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Multiattribute decision making (MADM) approach is a well-known decision-making process utilized in a variety of felds such as
solid waste management, renewable energy resources, air quality assurance, hotel location decision, sustainable supplier selection,
partner recognition, green supplier enterprises, game theory, construction development authority, and weapon group target
estimation. Te aggregation operators (AOs) are essential components of the decision-making process and have a great capability
to deal with ambiguous and unpredictable information in the diferent felds of fuzzy environments. In this article, we expressed
the theory concepts of single-valued neutrosophic (SVN) sets (SVNS) and also characterized their basic operations. Te power
aggregation tools are allowed to input arguments to support each other among diferent arguments. Recently, Aczel–Alisna
aggregation tools conquered great attention from several research scholars. We also exposed some reliable operations of
Aczel–Alsina aggregation models under the consideration of SVN information. We established a series of new approaches,
including the “single-valued neutrosophic Aczel–Alsina power weighted average” (SVNAAPWA) operator and “single-valued
neutrosophic Aczel–Alsina power weighted geometric” (SVNAAPWG) operators. To show the efectiveness and compatibility of
derived approaches, some prominent characteristics are also established. We constructed a MADM technique to solve an
application of engineering and construction materials under consideration of our derived methodologies. An experimental case
study is also presented to determine a suitable optimal option from a group of options. To fnd the fexibility of our proposed work,
we provided a comparative study that compares the results of existing AOs with our proposed work. A comprehensive overview is
also presented here.

1. Introduction

In 1965, Zadeh [1] invented the fuzzy set (FS) and in-
troduced a truth value (TV) between 0 and 1 in place of the
common crisp value of 0 and 1. In the theory and science of
decision-making, the fuzzy theory is a signifcant and en-
gaging study issue, but FS lacks a falsity value (FV); instead,
it is only identifed by its TMV, which ranges from 0 to 1. To
address the shortcomings of FS, Atanassov [2] developed the
idea of an intuitionistic fuzzy set (IFS), which is distin-
guished by its TV and FV between 0 and 1. Yager [3] ex-
tended the theory of IFSs in the framework of Pythagorean
FS (PyFS) with the sum of the square of TV and FV lies on
the interval [0,1]. An interval-valued IFS (IVIFS), which is

distinguished by its interval TV and interval FV in the unit
interval [0, 1], was presented by Atanassov and Gargov [4] as
a further generalization of an IFS. Smarandache [5, 6]
created a neutrosophic set (NS) from a philosophical point
of view to express indeterminate and inconsistent in-
formation because IFSs and IVIFSs cannot represent it. In an
NS B, [φA(x): ⟶ − 0, 1+] represents TV, [ξA(x):

⟶ − 0, 1+] represents the abstinence value (AV), and
[ψA(x): ⟶ − 0, 1+] represents FV of a set B. Te dif-
culties of practical applications may, therefore, be caused by
the nonstandard interval [− 0, 1+]. Consequently, based on
the actual standard range [0, 1], Ye [7] introduced a sim-
plifed neutrosophic set (SNS), which includes the concepts
of a SVNS given by Wang et al. [8] and an interval NS (INS)
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introduced by the Ye [9], which are the extension of IFS and
IVIFS. An innovative idea of SVNNs based on weighted
aggregated sum product valuation to solve a MADM
technique was developed by Mishra et al. [10]. Seikh and
Dutta [11] illustrated the theory of SVN information and
developed advanced programming for the solution of matrix
game theory. Tese concepts were frst presented as clas-
sifcations of NS to be easily used for real-time applications.
Consequently, SVNS and INS are subclasses of NS, whereas
SNS is a subclass of NS. NS is the generalization of FS and
IFS; we also studied literature related to current research
work seen in [12–14].

