vul[P®~2vy) is the p(x)-Laplace operator, and p(x) is
a continuous function on Q, 1<inf ., p(x)<sup,q
p(x)<N.

There are many relevant conclusions about the study of
p-Laplace equations with critical exponentials (see [1-3] and
references therein). In [1], the authors studied the following
problem:

x € 0Q),

(1)
—Apu+ a()ulfu=f(xu), xeQ
2
psdu (2)
[Vu| 5= g(x,u), xe€oQ,
v

where AP = div(|[Vul?~?Vu) with 1< p<N. Under several
conditions on f and g, the authors proved the existence of
infinitely solutions of problem (2). In (2), When the function
g(x,u) = nlulp’zu, 1<p<N, the relevant results were
obtained in [2].
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In [4, 5], the general operator (p, q)-Laplacian was
considered and also concentration results were produced,
while in [6], the existence in bounded sets was proved for
a p-Laplacian Dirichlet problem via blowup technique. In
[7], the generalized critical Schrédinger equations were
considered.

As we know, the Lions concentration compactness
principle (see [8]) is a basic tool to prove the existence of
solutions when handling nonlinear elliptic equations with
critical growth. In [9, 10], the authors extended the Lions
concentration compactness principle to the variable expo-
nent. In [11-13], by applying the concentration compactness
principle (see [9, 10]), the existence of solutions to the p(x)-
Laplace equation with Dirichlet boundary conditions were
studied.

In [14], the following problem,

—A (ot P2y = f(x,u), xeQ,

p(
(3)

_,0u _
Vul? O3 <1, x e 00,
v

was discussed, where q(x) relates to the critical exponent.
The authors proved that there are infinitely many small
solutions to this problem using the concentration com-
pactness principle (see [5]) and the symmetric mountain
pass theorem (see [15]).

With the further study of the problem, Kirchhoff-type
equations (also known as nonlocal problems) have also
attracted extensive attention from scholars (see [16-19]). In
[18], according to the variational method and the (S,) map-
ping theorem, he obtained some conclusions on the existence
and multiplicity of the problem under weaker assumptions.

However, there are few conclusions for Kirchhoft-type
equations with critical growth conditions and nonlinear
boundary conditions. Therefore, inspired by the above re-
search, this paper discusses the problem in (1). The main
results of this article are the following.

Theorem 1. Suppose A(t): R* — R and B(t): R — R
are continuous functions which satisfy the following
conditions:
(a;)3ay>0, a;, >0, such that ay< A(s)<a,, s=0;
(a,)3o€[0,1), M;>0, such that oA (s)> A(s)s,
s> M,, where A(s) = I; A(t)dt;
(a3) 3a >0, such that lim  sup, . A (t)/t*>0;
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(by)3y>0, D;>0, such that |B(s)| <D, + D,|s|",
s € R, where B(s) = I;B(t)dt;

(b,)3A>1, M, >0, such that 0 < AB(s)<B(s)s, s> My;
(by) 3B >0, such that liminf, _,B(t)/|t|f < +oo;
(f) f: xR — R satisfies the Caratheodory con-
dition, and there exists D, >0, such that

If (x, )| <D, + D, |s|?™@ ", ¥(x,5) e OxR,  (4)

where  0(x) €C,(Q), 0(x)<p*(x), p*(x)=
00, p(x) =N,
Np(x)/(N - p(x)), p(x) <N,

(f2)3u>p*, M5>0, such that 0<uF (x,s) < f (x,9)s,
|s|>M,, Vx € O

(f3) 31 € C°(Q), such that 1 < 7(x) < p* (x) forx € Q
and liminf,_ | f (x, OI/IETP < +oo uniformly in
x €

(g,)3D5 20, such that |g(x,s)|<D;(1+ 5|91y,
V(x,s) € 0Q x R, where {q(x) = p* (x)} # D 0p* <17,
y6+ <p_;

(g,) 3q € C°(Q), such that 1 < q(x) < p* (x) for x € 0Q
and liminf,_ ;|g(x, HI/1L199 1 < +oo uniformly;
(g3)Ik>Au>0, M,>0, such that 0<xG(x,t)<
g(x, b, [t|=M,, x € 0Q.

