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In this article, we consider a class of nonlocal p(x)-Laplace equations with nonlinear boundary conditions. When the nonlinear
boundary involves critical exponents, using the concentration compactness principle, mountain pass lemma, and fountain
theorem, we can prove the existence and multiplicity of solutions.

1. Introduction

In this article, we study the following problem:

− A 􏽚
Ω

|∇u|
p(x)

p(x)
dx􏼠 􏼡∆p(x)u � B 􏽚

Ω
F(x, u)dx􏼒 􏼓f(x, u), x ∈ Ω,

|∇u|
p(x)− 2zu

zv
� g(x, u), x ∈ zΩ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

where Ω ⊂ RN(N≥ 3) is a bounded domain with smooth
boundary, z/zv is the outer unit normal derivative, ∆p(x)u �

div(|∇u|p(x)− 2∇u) is the p(x)-Laplace operator, and p(x) is
a continuous function on Ω, 1< infx∈Ω p(x)≤ supx∈Ω
p(x)<N.

Tere are many relevant conclusions about the study of
p-Laplace equations with critical exponentials (see [1–3] and
references therein). In [1], the authors studied the following
problem:

− ∆pu + a(x)|u|
p− 2

u � f(x, u), x ∈ Ω,

|∇u|
p− 2zu

zv
� g(x, u), x ∈ zΩ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where ∆p � div(|∇u|p− 2∇u) with 1<p<N. Under several
conditions on f and g, the authors proved the existence of
infnitely solutions of problem (2). In (2), When the function
g(x, u) � η|u|p− 2u, 1<p<N, the relevant results were
obtained in [2].
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In [4, 5], the general operator (p, q)-Laplacian was
considered and also concentration results were produced,
while in [6], the existence in bounded sets was proved for
a p-Laplacian Dirichlet problem via blowup technique. In
[7], the generalized critical Schrödinger equations were
considered.

As we know, the Lions concentration compactness
principle (see [8]) is a basic tool to prove the existence of
solutions when handling nonlinear elliptic equations with
critical growth. In [9, 10], the authors extended the Lions
concentration compactness principle to the variable expo-
nent. In [11–13], by applying the concentration compactness
principle (see [9, 10]), the existence of solutions to the p(x)-
Laplace equation with Dirichlet boundary conditions were
studied.

In [14], the following problem,

− ∆p(x)u +|u|
p(x)− 2

u � f(x, u), x ∈ Ω,

|∇u|
p(x)− 2zu

zv
� |u|

q(x)− 2
u, x ∈ zΩ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

was discussed, where q(x) relates to the critical exponent.
Te authors proved that there are infnitely many small
solutions to this problem using the concentration com-
pactness principle (see [5]) and the symmetric mountain
pass theorem (see [15]).

With the further study of the problem, Kirchhof-type
equations (also known as nonlocal problems) have also
attracted extensive attention from scholars (see [16–19]). In
[18], according to the variational method and the (S+) map-
ping theorem, he obtained some conclusions on the existence
and multiplicity of the problem under weaker assumptions.

However, there are few conclusions for Kirchhof-type
equations with critical growth conditions and nonlinear
boundary conditions. Terefore, inspired by the above re-
search, this paper discusses the problem in (1). Te main
results of this article are the following.

Theorem 1. Suppose A(t): R+⟶ R and B(t): R⟶ R

are continuous functions which satisfy the following
conditions:

(a1)∃ a0 > 0, a1 > 0, such that a0 ≤A(s)≤ a1, s≥ 0;
(a2)∃ σ ∈ [0, 1], M1 > 0, such that σ 􏽢A(s)≥A(s)s,
s≥M1, where 􏽢A(s) � 􏽒

s

0 A(t)dt;
(a3)∃α> 0, such that lim supt⟶0+

􏽢A(t)/tα > 0;

(b1)∃c> 0, D1 > 0, such that |􏽢B(s)| ≤D1 + D1|s|
c,

s ∈ R, where 􏽢B(s) � 􏽒
s

0 B(t)dt;
(b2)∃λ> 1, M2 > 0, such that 0< λ􏽢B(s)≤B(s)s, s≥M2;
(b3)∃β> 0, such that lim inf t⟶0

􏽢B(t)/|t|β < +∞;
(f1) f: Ω × R⟶ R satisfes the Caratheodory con-
dition, and there exists D2 ≥ 0, such that

|f(x, s)|≤D2 + D2|s|
θ(x)− 1

,∀(x, s) ∈ Ω × R, (4)