Te AOs are appropriate mathematical tools to aggregate
ambiguous and uncertain information. Recently, several
research scientists worked on diferent AOs in the system of
fuzziness such as AOs of IFS given by Xu [15], AOs of PyFSs
developed by Rahman et al. [16], AOs of interval-valued
PyFSs (IVPyFSs) presented by the Peng and Yang [17], AOs
of IV T-spherical FSs given by the Ullah et al. [18], AOs of
picture FSs (PFSs) presented by the Garg [19], AOs of q-rung
orthopair FSs (q-ROFSs) developed by the Jana et al. [20],
AOs of the bipolar valued hesitant fuzzy system given by the
Khan et al. [21], and AOs of complex IFSs given by the
Hussain et al. [22]. Fan et al. [23] provided some AOs of
SVNSs by using operations of linguistic variables and also
defned aMADM technique. Sodenkamp et al. [24] provided
a list of new AOs to fnd the reliability of multicriteria
decision-making problems under the system of SVNSs. Garg
[25] introduced a fresh idea of neutrality AOs by using
operations of sum and scalar multiplications based on
SVNSs. Saha et al. [26] checked the fexibility and com-
patibility of hesitant FSs which is the advanced version of FSs
and determined a series of new approaches based on
Archimedean aggregation tools. A robust theory of Dombi
Archimedean aggregation tools based on Hesitant fuzzy was
reviewed by Liu et al. [27]. Saha et al. [28] presented the
theory of Dombi Bonferroni mean aggregation expressions
to evaluate real-life challenges.

Te triangular norms are powerful tools to overcome
the infuence of vague and impression information.
Several researchers invented diferent TNM and TCM to
aggregate information in the system of fuzziness. Firstly,
the concepts of TNM and TCNM were developed by
Klement [29] in 1982. Tere are such types of TNM and
TCNM which include Lukasiewicz TNM and TCNM [30],
Nilpotent TNM and TCNM [31], Drastic TNM and
TCNM [32], Archimedean TNM and TCNM [33], Ein-
stein TNM and TCNM [34], and Frank TNM and TCNM
[35]. Many researchers explored the concepts of TNM and
TCNM in the diferent fuzzy frameworks. Klement et al.
[36] worked on a family of TNM and TCNM. Babu and
Ahmed [37] invented several parametric TNMs based on
the function generator. Seikh and Mandal [38] presented
some new AOs of PFSs and their application based on the
MADM technique. Seikh and Mandal [39] also elaborated
on the theory of Dombi TNM and TCNM under the
system of IFS. Seikh and Mahnaz [40] generalized the
system of T-spherical FS by using the basic operational
laws of frank TNM and TCNM.

A well-known and efcient aggregation model is known
as the power average (PA) operator. Te theory PA given by
Yager [41] is utilized to express support among each other in
the aggregation process. Xu and Yager [42] also elaborated
on the theory of PA and presented a robust aggregation
model of the power geometric (PG) operator. Liu [43]
utilized the theoretic concepts of PA and integrated an
application of a MADM problem. Jana and Pal [44] con-
structed some appropriate power aggregation methodolo-
gies based on SVNSs under consideration of Dombi
operational laws. Ashraf et al. [45] illustrated some trigo-
nometric aggregation models to solve a MADM technique
for the selection of a hydrogen power plant. Senapati et al.
[46] exposed a series of new aggregation approaches and
tried to solve an application of sharing sustainable trans-
portation enterprises.

Aczél and Alsina [47] gave an appropriate mathematical
tool to overcome the efect of unreasonable and vague in-
formation in a fuzzy framework under condition 0≤N≤∞.
Alsina et al. [48] worked on probabilistic metric space and its
basic properties. Senapati et al. [49] explored the idea of
A-TNM and A-TCNM under the system of IFSs and also
established a MADM to select a suitable selection for
a multinational company. Senapati et al. [50] also explored
the concept of A-TNM and A-TCNM in the framework of
IVIFSs with an application under a MADM technique.
Naeem et al. [51] developed a series of new AOs of PFSs
based on Aczel–Alsina operations. Hussain et al. [52] ex-
tended the model of PyFSs by using Aczel–Alsina operations
and studied a MADM technique for the selection process of
a multinational company. Te theory of Aczel–Alsina ag-
gregation tools has been explored by numerous research
scholars. Senapati et al. [53] generalized the theory of
Aczel–Alsina aggregation tools and developed a class of new
approaches in light of PyFS information. Senapati et al. [54]
also illustrated the potential of cyclone disaster enterprises
under consideration of Hesitant Fuzzy system. Farid et al.
[55] constructed an algorithm for evaluation of robust green
supplier management. A robust construction of interval-
valued PyF information based on Aczel–Alsina aggregation
tools was presented by Senapati et al. [56]. Sustainable green
supplier enterprises were evaluated by the Riaz et al. [57].
Alcantud [58] published latest research work related to
decision-making process and also developed the series of
robust methodologies in a book.