When the conditions ap™ < 77, ap* <q~, and op* <Ay
are satisfying, equation (1) has a nontrivial solution.

Theorem 2. Under the condition that Theorem 1 holds, the
following hypotheses are also satisfied:
(f4) when x € Q, s € R, we have f(x,—s) =—f(x,s)
(g4) when x € 0Q2, s € R, we have g(x,-s) = —g(x,s)

Then, we obtain infinitely many solutions {+w,} to
equation (1), and J (tw,)) — +00asn — 00, where ¢;, d;,
C;, and D, (i = 1, 2,...) denote different positive constants.

2. Preliminaries

In this section, we give some properties and definitions of
LP® (Q) and WP (Q) to deal with equation (1).
Let Q c RN be a bounded region, and let

C,(Q) ={0(x): 8(x) € C(Q),0(x)>1,Vx € Q},

0" = max{0(x): x € Q},
6" =min{f(x): x € Q},

(5)

’¥ Q) = {w: wis measurable real — valued function, J [w ()P dx < oo}
Q

We can introduce the norm on LP® (Q) by
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|w|Lp<x )(Q) |w|

:inf{x>0: J
Q

which is a Banach space.
The definition of space WP (Q) is as follows:

WP Q) ={w e LPY (Q): [Vuw| e PP (Q)}, ()

w(x)

() (6)
dx < 1},

if the following norm is introduced:

P(x) p(x)
lwl| = inf{ x> 0: J [w)) +|Vw(x)| dx<1
ol x |« |

(8)

It is well known that WP (Q) is also a Banach space.
Specifically, its dual space is WLP'® (Q) where
1/p*(x) +1/p(x) = 1. For every we W™ (Q) and
v e WhP' () (), we have

1 1
dx|<| — 9
s LIS

By virtue of Holder inequality holds (see [20, 21]).

Proposition 3 (see [20, 21]). Let x(w) = JQIwIP(x)dx
Yw € LPX (Q); then, we have

(1) |w|p(x <lI(=L>leyw<l(=1;>1)

(2) lep(x >12lep(x <y (w) <lwly s
wl? o < x (W) < |wl?

|U)|p(x) <l=

p(x)

|Vwo|P(X) p(x)-2
A<jQ () dx JQ|Vw0| Vuw,

- J. g(x,wy)vdS =0,
a0

where F(x,s) = _[; f (x,t)dt and dS is the surface measure
on 0Q.

Functional J in X associated to the equation in equation

1):
R P
T (w) :A(JQ'% dx)

- E(an(x, w)dx) - LQG(x, w)ds,

(12)

, V P(X)
U w)vy = A(JQ| ;U(lx)

3) lw, —wlyy — 0y (w, —w) —0

Proposition 4 (see [20, 21])

(1) WP (Q) is a reflexive, separable Banach space

(2) If p € C, (Q), then the embedding from WL (Q) to
LPX) (Q) is continuous and compact

Proposition 5 (see [22]). Let Q ¢ RN be an open bounded
region with a Lipschitz boundary.

Assume that peC°(Q), 1<p <p*<N, and that
v € C°(0Q) satisfies the condition.

(N-1Dp(x)
N-p(x)’

1<v(x)< Vx € 0Q. (10)

Then, the boundary trace embedding from W*® (Q) to
%) (0Q) is compact, with S is the embedding constant.
In this paper, we denote X: =WhP®(Q),
X*: = (WhP™(Q))*, and we let “—” and “—” represent
weak convergence and strong convergence, respectively.
Below, we give the definition of weak solutions for
equation (1).

Definition 6. A function w, € X is a weak solution of
equation (1), if, for any v € X,

- Vvdx — B(JQF (x, wo)dx)JQf (x, wy)vdx

(11)
where G(x,s) = Jog(x, t)dt.
We define an operator 7 X — X* by
dx)J Ilep(x%ZVw‘Vvdx—B(j F(x, w)dx)J f (x, w)vdx
Q Q Q
(13)

- ng (x,w)vdS, VYw,v e Wl)P(x) Q).



Definition 7 (see [14]). If any sequence {w,} ¢ X, which
satisfies that {J(w,)} is bounded and 17" (w,)lx — 0 as
n — 00, has a convergent subsequence, then J is said to
satisfy the Palais—Smale condition ((PS) condition for short).