where θ(x) ∈ C+(Ω), θ(x) <p∗(x), p∗(x) �

∞, p(x)≥N,

Np(x)/(N − p(x)), p(x) <N,
􏼨

(f2)∃μ>p+, M3 > 0, such that 0< μF(x, s)≤f(x, s)s,
|s|≥M3, ∀x ∈ Ω;
(f3)∃τ ∈ C0(Ω), such that 1< τ(x)<p∗(x) for x ∈ Ω
and lim inf t⟶0|f(x, t)|/|t|τ(x)− 1 < +∞ uniformly in
x ∈ Ω;
(g1)∃D3 ≥ 0, such that |g(x, s)|≤D3(1 + |s|q(x)− 1),
∀(x, s) ∈ zΩ × R, where q(x) � p∗(x)􏼈 􏼉≠∅; σp+ < η− ,
cθ+ <p− ;
(g2)∃q ∈ C0(Ω), such that 1< q(x)≤p∗(x) for x ∈ zΩ
and lim inf t⟶0|g(x, t)|/|t|q(x)− 1 < +∞ uniformly;
(g3)∃κ> λμ> 0, M4 > 0, such that 0< κG(x, t)≤
g(x, t)t, |t|≥M4, x ∈ zΩ.

When the conditions αp+ < βτ− , αp+ < q− , and σp+ < λμ
are satisfying, equation (1) has a nontrivial solution.

Theorem 2. Under the condition that Teorem 1 holds, the
following hypotheses are also satisfed:

(f4) when x ∈ Ω, s ∈ R, we have f(x, − s) � − f(x, s)

(g4) when x ∈ zΩ, s ∈ R, we have g(x, − s) � − g(x, s)

Ten, we obtain infnitely many solutions ±wn􏼈 􏼉 to
equation (1), and J(±wn)⟶ +∞ as n⟶∞, where ci, di,
Ci, and Di(i � 1, 2, ...) denote diferent positive constants.

2. Preliminaries

In this section, we give some properties and defnitions of
Lp(x)(Ω) and W1,p(x)(Ω) to deal with equation (1).

Let Ω ⊂ RN be a bounded region, and let

C+(Ω) � θ(x): θ(x) ∈ C(Ω), θ(x) > 1,∀x ∈ Ω􏼈 􏼉,

θ+
� max θ(x): x ∈ Ω􏼈 􏼉,

θ−
� min θ(x): x ∈ Ω􏼈 􏼉,

L
p(x)

(Ω) � w: w ismeasurable real − valued function, 􏽚
Ω

|w(x)|
p(x)dx<∞􏼚 􏼛.

(5)

We can introduce the norm on Lp(x)(Ω) by
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|w|Lp(x)(Ω) ≔ |w|p(x)

� inf κ> 0: 􏽚
Ω

w(x)

κ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

p(x)

dx≤ 1􏼨 􏼩,

(6)

which is a Banach space.
Te defnition of space W1,p(x)(Ω) is as follows:

W
1,p(x)

(Ω) � w ∈ L
p(x)

(Ω): |∇w| ∈ L
p(x)

(Ω)􏽮 􏽯, (7)

if the following norm is introduced:

‖w‖ � inf κ> 0: 􏽚
Ω

w(x)

κ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

p(x)

+
∇w(x)

κ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

p(x)

dx≤ 1􏼨 􏼩.

(8)

It is well known that W1,p(x)(Ω) is also a Banach space.
Specifcally, its dual space is W1,p∗(x)(Ω), where
1/p∗(x) + 1/p(x) � 1. For every w ∈W1,p(x)(Ω) and
v ∈W1,p∗(x)(Ω), we have

􏽚
Ω
wvdx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤

1
p

− +
1

p
∗−􏼠 􏼡|w|1,p(x)|v|1,p∗(x). (9)

By virtue of H€older inequality holds (see [20, 21]).

Proposition 3 (see [20, 21]). Let χ(w) � 􏽒Ω|w|p(x)dx,
∀w ∈ Lp(x)(Ω); then, we have

(1) |w|p(x) < 1(� 1; > 1)⇔ χ(w)< 1(� 1; > 1)

(2) |w|p(x) > 1⇒ |w|
p−

p(x) ≤ χ(w)≤ |w|
p+

p(x); |w|p(x) < 1⇒
|w|

p+

p(x) ≤ χ(w)≤ |w|
p

p(x)

(3) |wn − w|p(x)⟶ 0⇔ χ(wn − w)⟶ 0

Proposition 4 (see [20, 21])

(1) W1,p(x)(Ω) is a refexive, separable Banach space
(2) If p ∈ C+(Ω), then the embedding from W1,p(x)(Ω) to

Lp(x)(Ω) is continuous and compact

Proposition 5 (see [22]). Let Ω ⊂ RN be an open bounded
region with a Lipschitz boundary.

Assume that p ∈ C0(Ω), 1<p− ≤p+ <N, and that
υ ∈ C0(zΩ) satisfes the condition.