Te abovementioned fuzzy environments carried re-
stricted information, and decision-makers face a lot of
challenges due to insufcient information during the ag-
gregation process. Te SVNSs are a more reliable general-
ization of FSs, IFSs, and IVIFSs and provide freedom to
decision-makers for the decision process. Te power ag-
gregation tools are well-known and provide a smooth ap-
proximation in the decision-making process. Recently,
Aczel–Alsina aggregation expressions acquired a lot of ex-
tension from multiresearch scholars. We found a research
gap in the environments of SVNSs under consideration of
the power aggregation models. We extended research my-
thologies which are presented in [59] and developed some
new appropriate aggregation approaches under
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consideration of power aggregation models. Te major
purpose of this article is particularized as follows.

(a) To express the notion of SVNSs and their related
appropriate aggregation operations.

(b) To study well-known aggregation operators such as
power average and power geometric operators under
consideration of SVN environment.

(c) We also expressed the theoretic concepts of
Aczel–Alsina aggregation tools and some funda-
mental operational laws under consideration in SVN
environments.

(d) We also derived a series of new approaches including
SVNAAPWA and SVNAAPWG operators with
some special characteristics of our derived
approaches.

(e) We construct a MADM technique to solve an ap-
plication of engineering and construction materials
under consideration of our derived methodologies.
An experimental case study is also presented to
determine a suitable optimal option from a group of
options.

(f ) To fnd the fexibility of our proposed work, we
provide a comparative study that compares the re-
sults of existing AOs with those of our proposed
work. A comprehensive overview is also
presented here.

Te structure of this article is as follows: In Section 1, we
recall the previous history of our research work, Section 2
presents the basic notions of TNM and TCNMwith the help
of an example; furthermore, authors also expose the notion
of SVNSs and its fundamental operational laws based on
SVNNs. Section 3 presents Aczel–Alsina operations based
on SVNSs and we also gave a numerical example to support
Aczel–Alsina operations. In Section 4, we develop AOs of
SVNAAPWA operator and their characteristics such as
idempotency, monotonicity, and boundedness, In Section 5,
we also present SVNAAPWG operator based on
Aczel–Alsina operations. In Section 6, we study a MADM
technique to solve an application of engineering and con-
struction materials with the help of a numerical example. In
Section 7, we contrast the results of exiting AOs with the
results of our proposed technique. In Section 8, we sum-
marized our research work.

2. Preliminaries

We recall the notions of TNM and TCNM with some ex-
amples. Moreover, we also discuss the notion of A-TNM and
A-TCNM for further development of this article. Firstly, the
concepts of TNM and TCNM were given by Klement [29].
Symbols with their appropriate meanings are listed in
Table 1.

Defnition 1 (see [29]). A function T∶[0, 1]2⟶ [0, 1] is
a TNM, if it satisfes conditions such as symmetry, mono-
tonicity, associativity, and one identity element.

(i) T(ε, τ) � T(τ, ε)
(ii) T(ε, τ)≤ T(ε, ]) if τ ≤ ]
(iii) T(ε, T(τ, ])) � T(T(ε, τ), ])

(iv) T(ε, 1) � ε

∀, ε, τ, ] ∈ [0, 1]. (1)

Example 1. Some examples of TNM are as follows.