Theorem 8 (see [23]). Assume that X is a Banach space;
J € CH(X,R) if ] is said to satisfy the (PS) condition and
J(0) = 0. Suppose

(Ly)3H>0,h>0: |luly = H=](w)>h;,

(14)
(L,)3vy € X: |vo| 2 Hand ] (v,) <h.
Then, J has a critical value.
c= }vrg(r)rglgl(w(t)) >h, (15)
where
I'={w € C[0, 1];w(0) = 0,w (1) = vy} (16)

Let X be a separable, reflexive Banach space; then,
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Theorem 9 (see [24]). Let ] € C1(X,R), J (-w)
for every j € N, there exists p;>r;>0, such that

=J(w). If,

(Nya; := MaXyey ful=p, J(w)<0,j — oo
(Ny)b; = infuez Jul=r,; J(w) — 00, j — 0
(N3) J satisfies the (PS) condition for every ¢ >0

Then, ] has an unbounded sequence of critical values.
3. Local (PS) Condition

Lemma 10. Suppose that functions A and B are continuous
which satisfy the conditions: (a,)(a,)(b;)(b,), f, and g

satisfy the conditions (f,)(f,)(g,), op* <y~ and y0* < p~
hold. Then, all (PS) sequences of ] are bounded in WP ().

According to the conditions of Lemma 10, we can know
that the nonlinear boundary of (1) involves critical expo-
nents and, thus, the inclusion from W?® (Q) to L1 (3Q)
loses compactness; we can no longer expect the (PS) con-
dition to hold. However, we can solve this difficulty by using

L), ¢ X, {1}, ¢ X*, and we have the concentration compactness principle.
el e We use the following lemma to prove that J satisfies the
(L) = Com local (PS) condition:
0,n+m,
= B and Lemma 11 (see [10]). Suppose that q(x) and p(x) are two
Ln=m, (A7) continuous functions, such that
X = =1,2, ...},
sPan{l*j'” J 1£q(x)<p" (%), 1< inf p(x) < sup p(x) <Nin Q.
X" = spanW {Hin=1,2,...} x€Q)
(19)
For j =1, 2,..., we have
X;= span{ej}, Let {w]-}jeN—»w in W™ (Q), such that
Y=ol X, (18)
Z] = GBi:in.
X q(x)
|ij|p( - dy, 'wf‘ao| — dv weakly—"in the sense of measures. (20)
Note that dv is a measure supported on Q). Assume that Y(x5) = Jo y (e t)dt (22)
A={x€eoQ|q(x)=p*(x)}+D. Then, for some count- s

able index, set I, we have

dv = (w1 + Y 96, ¥>0,

iel
du> [Vw|?™ + Z‘“i‘sx,’ p; >0, (21)
i€l

Svillp* (%) < ‘uil/p (x,)’

iel,

where {x;}._, ¢ A. In the Sobolev trace embedding theorem,
S is the best constant.

Proof of Lemma 10. Let g(x,s) = y(x,s)+z(x,s) and
denote

Z(x,s) = Jo z (x,t)dt.

Let us make the following assumptions.
(0,)3IM >0 and a function 7(x) € C' (Q) satisfying

n(x)<q(x), V¥xe Q, (23)
such that z satisfies
0<Z(x,s)§Lz(x,s), Vxe Q, |s|=M. (24)
1(x)

(O,) For y(x) in (O,), there exists § >0 small enough,
such that y satisfies

Iy (69 <]s| 1L v e @, [sl=M. (25)
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For convenience, we define For a large enough ||lw, ||, according to (a,), we have

~ V p(x)
E(w,) = A<Jﬂ%dx>. (26)

p(x)
op'E(w,) = 0p+;l<J de)

a px)

>A J de J |Vw |p(x)dx:E'(w Jw
= o P(x) o n n)Wn-

[Y (x,5) = By (x,5)s| < D, + D,Js| "9 v (x,5) € QxR.
Y 4 4

(27)