1≤ υ(x)<
(N − 1)p(x)

N − p(x)
, ∀x ∈ zΩ. (10)

Ten, the boundary trace embedding from W1,p(x)(Ω) to
Lυ(x)(zΩ) is compact, with S is the embedding constant.

In this paper, we denote X: � W1,p(x)(Ω),
X∗: � (W1,p(x)(Ω))∗, and we let “⇀” and “⟶” represent
weak convergence and strong convergence, respectively.

Below, we give the defnition of weak solutions for
equation (1).

Defnition 6. A function w0 ∈ X is a weak solution of
equation (1), if, for any v ∈ X,

A 􏽚
Ω

∇w0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p(x)

p(x)
dx⎛⎝ ⎞⎠􏽚

Ω
∇w0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)− 2∇w0 · ∇vdx − B 􏽚

Ω
F x, w0( 􏼁dx􏼒 􏼓􏽚

Ω
f x, w0( 􏼁vdx

− 􏽚
zΩ

g x, w0( 􏼁vdS � 0,

(11)

where F(x, s) � 􏽒
s

0 f(x, t)dt and dS is the surface measure
on zΩ.

Functional J in X associated to the equation in equation
(1):

J(w) � 􏽢A 􏽚
Ω

|∇w|
p(x)

p(x)
dx􏼠 􏼡

− 􏽢B 􏽚
Ω

F(x, w)dx􏼒 􏼓 − 􏽚
zΩ

G(x, w)dS,

(12)

where G(x, s) � 􏽒
s

0 g(x, t)dt.
We defne an operator J′: X⟶ X∗ by

J′(w), v􏼊 􏼋 � A 􏽚
Ω

|∇w|
p(x)

p(x)
dx􏼠 􏼡􏽚

Ω
|∇w|

p(x)− 2∇w · ∇vdx − B 􏽚
Ω

F(x, w)dx􏼒 􏼓􏽚
Ω

f(x, w)vdx

− 􏽚
zΩ

g(x, w)vdS, ∀w, v ∈W
1,p(x)

(Ω).

(13)

Discrete Dynamics in Nature and Society 3



Defnition 7 (see [14]). If any sequence wn􏼈 􏼉 ⊂ X, which
satisfes that J(wn)􏼈 􏼉 is bounded and ‖J′(wn)‖X⟶ 0 as
n⟶∞, has a convergent subsequence, then J is said to
satisfy the Palais–Smale condition ((PS) condition for short).

Theorem 8 (see [23]). Assume that X is a Banach space;
J ∈ C1(X,R) if J is said to satisfy the (PS) condition and
J(0) � 0. Suppose

L1( 􏼁∃H> 0, h> 0: ‖u‖X � H⇒ J(w)> h; ,

L2( 􏼁∃ v0 ∈ X: v0
����

����≥H and J v0( 􏼁< h.
(14)

Ten, J has a critical value.

c � inf
ω∈Γ

max
0≤t≤1

J(ω(t))≥ h, (15)

where

Γ � ω ∈ C[0, 1];ω(0) � 0,ω(1) � v0􏼈 􏼉. (16)

Let X be a separable, refexive Banach space; then,
∃ ln􏼈 􏼉
∞
n�1 ⊂ X, l∗n􏼈 􏼉

∞
n�1 ⊂ X∗, and we have

l
∗
n lm( 􏼁 � ζn,m

�
0, n≠m,

1, n � m,
􏼨 and

X � span ln | n � 1, 2, . . .􏼈 􏼉,

X
∗

� spanW∗
l
∗
n | n � 1, 2, . . .􏼈 􏼉.

(17)

For j � 1, 2, ..., we have

Xj � span ej􏽮 􏽯,

Yj � ⊕ji�1Xi,

Zj � ⊕∞i�jXi.

(18)

Theorem 9 (see [24]). Let J ∈ C1(X,R), J(− w) � J(w). If,
for every j ∈ N, there exists ρj > rj > 0, such that

(N1)aj :� maxu∈Yj,‖u‖�ρj
J(w)≤ 0, j⟶∞

(N2)bj :� infu∈Zj,‖u‖�rj
J(w)⟶∞, j⟶∞

(N3) J satisfes the (PS) condition for every c> 0

Ten, J has an unbounded sequence of critical values.

3. Local (PS) Condition

Lemma 1 . Suppose that functions A and B are continuous
which satisfy the conditions: (a1)(a2)(b1)(b2), f, and g

satisfy the conditions (f1)(f2)(g1), σp+ < η− and cθ+ <p−

hold.Ten, all (PS) sequences of J are bounded in W1,p(x)(Ω).

According to the conditions of Lemma 10, we can know
that the nonlinear boundary of (1) involves critical expo-
nents and, thus, the inclusion from W1,p(x)(Ω) to Lq(x)(zΩ)

loses compactness; we can no longer expect the (PS) con-
dition to hold. However, we can solve this difculty by using
the concentration compactness principle.