(i) Product t-norm: TP(ε, τ) � ε.τ
(ii) Minimum t-norm: TM(ε, τ) � min(ε, τ)

(ii) Lukasiewicz t-norm: TL(ε, τ) � max(ε + τ − 1, 0)

(iv) Drastic t-norm:

TD(ε, τ) �

ε, if τ � 1,

τ, if ε � 1,

0, otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(2)

for all ε, τ, ] ∈ [0, 1].

Defnition 2 (see [29]). A function S∶[0, 1]2⟶ [0, 1] is
a TCNM, if it satisfes conditions such as symmetry,
monotonicity, associativity, and one identity element.

(i) S(ε, τ) � S(τ, ε)
(ii) S(ε, τ)≤ S(ε, ]) if τ ≤ ]
(iii) S(ε, S(τ, ])) � S(S(ε, τ), ])

(iv) S(ε, 0) � ε

for all ε, τ, ] ∈ [0, 1].

Example 2. Some of the examples are given as follows.

(i) Probabilistic sum: SP(ε, τ) � ε + τ − ε.τ
(ii) Minimum t-conorm: SM(ε, τ) � max(ε, τ)

(iii) Lukasiewicz t-conorm: SL(ε, τ) � min(ε + τ, 1)

(iv) Drastic t-norm:

Table 1: Symbols and their meanings in this article.

Symbols Meanings
T TNM
S TCNM
φ TV
ξ AV
ω Weight vector
R Decision matrix
Y Weighted support
A Support
ψ FV
X Nonempty set
R Score function
H Accuracy
Ƃ Alternative
Ɇ Attributes
R Decision matrix
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SD(ε, τ) �

ε,

τ,

1,

if τ � 0,

if ε � 0,

otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(3)

for all ε, τ, ] ∈ [0, 1].

T(ε, τ)≤min(ε, τ),

S(ε, τ)≥max(ε, τ),
(4)

where T is TNM and S is TCNM. For all ε, τ, r ∈ [0, 1].

Defnition 3 (see [47, 48]). A new category of TNM was
presented by Aczel–Alsina in 1980.

Te A-TNM TN
AN∈[0, 1] is defned as follows:

T
N
A(ε, τ) �

TD(ε, τ),

min(ε, τ),

e
− (− Lnε)N+(− Lnτ)N( )

1/N

,

if N � 0,

if N �∞,

otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

A-TCNM SNAN∈[0, 1] of is defned as follows:

S
N
A(ε, τ) �

SD(ε, τ),

max(ε, τ),

1 − e
− 1− (− Ln(1− ε))N+(− Ln(1− τ))N( )

1/N

,

if N � 0,

if N �∞,

otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

In limiting cases, T0
A � TD, T1

A � T1, T
∞
A � min , S0A �

SD, S1A � SP, and S∞A � max. For every N ∈ [0, 1], the
A-TNM TN

A and A-TCNM SNA are dual for each other. Te
type of A-TNM and A-TCNM is strictly maximizing.

Now, we will study the notion of NS and SVNS on
a universal set X and also discuss some basic operations of
SVNS. To compare diferent SVNNs, we explore the notions
of score function and accuracy function.

Defnition 4 (see [2]). Let X be a nonempty set, and an IFS
A″ over X is defned as follows:

A
″

� s, φA(s),ψA(s)( 􏼁 | s ∈ X( 􏼁􏼈 􏼉, (7)

where φA(s): ⟶ [0, 1] and ψA(s): ⟶ [0, 1] represent
truth value (TV) and falsity value (FV), respectively. Te IFS
must satisfy the following axiom:

0≤φA(s) + ψA(s)≤ 1. (8)

Te hesitancy value of an IFS is given by
D(s) � 1 − (φA(s) + ψA(s)).

Defnition 5 (see [60]). Let X be a nonempty set, and a linear
Diophantine FS (LDFS) A″ over X is characterized as
follows:

A
″

� s, φA(s),ψA(s)( 􏼁, (δ, χ)( 􏼁 s| ∈ X( 􏼁􏼈 􏼉, (9)

where φA(s): ⟶ [0, 1],ψA(s): ⟶ [0, 1], and (δ, χ) ∈
[0, 1] represent truth value, falsity value, and reference
parameters, respectively. Te LDFS must satisfy the fol-
lowing axiom:

0≤ δφA(s) + χψA(s)≤ 1,

0≤ δ + χ ≤ 1.
(10)

Te hesitancy value of an LDFS is given by
D(s) � 1 − (δφA(s) + χψA(s)).