Under assumptions (f;), we obtain |F(x,s)|<D
(1 o ’ (28)
The cond1tion§ (0y), (O,) imply that Z(x,s) > |s|7¢, Let {w,} be a (PS) sequence and assume [w,|| — co.
Vx € Q, when |[s| is large enough, Since 77(x) € C' (), we have
¢ + w, p(x)

210~ (7 0 S )

_ P’ B [V, | P2 1+8 P’
~ 1+6 1+6
_B<jQF (x, wn)dx> - LQG (%, w,)dS + WB<L2F (x, wn)dx>Janf (x,w,)dx + WJ w, g (x,w,)dS

(29)

> (122 Yot 5 "B -1+ 98 () + (21 o[ (i)

v, [ J 1+0 po-1 J’ 1+8J
A d Vw \Y d G(x, dS+—— , ds
' (JQ v [ rcomlvl o [ aew)as e 0 wgtew,)

s ) ol = 0y (OO Y BTN o,
op. 1 Jla n o 7 (x)

0 (x)/1+6)
Z ds - J D tn dS-D,|Q
Jaan( ) (e ) 20 il Q.

According to the Young inequality, we obtain
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(1+5)|V7’l(x)| IwnHanlp(X)—lSdllwnllvwn|,0(x) 1

' (x) o)
<d,(a]v,[" + 67w, 1),
and It is not hard to see that
(x) (x) —(p*/(g-p)
fw, P <y, |1 + e, (PP, (31) J D4|wn|(”(x)/”5)d8sd3+J S Ju,["ds. (33)
20 20l +46

According to the embedding theorem (see [19, 20]), it

follows that Substitute equations (30)-(33) into the above equation;

then,
|wn|q(x) <d,||w,|

p(x) (32)

¢+l

2“0( 1+ —L_)J |an|P(x)dx - D2<M_ 1)“wn“y9(x)
op n Q n

1 X X +
—alj ( +5)|V11(x_)| |wn||V | 71 4x +J %Z(’C’ wn)dS_J D4|wn|(’1( " 5)dS—D4|Q|
Q 0Q 0Q

7 (x)
11 ) (Ay (1+9) ) YO) J plx
> )| [V, P9dx - D,( Y 1 )|w, v
“0<0p 7 )Jﬂl w| X 2 ,1 ||w “ —aydg | w|
X 8 X X
~ad el [ P Vax LQMMW( ’ds-Jaﬂl fu, |45 - (dy + D)0} (34)

<_ L) |an|P(x)dx - DZ()L7[1(1++ 9 _ l)nwnnye(x) - a1d1€1J Ve, [P
op" 1 n 0

&) & (P1@P) o ¢ @)
—aydel? J|w 19 dx — aydye 1l - (d, +D4)IQI+< (x)_lj8>JaQ|wn|ﬂ ds

1 1 o x Ap(1+06 x
(s ) vt e et k-0, Y

) € v -
+<m_1+38)nwn||'“ (a7 &) a4, Yo

1+6
When the positive constant ¢; (1 = 1, 2, 3) is small enough, ¢ +||wﬂ||p(x) 2] (w,) _<], (w,,),—n(x)wn>
we have

1 1 - _ "
ao<0p+ "1_—> —adie —ade P ed, =d,>0, (35) >d,fw,|” _Dz<w_ 1>"wn"ye —ds|Q.

aydie, e, (@) L g 4D, = d, >0, (36)

Therefore, Because y0" < p~, {w,} is bounded in WP (Q). O
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Theorem 12. Let {w,} c WP (Q) be a (PS) sequence,
with energy level c. If c<d, - SN (ap/Ds;) NP &) _d |0,
then there exists a subsequence {w,} — w in WhP®) (Q).

Proof. According to Lemma 10, if {w,} is a PS sequence, it
can be concluded that {w,} is bound in WP (Q).
According to Lemma 11, we know that there exists a sub-
sequence {w,} (still denoted as {wj}), such that

w; —win WP (),

w; — win L' (Q),1<7(x) < <p*(X), (37)

p(x)
[Vaw, | — du = [Vw|P ™ + Z,ui@xj, p;>0,
jeI

ol = dv =lwl? + 3 28, >0, (38)
jel

a px)