We use the following lemma to prove that J satisfes the
local (PS) condition:

Lemma 11 (see [10]). Suppose that q(x) and p(x) are two
continuous functions, such that

1≤ q(x)≤p
∗
(x), 1< inf

x∈Ω
p(x)≤ sup

x∈Ω
p(x)<N inΩ.

(19)

Let wj􏽮 􏽯
j∈N⇀w in W1,p(x)(Ω), such that

∇wj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
p(x)
⇀ dμ, wj

􏼌􏼌􏼌􏼌􏼌􏼌zΩ

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

q(x)

⇀ d]weakly−
∗in the sense of measures. (20)

Note that d] is a measure supported on zΩ. Assume that
Λ � x ∈ zΩ | q(x) � p∗(x)􏼈 􏼉≠∅. Ten, for some count-
able index, set I, we have

d] � |w|
q(x)

+ 􏽘
i∈I

]iδxi
, ]i > 0,

dμ≥ |∇w|
p(x)

+ 􏽘
i∈I

μiδxi
, μi > 0,

S]1/p
∗ xi( )

i ≤ μ1/p xi( )
i , i ∈ I,

(21)

where xi􏼈 􏼉
l

i�1 ⊂ Λ. In the Sobolev trace embedding theorem,
S is the best constant.

Proof of Lemma 10. Let g(x, s) � y(x, s) + z(x, s) and
denote

Y(x, s) � 􏽚
s

0
y(x, t)dt,

Z(x, s) � 􏽚
s

0
z(x, t)dt.

(22)

Let us make the following assumptions.
(O1)∃M> 0 and a function η(x) ∈ C1(Ω) satisfying

η(x)≤ q(x), ∀x ∈ Ω, (23)

such that z satisfes

0<Z(x, s)≤
s

η(x)
z(x, s), ∀x ∈ Ω, |s|≥M. (24)

(O2) For η(x) in (O1), there exists δ > 0 small enough,
such that y satisfes

|y(x, s)|≤ |s|
(η(x)/1+δ)− 1

, ∀x ∈ Ω, |s|≥M. (25)
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For convenience, we defne

E wn( 􏼁 � 􏽢A 􏽚
Ω

∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)

p(x)
dx⎛⎝ ⎞⎠. (26)

For a large enough ‖wn‖, according to (a2), we have

σp
+
E wn( 􏼁 � σp

+ 􏽢A 􏽚
Ω

∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)

p(x)
dx⎛⎝ ⎞⎠

≥A 􏽚
Ω

∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)

p(x)
dx⎛⎝ ⎞⎠􏽚

Ω
∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)dx � E′ wn( 􏼁wn.

(27)

Under assumptions (f1), we obtain |F(x, s)|≤D2
(1 + |s|θ(x)).

Te conditions (O1), (O2) imply that Z(x, s)≥ |s|η(x),
∀x ∈ Ω, when |s| is large enough,

|Y(x, s) − βy(x, s)s|≤D4 + D4|s|
(η(x)/1+δ)

, ∀(x, s) ∈ Ω × R.

(28)

Let wn􏼈 􏼉 be a (PS) sequence and assume ‖wn‖⟶∞.
Since η(x) ∈ C1(Ω), we have

c + wn

����
����p(x)

≥ J wn( 􏼁 − J′ wn( 􏼁,
1 + δ
η(x)

wn􏼪 􏼫

� E wn( 􏼁 −
σp

+

η(x)
E wn( 􏼁 − A 􏽚

Ω

∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)

p(x)
dx⎛⎝ ⎞⎠􏽚

Ω
∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)− 2∇wn · ∇

1 + δ
η(x)

wn􏼠 􏼡dx +
σp

+

η(x)
E wn( 􏼁

− 􏽢B 􏽚
Ω

F x, wn( 􏼁dx􏼒 􏼓 − 􏽚
zΩ

G x, wn( 􏼁dS +
1 + δ
η(x)

B 􏽚
Ω

F x, wn( 􏼁dx􏼒 􏼓􏽚
Ω

wnf x, wn( 􏼁dx +
1 + δ
η(x)

􏽚
zΩ

wng x, wn( 􏼁dS

≥ 1 −
σp

+

η(x)
􏼠 􏼡E wn( 􏼁 +

1
η(x)

σp
+
E wn( 􏼁 − (1 + δ)E′ wn( 􏼁wn( 􏼁 +

λμ(1 + δ)