Defnition 6 (see [8]). Let X be a nonempty set, and a SVNS
A over X is defned as follows:

A � s, φA(s), ξA(s),ψA(s)( 􏼁 | s ∈ X( 􏼁􏼈 􏼉, (11)

where φA(s): ⟶ [0, 1], ξA(s): ⟶ [0, 1], and ψA(s):

⟶ [0, 1] represent truth value, abstinence value and falsity
value, respectively. Te SVNS must satisfy the following
axiom:

0≤φA(s) + ξA(s) + ψA(s)≤ 3. (12)

Furthermore, a single-valued neutrosophic number
(SVNN) is denoted by α � (φa, ξα,ψα).

Defnition 7 (see [61]). Let A � (s, (φA(s), ξA(s),ψA(s))􏼈

| s ∈ X)} and B � (s, (φB(s), ξB(s),ψB(s)) | s ∈ X)􏼈 􏼉 be
two SVNSs. Ten, some basic operations of SVNSs such as
union, intersection, and compliment are defned as follows.

(i) A∪B � (s,{ (max(φA(s), φB(s)), max(ξA(s), ξB

(s)), min(ψA(s),ψB(s)))|s ∈ X)}

(ii) A∩B � (s,{ (min(φA(s), φB(s)), min(ξA(s), ξB

(s)), max(ψA(s),ψB(s)))∶|s ∈ X)}

(iii) A⊆B if and only if φA(s)≤φB(s), ξA(s)≥ ξB(s),
and ψA(s)≥ψB(s),∀s ∈ X

(iv) A � B if and only if A⊆B and B⊆A

(v) Ac � (ψA(s), ξA(s),φA(s))􏼈 􏼉

Now, we expressed some appropriate comparison rules,
which defned how we compare diferent SVNNs.

Defnition 8 (see [61]). Consider α � (φ, ξ,ψ) be a SVNN.
Ten, the score value R(α) is defned as follows:

R(α) �
1
3

(2 + φ − ξ − ψ), R(α) ∈ [0, 1]. (13)

Defnition 9 (see [61]). Consider α � (φ, ξ,ψ) be a SVNN.
Ten, the accuracy value H(α) is defned as follows:

H(α) � φ − ψ, H(α) ∈ [− 1, 1]. (14)

Remark 10. Let A and B be two SVNNs. Ten, the score
value of A and B is denoted byR(A) andR(B), respectively.
Similarly, the accuracy value of A and B is denoted by H(A)

and H(B), respectively. Te relation between the score
function and accuracy function is defned as follows.

(i) If R(A)>R(B), then A>B

(ii) If R(A)<R(B), then A<B

(iii) If R(A) � R(β), then

(a) If H(A)>H(B), then A>B

4 Discrete Dynamics in Nature and Society



(b) If H(A) <H(B), then A<B

(c) If H(A) � H(B), then A � B

Defnition 11 (see [61]). Consider α � (φ, ξ,ψ), α1 �

(φ1, ξ1,ψ1), and α2 � (φ2, ξ2,ψ2) be three SVNNs. Ten, we
have

(i) α1 ⊕ α2 � (φ1 + φ2 − φ1φ2, ξ1ξ2,ψ1ψ2)

(ii) α1 ⊗ α2 � (φ1φ2, ξ1 + ξ2 − ξ1ξ2,ψ1 + ψ2 − ψ1ψ2)

(iii) λα � (1 − (1 − φλ
1)

λ, ξλ1,ψ
λ
1); λ> 0

(iv) αλ1 � (φλ
1, 1 − (1 − ξ1)