A(J de>J0|vwnlp(X)_sz" -V (§w,)dx — B(JQF(x, wn)dx)J-Qf (xw,)éw,dx

- J g(x,w,)éw,dS — 0,n — co.
30

According to the Holder inequality, we have

0< lim lim

e—0n—oo

a px)

e—0n—o0

p(x)
A < J M dx>j len|p(x)7 ZanVE - w,dx
Q

S0 < 1P (39)

Let & (x) € C° (Q), and define & (x) = &((x — x;)/¢), such
that

&(x) = 1in B(x;,€),

40
&(x) = 0in B(x;, 2¢), |VE| S%in Q. (40)

Consider {w,¢}. As J' (w,) — 0 in (WP (Q))*, we
obtain

Nim (J' (w,), éw,) =0, (41)

ie.,

(42)

(p(x)-1/p(x)) 1/p(x)
<a, lim lim <jQ|an|P(x)) (jQ|V£|P(x)|wn|P(x)dx)

1/p(x)
<a,C lim J |VE|P(X)|wn|P(x)dx
e—0 B(x;2¢)

(1/N) .
<a,C lim (J IVEINdx> (J |wn|P (x)dx>
e—0 B (xi,Zs) B (xi,Zs)

(43)
1/p* (x)

. 1/p* (%)
<a,C lim J |wn|P “dx
e—0\ J B(x;2¢)

=0.

It is easy to verify that
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im lim J £ (3w, )Ew, dx = 0 (44) Hence, from equations (37)-(43), we have
e—0n—oo0 ) O > " ’
v [P ;
Jm, A< Jn% dx JQ|an|p( e - ng(x, wp)w,dS| = 0. (45)
Then, a \NP (%)
IV, [P o >d, J IVwIP(x)dx+d4-SN<D—°> - ds|0)
Al | 4 —d Vuw,|”Edx = J , ds, o 3
a \NP (x:)
N[ %
aOJ |anlp(x)fdst3J |wn|q<x)£d8, 2d,-$S (D_3) - ds|Q|.
Q oQ
This is not true. Consequently, y; =0 for every i € I.
aOJQ£dy =D 3Jaﬂfd"‘ Furthermore, when n — 0o, we have
46 x

(o | fwfas — | s (49)

When ¢ — 0, we conclude that v;>ay/D;y;. Then, oa o0
through  equation  (39), we obtain P >g We have that {w,} ¢ W& (Q) is bounded. Then, for
((ag/D3)u;) VP &) which suggests that a subsequence {w,} and w € W"*® (Q), we have {w,}—w

' N in W) (Q). Observe that
o/ a7 ()
WizS| — ory; = 0. (47)
D,

Suppose that the first case g; > SN (a/D;)N'F" ™9 is true;
for some i € I,

. , 1+6
= Jim (1) (7 @50, ))

>d,- lim (J |an|"(")dx>—d5|n|
Q

n— 00

=d4-J du - dg)Q
Q

|w, - w”p(x) =(J" (w,) - J (w),w, - w) + B<J-QF(x, w, — w)dx)JQ (f (xw,) - f (x,w)) (w, - w)dx

(50)

+ ,[BQ (9(xw,) - g(x,w))(w, -w)dS.

In fact, it is clear that

J' (w,) -1 (w),w, - w) — 0,n — co. (51)

UQ (f (v w,) - f (x,w)) (w, ~ w)dx

Using the Holder inequality and the fact
lw, - wl,xy — 0, n — co, we obtain

s|f(x,wn)—f(x,w)|q(x)|wn—w|P(x)—>O,n—>oo. (52)
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Because {w,} — w in L1® (0Q), according to Prop-
osition 5, we obtain that WHP™¥ (Q) is compactly embedded
L1%) (3Q)). Thus, we obtain

[ (9o~ g0sw) (w, - w)ds — 0,1 — oo
(53)

B |Vw - Vw|p(x)
“wn - w"p(x) - A<JQHPT

(Vw, - Vw)dx — 0,n —> co0.