η+ − 1􏼠 􏼡􏽢B 􏽚
Ω

F x, wn( 􏼁dx􏼒 􏼓

+A 􏽚
Ω

∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)

p(x)
dx⎛⎝ ⎞⎠􏽚

Ω

1 + δ
η2(x)

wn ∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)− 1∇η(x)dx − 􏽚

zΩ
G x, wn( 􏼁dS +

1 + δ
η(x)

􏽚
zΩ

wng x, wn( 􏼁dS

≥ a0
1

σp
+ −

1
η−􏼠 􏼡􏽚

Ω
∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)dx − D2

λμ(1 + δ)

η+ − 1􏼠 􏼡 wn

����
����

cθ(x)
− a1􏽚

Ω

(1 + δ)|∇η(x)|

η2(x)
wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)− 1dx

+􏽚
zΩ

δ
η(x)

Z x, wn( 􏼁dS − 􏽚
zΩ

D4 wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
(η(x)/1+δ)dS − D4|Ω|.

(29)

According to the Young inequality, we obtain
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(1 + δ)|∇η(x)|

η2(x)
wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)− 1 ≤d1 wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)− 1

≤d1 ε1 ∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)

+ ε1− p+

1 wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)

􏼒 􏼓,

(30)

and

wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x) ≤ ε2 wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q(x)

+ ε2
− p+/(q− p)−( ). (31)

According to the embedding theorem (see [19, 20]), it
follows that

wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌q(x)
≤ d2 wn

����
����p(x)

. (32)

It is not hard to see that

􏽚
zΩ

D4 wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
(η(x)/1+δ)dS≤d3 + 􏽚

zΩ

ε3
1 + δ

wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
η(x)dS. (33)

Substitute equations (30)–(33) into the above equation;
then,

c + wn

����
����p(x)

≥ a0
1

σp
+ −

1
η−􏼠 􏼡􏽚

Ω
∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)dx − D2

λμ(1 + δ)

η+ − 1􏼠 􏼡 wn

����
����

cθ(x)

− a1􏽚
Ω

(1 + δ)|∇η(x)|

η2(x)
wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)− 1dx + 􏽚

zΩ

δ
η(x)

Z x, wn( 􏼁dS − 􏽚
zΩ

D4 wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
(η(x)/1+δ)dS − D4|Ω|

≥ a0
1

σp
+ −

1
η−􏼠 􏼡􏽚

Ω
∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)dx − D2

λμ(1 + δ)

η+ − 1􏼠 􏼡 wn

����
����

cθ(x)
− a1d1ε1􏽚

Ω
∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)

dx

− a1d1ε
1− p+

1 􏽚
Ω

wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)dx + 􏽚

zΩ

δ
η(x)

wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
η(x)dS − 􏽚

zΩ

ε3
1 + δ

wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
η(x)dS − d3 + D4( 􏼁|Ω|

≥ a0
1

σp
+ −

1
η−􏼠 􏼡􏽚

Ω
∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)dx − D2

λμ(1 + δ)

η+ − 1􏼠 􏼡 wn

����
����

cθ(x)
− a1d1ε1􏽚

Ω
∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)dx

− a1d1ε
1− p+

1 ε2􏽚
Ω

wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q(x)

dx − a1d1ε
1− p+

1 ε− p+/(q− p)−( )
2 |Ω| − d3 + D4( 􏼁|Ω| +

δ
η(x)

−
ε3

1 + δ
􏼠 􏼡􏽚

zΩ
wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
η(x)

dS

≥ a0
1

σp
+ −

1
η−􏼠 􏼡 − a1d1ε1 − a1d1ε1

1− p+

ε2d2􏼠 􏼡 wn

����
����

p(x)
− D2

λμ(1 + δ)

η+ − 1􏼠 􏼡 wn

����
����

cθ(x)

+
δ

η(x)
−

ε3
1 + δ

􏼠 􏼡 wn

����
����
η(x)

− a1d1ε
1− p+

1 ε− p+/(q− p)−( )
2 + d3 + D4􏼒 􏼓|Ω|.

(34)

When the positive constant εi(1 � 1, 2, 3) is small enough,
we have

a0
1

σp
+ −

1
η−􏼠 􏼡 − a1d1ε1 − a1d1ε1

1− p+

ε2d2 � d4 > 0,

a1d1ε1
1− p+

ε2
− p+/(q− p)−( ) + d3 + D4 � d5 > 0.

(35)

Terefore,

c + wn

����
����p(x)
≥ J wn( 􏼁 − J′ wn( 􏼁,

1 + δ
η(x)

wn􏼪 􏼫

≥ d4 wn

����
����

p−

− D2
λμ(1 + δ)

η+ − 1􏼠 􏼡 wn

����
����

cθ+

− d5|Ω|.