λ, 1 − (1 − ψ1)
λ); λ> 0

Defnition 12 (see [62]). Consider
αj � (φj, ξj,ψj),j � 1,2,3,4, . . . , n, be the set of SVNNs,
with corresponding weights vector ω � (ω1,ω2, . . . ,ωn)T

such that ωj > 0 and 􏽐
n
j�1ωj � 1. Ten, the aggregated

value of SVN weighted averaging (SVNWA) and SVN
weighted geometric (SVNWG) operators is defned as
follows:

SVNWA α1, α2, . . . , αn( 􏼁 � 1 − 􏽙
n

j�1
1 − φj􏼐 􏼑

ωj
, 􏽙

n

j�1
(ξ)

ωj , 􏽙
n

j�1
ψj􏼐 􏼑

ωj⎛⎝ ⎞⎠,

SVNWG α1, α2, . . . , αn( 􏼁 � 􏽙
n

j�1
φj􏼐 􏼑

ωj
, 1 − 􏽙

n

j�1
1 − ξj􏼐 􏼑

ωj
, 1 − 􏽙

n

j�1
1 − ψj􏼐 􏼑

ωj⎛⎝ ⎞⎠.

(15)

Defnition 13 (see [41]). Consider αj � (φj, ξj,ψj),

j � 1, 2, 3, . . . , n, be the set of SVNNs, then the power
averaging (PA) operators are termed as follows:

PA α1, α2, . . . , αn( 􏼁 �
􏽐

n
j�1 1 + A αj􏼐 􏼑􏼐 􏼑αj
􏽐

ρ
ễ�1 1 + A αj􏼐 􏼑􏼐 􏼑

, (16)

where Yj � ((1 + A(αj))/􏽐n
j�1(1 + A(αj))),A(αj) �

􏽐
n

j�1, ễ�1
j≠ễ

Supp(αj, αễ), andj � 1, 2, . . . , ρ,ễ � 1, 2, . . . , n.

Defnition 14 (see [42]). Consider αj � (φj, ξj,ψj),

j � 1, 2, 3, . . . , n, be the set of SVNNs, then the power
geometric (PG) operators are termed as follows:

PG α1, α2, . . . , αn( 􏼁 � αj􏼐 􏼑
1+A αj( )( )/􏽐

n

j�1 1+A αj( )( )
, (17)

where Yj � (1 + A(αj))/􏽐n
j�1(1 + A(αj)),A(αj)

� 􏽐
n
j�1, ễ�1
j≠ễ

Supp(αj, αễ),j � 1, 2, . . . , ρ, and ễ � 1, 2,

. . . , n.

3. Aczel–Alsina Operation-Based SVNNs

In this section, we will discuss the basic operations of
A-TNM and A-TCNM based on SVNNs with some practical
examples.

Consider TA and SA represent A-TNM and A-TCNM,
respectively. We defned some operations of Aczel–Alsina
product and Aczel–Alsina sum. Furthermore, we also de-
fned some generalized unions and intersections over two
SVNNs A and B as follows:

A⊗B � s, TA φA(s),φB(s)􏼈 􏼉, SA ξA(s)ξB(s)􏼈 􏼉, SA ψA(s)ψB(s)􏼈 􏼉 | s ∈ X( 􏼁􏼈 􏼉,

A⊕B � s, SA φA(s),φB(s)􏼈 􏼉, TA ξA(s)ξB(s)􏼈 􏼉, TA ψA(s)ψB(s)􏼈 􏼉 | s ∈ X( 􏼁􏼈 􏼉.
(18)

Defnition 15. Let α � (φ, ξ,ψ), α1 � (φ1, ξ1,ψ1), and α2 �

(φ2, ξ2,ψ2) be the three SVNNs.Ten, some basic operations
of A-TNM and A-TCNM are defned as follows: for N≥ 1
and λ> 0,

(i) α1 ⊕ α2 �
1 − e

− ((− Ln(1− φα1))N+(− Ln(1− φα2))N)(1/N)

e
− ((− Ln(ξα1))N+(− Ln(ξα2))N)(1/N)

e
− ((− Ln(ψα1))N+(− Ln(ψα2))N)(1/N)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

(ii) α1 ⊗ α2 �
e

− ((− Ln(φα1))N+(− Ln(φα2))N)(1/N)