It is known that

9
Through equations (51)-(53), we can deduce that
dx>j <|an|p(x)72an —IVwIP(x)_ZVw>

o (54)

Ju - Vlz Vp<2

com

P 2_P) = &y

(lul +1v1) u,veRY (55)

(Iulp_zu P v u - v) >

cplu -vf, Vp=2,

Combining equations (54) and (55), we can deduce that

J <|an - Vw|p(x)>dx — 0,n — oo0. (56)
Q

Thus, according to Proposition 3 (3), we can prove that
lw, = wl, ) — 0, n — oo. O

4. The Proof of Main Results

Proof of Theorem 1. We use the mountain pass theorem to
find critical values below level ¢; thus, we need to verify that
the functional J satisfies Theorem 8.

According to Lemma 10, the function ] satisfies the local
(PS) condition. Apparently, J(0) = 0.

First, we verify (L,). If |w|l = H is small enough, then

J(w) = A(jﬂ'vw'P(X) dx) - B(JQF(’C’ w)dx) - LQG(x, w)ds

p(x)

>Cllwl - Cyllwlf™ - Imcﬂwlq"‘)ds

(57)

>Clwl?" - CylwlF - Csllwll? .

We define T(t) = C,t*" —C,tF™ —C4t. Because
apt <1~ and ap*<q, we can easily obtain that
T (H)>h>0 for some H sufficiently small.

Next, we verify (L,). For sufficiently large s> 0, from
(a,) it follows that A(s) < C,s’%; through (f,), (f,), we get
that F(x,s)>[s|*; (b,) implies that B(s)>Css"; (g;) and
(g5) imply that G (x,s) > |s|* > |s|*.

Next, we fix @ € WHP™ (Q)\{0}, and then we obtain

J (t@) < CgtF - C,i* — Cyt™. (58)

For t large enough, let v, = t®@; because op* <Ay, J (v,) =
J(t®@) — —o0o0 as t —> +00.

We can draw the subsequent results from the Fountain
theorem, which is similar to the proof of Theorem 4.8
in [25]. O

Proof of Theorem 2. We prove the result using Theorem 9.
From (f,) and (g,), it can be known that the functional J is
an even energy functional and satisfies the local (PS)
condition.

We assume that the |w| > 1; thus,
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T (w) = ( 'Vw(li) ) - E(JQF(x, w)dx) - Jagc(x, w)ds

(JQIV;U(I; x)“ B q(JQ'wlT("’dx)ﬁ ~ LQCZ(I +|w|q<x)>ds (59)

1 prt
2wl = cymax]lwlff oy 10057 100y 0l o | = o

We obtalp the function below if max{|w| L7 ()

7] lw|? lw|? = |wl’;

L7 () 'Wlraw aa) Wl o0) LT (Q)°
J (w) 2wl - Wl 10T (s 101700 0y 1012, -
w 2% w €3 maxi|wlj . g er(x v WL ey WL aay [~ €4
1 ﬁ.[d’
F“w” 5305]( ”w” —Cy (60)
+ l - R+ +
=l (+||w||“P P eyl )—c4.
p
Now, we take r, = |lw|| = (T+c3(xfr+)(”‘xp:ﬁ7+); accord- Because a; — 0, r; — 00, and 7~ > p*, ] (w) — 0.
ingly, we have For tﬁe other cases, using a similar method, we
1 " b obtain] (w) — 00, since aj— 0, /5]- — 0, j — o0.
J (w)>—llw|* - Cska ||u)|| Thus, (N,) is true.
p According to (f,) and (g;), we obtain
1 -1 R S > B _
- ] _F"w”ap Breprt ¢, (61) F(x,8)=2cs5ls]" —¢s5, V(x,5) e QxR, (62)
G(x,8)2cgls|” —ce» V(x,s5) € 0Q xR.
1 1 - .
= <? _ T_+>||w"ap —c, Let w € Y ;; then, we have
1 . A
J (w) <—{Jw|” —(j (cslol - e;)dx) - j (cslwl” - c6)ds
p Q 20
(63)
1 + A
<—Jw|°? —<CSJ |w|”dx> - C6J |w|*dS + c,.
p Q 20
Because dim Y; <00, all norms on Y; are equivalent. When |w| — oo, we have a; — — 00 and
Therefore, k>Au>op*. Thus, (N,) is true.

1 X N On the basis of the proofs of (N;) and (N,), we let
J(w) sp—_||w||"" = csllwl™ - cslwl* + ¢ (64)  p;>r;>0. Then, the conclusion is valid. O
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