(36)

Because cθ+ <p− , wn􏼈 􏼉 is bounded in W1,p(x)(Ω). □
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Theorem 12. Let wn􏼈 􏼉 ⊂W1,p(x)(Ω) be a (PS) sequence,
with energy level c. If c≤ d4 · SN(a0/D3)

(N/p∗(xi)) − d5|Ω|,
then there exists a subsequence wn􏼈 􏼉⟶ w in W1,p(x)(Ω).

Proof. According to Lemma 10, if wn􏼈 􏼉 is a PS sequence, it
can be concluded that wn􏼈 􏼉 is bound in W1,p(x)(Ω).
According to Lemma 11, we know that there exists a sub-
sequence wn􏼈 􏼉 (still denoted as wj􏽮 􏽯), such that

wj⇀w inW
1,p(x)

(Ω),

wj⟶ w inL
r(x)

(Ω), 1≤ r(x)< <p
∗(x)

,

∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)⇀ dμ≥ |∇w|

p(x)
+ 􏽘

j∈I
μiδxj

, μj > 0,

(37)

wn

􏼌􏼌􏼌􏼌zΩ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q(x)⇀ d] � |w|

q(x)
+ 􏽘

j∈I
]jδxj

, ]j > 0, (38)

S]1/p
∗

xj( 􏼁

j ≤ μ1/p xj( 􏼁

j . (39)

Let ξ(x) ∈ C∞0 (Ω), and defne ξ(x) � ξ((x − xi)/ε), such
that

ξ(x) � 1 inB xi, ε( 􏼁,

ξ(x) � 0 inB xi, 2ε( 􏼁
c
, |∇ξ|≤ 2ε inΩ.

(40)

Consider wnξ􏼈 􏼉. As J′(wn)⟶ 0 in (W1,p(x)(Ω))∗, we
obtain

lim
n⟶∞

J′ wn( 􏼁, ξwn􏼊 􏼋 � 0, (41)

i.e.,

A 􏽚
Ω

∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)

p(x)
dx⎛⎝ ⎞⎠􏽚

Ω
∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)− 2∇wn · ∇ ξwn( 􏼁dx − B 􏽚

Ω
F x, wn( 􏼁dx􏼒 􏼓􏽚

Ω
f x, wn( 􏼁ξwndx

− 􏽚
zΩ

g x, wn( 􏼁ξwndS⟶ 0, n⟶∞.

(42)

According to the H€older inequality, we have

0≤ lim
ε⟶0

lim
n⟶∞

A 􏽚
Ω

∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)

p(x)
dx⎛⎝ ⎞⎠􏽚

Ω
∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)− 2∇wn∇ξ · wndx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ a1 lim
ε⟶0

lim
n⟶∞

􏽚
Ω
∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)

􏼒 􏼓
(p(x)− 1/p(x))

􏽚
Ω

|∇ξ|
p(x)

wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)dx􏼒 􏼓

1/p(x)

≤ a1C lim
ε⟶0

􏽚
B xi,2ε( )

|∇ξ|
p(x)

wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)dx􏼠 􏼡

1/p(x)

≤ a1C lim
ε⟶0

􏽚
B xi,2ε( )

|∇ξ|
Ndx􏼠 􏼡

(1/N)

􏽚
B xi,2ε( )

wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p∗(x)dx􏼠 􏼡

1/p∗(x)

≤ a1C lim
ε⟶0

􏽚
B xi,2ε( )

wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p∗(x)dx􏼠 􏼡

1/p∗(x)

� 0.

(43)

It is easy to verify that
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lim
ε⟶0

lim
n⟶∞

􏽚
Ω

f x, wn( 􏼁ξwndx � 0. (44)
Hence, from equations (37)–(43), we have

lim
ε⟶0

A 􏽚
Ω

∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)

p(x)
dx⎛⎝ ⎞⎠􏽚

Ω
∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)ξdx − 􏽚

zΩ
g x, wn( 􏼁ξwndS⎡⎢⎢⎣ ⎤⎥⎥⎦ � 0. (45)

Ten,

A 􏽚
Ω

∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)

p(x)
dx⎛⎝ ⎞⎠􏽚

Ω
∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)ξdx � 􏽚

zΩ
g x, wn( 􏼁ξwndS,

a0􏽚
Ω
∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)ξdx≤D3􏽚

zΩ
wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q(x)ξdS,

a0􏽚
Ω
ξdμ≤D3􏽚

zΩ
ξd].

(46)

When ε⟶ 0, we conclude that ]i ≥ a0/D3μi. Ten,
through equation (39), we obtain μ1/p(xi)

i ≥ S

((a0/D3)μi)
(1/p∗(xi)), which suggests that

μi ≥ S
N a0

D3
􏼠 􏼡

N/p∗ xi( )( )

or μi � 0. (47)

Suppose that the frst case μi ≥ SN(a0/D3)
N/p∗(xi) is true;

for some i ∈ I,

c � lim
n⟶∞

J wn( 􏼁 − J′ wn( 􏼁,
1 + δ
η(x)

wn􏼪 􏼫􏼠 􏼡

≥ d4 · lim
n⟶∞

􏽚
Ω
∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)dx􏼒 􏼓 − d5|Ω|

� d4 · 􏽚
Ω
dμ − d5|Ω|

≥ d4 · 􏽚
Ω

|∇w|
p(x)dx + d4 · S

N a0

D3
􏼠 􏼡

N/p∗ xi( )

− d5|Ω|

≥ d4 · S
N a0

D3
􏼠 􏼡

N/p∗ xi( )

− d5|Ω|.

(48)

Tis is not true. Consequently, μi � 0 for every i ∈ I.
Furthermore, when n⟶∞, we have

􏽚
zΩ

wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q(x)dS⟶ 􏽚

zΩ
|w|

q(x)dS. (49)

We have that wn􏼈 􏼉 ⊂W1,p(x)(Ω) is bounded. Ten, for
a subsequence wn􏼈 􏼉 and w ∈W1,p(x)(Ω), we have wn􏼈 􏼉⇀w

in W1,p(x)(Ω). Observe that

wn − w
����

����p(x)
� J′ wn( 􏼁 − J′(w), wn − w􏼊 􏼋 + B 􏽚

Ω
F x, wn − w( 􏼁dx􏼒 􏼓􏽚

Ω
f x, wn( 􏼁 − f(x, w)( 􏼁 wn − w( 􏼁dx

+ 􏽚
zΩ

g x, wn( 􏼁 − g(x, w)( 􏼁 wn − w( 􏼁dS.

(50)

In fact, it is clear that

J′ wn( 􏼁 − J′(w), wn − w􏼊 􏼋⟶ 0, n⟶∞. (51)

Using the H€older inequality and the fact
|wn − w|p(x)⟶ 0, n⟶∞, we obtain

􏽚
Ω

f x, wn( 􏼁 − f(x, w)( 􏼁 wn − w( 􏼁dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ f x, wn( 􏼁 − f(x, w)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌q(x)

wn − w
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌p(x)
⟶ 0, n⟶∞. (52)
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Because wn􏼈 􏼉⟶ w in Lq(x)(zΩ), according to Prop-
osition 5, we obtain that W1,p(x)(Ω) is compactly embedded
Lq(x)(zΩ). Tus, we obtain

􏽚
zΩ

g x, wn( 􏼁 − g(x, w)( 􏼁 wn − w( 􏼁dS⟶ 0, n⟶∞.

(53)

Trough equations (51)–(53), we can deduce that

wn − w
����

����p(x)
� A 􏽚

Ω

∇wn − ∇w
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
p(x)

p(x)
dx⎛⎝ ⎞⎠􏽚

Ω
∇wn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)− 2∇wn − |∇w|

p(x)− 2∇w􏼒 􏼓

∇wn − ∇w( 􏼁dx⟶ 0, n⟶∞.

(54)

It is known that

|u|
p− 2

u − |v|
p− 2

v, u − v􏼐 􏼑≥
cp

|u − v|
2

(|u| +|v|)
2− p

, ∀p≤ 2,

cp|u − v|
p
, ∀p≥ 2,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u, v ∈ RN
. (55)

Combining equations (54) and (55), we can deduce that

􏽚
Ω
∇wn − ∇w

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p(x)

􏼒 􏼓dx⟶ 0, n⟶∞. (56)

Tus, according to Proposition 3 (3), we can prove that
‖wn − w‖p(x)⟶ 0, n⟶∞. □

4. The Proof of Main Results

Proof of Teorem 1. We use the mountain pass theorem to
fnd critical values below level c; thus, we need to verify that
the functional J satisfes Teorem 8.

According to Lemma 10, the function J satisfes the local
(PS) condition. Apparently, J(0) � 0.

First, we verify (L1). If ‖w‖ � H is small enough, then

J(w) � 􏽢A 􏽚
Ω

|∇w|
p(x)

p(x)
dx􏼠 􏼡 − 􏽢B 􏽚

Ω
F(x, w)dx􏼒 􏼓 − 􏽚

zΩ
G(x, w)dS

≥C1‖w‖
αp+

− C2‖w‖
βτ−

− 􏽚
zΩ

C3|w|
q(x)dS

≥C1‖w‖
αp+

− C2‖w‖
βτ−

− C3‖w‖
q−

.

(57)

We defne T(t) � C1t
αp+

− C2t
βτ−

− C3t
q− . Because

αp+ < βτ− and αp+ < q− , we can easily obtain that
T(H)> h> 0 for some H sufciently small.

Next, we verify (L2). For sufciently large s> 0, from
(a2) it follows that 􏽢A(s)≤C4s

σ ; through (f1), (f2), we get
that F(x, s)≥ |s|μ; (b2) implies that 􏽢B(s)≥C5|s|λ; (g1) and
(g3) imply that G(x, s)≥ |s|κ ≥ |s|λμ.

Next, we fx ϖ ∈W1,p(x)(Ω)\ 0{ }, and then we obtain

J(tϖ)≤C6t
σp+

− C7t
λμ

− C8t
λμ

. (58)

For t large enough, let v0 � tϖ; because σp+ < λμ, J(v0) �

J(tϖ)⟶ − ∞ as t⟶ +∞.
We can draw the subsequent results from the Fountain

theorem, which is similar to the proof of Teorem 4.8
in [25]. □

Proof of Teorem 2. We prove the result using Teorem 9.
From (f4) and (g4), it can be known that the functional J is
an even energy functional and satisfes the local (PS)
condition.

We assume that the ‖w‖> 1; thus,
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J(w) � 􏽢A 􏽚
Ω

|∇w|
p(x)

p(x)
dx􏼠 􏼡 − 􏽢B 􏽚

Ω
F(x, w)dx􏼒 􏼓 − 􏽚

zΩ
G(x, w)dS

≥ 􏽚
Ω

|∇w|p(x)

p(x)
dx􏼠 􏼡

α

− c1 􏽚
Ω

|w|
τ(x)dx􏼒 􏼓

β
− 􏽚

zΩ
c2 1 +|w|

q(x)
􏼐 􏼑dS

≥
1

p
+‖w‖

αp−

− c3 max |w|
βτ+

Lτ(x)(Ω)
, |w|

βτ−

Lτ(x)(Ω)
, |w|

q+

Lq(x)(zΩ)
, |w|

q−

Lq(x)(zΩ)
􏼚 􏼛 − c4.

(59)

We obtain the function below if max |w|
βτ+

Lτ(x)(Ω)
,􏼚

|w|
βτ−

Lτ(x)(Ω)
, |w|

q+

Lq(x)(zΩ)
, |w|

q−

Lq(x)(zΩ)
􏼩 � |w|

βτ+

Lτ(x)(Ω)
.

J(w)≥
1

p
+‖w‖

αp−

− c3 max |w|
βτ+

Lτ(x)(Ω)
, |w|

βτ−

Lτ(x)(Ω)
, |w|

q+

Lq(x)(zΩ)
, |w|

q−

Lq(x)(zΩ)
􏼚 􏼛 − c4

≥
1

p
+‖w‖

αp−

− c3α
βτ+

k ‖w‖
βτ+

− c4

� ‖w‖
βτ+ 1

p
+‖w‖

αp− − βτ+

− c3α
βτ+

k􏼠 􏼡 − c4.

(60)

Now, we take rk � ‖w‖ � (τ+c3α
βτ+

k )(1/αp− − βτ+); accord-
ingly, we have

J(w)≥
1

p
+‖w‖

αp−

− c3α
βτ+

k ‖w‖
βτ+

− c4

�
1

p
+‖w‖

αp−

−
1
τ+‖w‖

αp− − βτ++βτ+

− c4

�
1

p
+ −

1
τ+􏼠 􏼡‖w‖

αp−

− c4.

(61)

Because αj⟶ 0, rj⟶∞, and τ− >p+, J(w)⟶∞.
For the other cases, using a similar method, we

obtainJ(w)⟶∞, since αj⟶ 0, βj⟶ 0, j⟶∞.
Tus, (N2) is true.

According to (f2) and (g3), we obtain

F(x, s)≥ c5|s|
μ

− c5, ∀(x, s) ∈ Ω × R,

G(x, s)≥ c6|s|
κ

− c6, ∀(x, s) ∈ zΩ × R.
(62)

Let w ∈ Yj; then, we have

J(w)≤
1

p
− ‖w‖

σp+

− 􏽚
Ω

c5|w|
μ

− c5( 􏼁dx􏼒 􏼓
λ

− 􏽚
zΩ

c6|w|
κ

− c6( 􏼁dS

≤
1

p
− ‖w‖

σp+

− c5􏽚
Ω

|w|
μdx􏼒 􏼓

λ
− c6􏽚

zΩ
|w|

κdS + c7.

(63)

Because dimYj <∞, all norms on Yj are equivalent.
Terefore,

J(w)≤
1

p
− ‖w‖

σp+

− c5‖w‖
λμ

− c6‖w‖
κ

+ c7. (64)

When ‖w‖⟶∞, we have aj⟶ − ∞ and
κ> λμ> σp+. Tus, (N1) is true.

On the basis of the proofs of (N1) and (N2), we let
ρj > rj > 0. Ten, the conclusion is valid. □
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