1 − e
− ((− Ln(1− ξα1))N+(− Ln(1− ξα2))N)(1/N)

1 − e
− ((− Ln(1− ψα1))N+(− Ln(1− ψα2))N)(1/N)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

(iii) λα �
1 − e

− (λ(− Ln(1− φα))N)(1/N)

e
− (λ(− Ln(ξα))N)(1/N)

e
− (λ(− Ln(ψα))N)(1/N)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

(iv) αλ �
e

− (λ(− Ln(φα))N)(1/N)

1 − e
− (λ(− Ln(1− ξα))N)(1/N)

1 − e
− (λ(− Ln(1− ψα))N)(1/N)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

Example 3. Let α � (0.66, 0.55, 0.45), α1 � (0.87, 0.44,

0.54), and α2 � (0.59, 0.32, 0.60) be three SVNNs. Ten, by
using the Aczel–Alsina operation, for N � 3 and λ � 4, we
have
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(i) α1 ⊕ α2 �
1 − e

− ((− Ln(1− φα1))N+(− Ln(1− φα2))N)(1/N)

e
− ((− Ln(ξα1))N+(− Ln(ξα2))N)(1/N)

e
− ((− Ln(ψα1))N+(− Ln(ψα2))N)(1/N)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

α1 ⊕ α2 �
1 − e

− ((− Ln(1− 0.87))3+(− Ln(1− 0.59))3)(1/N)

e
− ((− Ln(0.44))3+(− Ln0.32)3)(1/N)

e
− ((− Ln(0.54))3+(− Ln0.60)3)(1/N)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

α1 ⊕ α2 � (0.9740, 0.4500, 0.8840)

(ii) α1 ⊗ α2 �
e

− ((− Ln(φα1))N+(− Ln(φα2))N)(1/N)

1 − e
− ((− Ln(1− ξα1))N+(− Ln(1− ξα2))N)(1/N)

1 − e
− ((− Ln(1− ψα1))N+(− Ln(1− ψα2))N)(1/N)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

α1 ⊗ α2 �
e

− ((− Ln(O.87))3+(− Ln0.59)3)(1/3)

1 − e
− ((− Ln(1− 0.44))3+(− Ln(1− 0.32))3)(1/3)

1 − e
− ((− Ln(1− 0.54))3+(− Ln(1− 0.60))3)(1/3)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

α1 ⊗ α2 � (0.4500, 0.1696, 0.9610)

(iii) λα �
1 − e

− (λ(− Ln(1− φα))N)(1/N)

e
− (λ(− Ln(ξα))N)(1/N)

e
− (λ(− Ln(ψα))N)(1/N)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

4α �
1 − e

− ((4)(− Ln(1− 0.66))3)(1/3)

e
− ((4) (− Ln(0.55))3)(1/3)

e
− ((4)(− Ln(0.45))3)(1/3)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

4α � (0.7151, 0 .8076, 0.6010)

(iv) αλ �
e

− (λ(− Ln(φα))N)(1/N)

1 − e
− (λ(− Ln(1− ξα))N)(1/N)

1 − e
− (λ(− Ln(1− ψα))N)(1/N)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

α4 �
e

− ((4)(− Ln(0.66))3)(1/3)

1 − e
− ((4) (− Ln(1− 0.55))3)(1/3)

1 − e
− ((4)(− Ln(1− 0.45))3)(1/3)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

α4 � (0.9308, 0.3990, 0.1924)

Defnition 16 (see [59]). Let αj � (φαj, ξαj,ψαj),j � 1,2,

3, . . . , n, be the set of SVNNs, with corresponding weight
vectors ω � (ω1,ω2, . . . ,ωn)T of αj,j � 1, 2, 3, . . . , n such
that ωj > 0 and 􏽐

n
j�1ωj � 1.Ten, the SVNAAWA operator

is given by the following equation:

SVNAAWA α1, α2, . . . , αn( 􏼁 � ⊕
n

j�1
ωjαj􏼐 􏼑

� ω1α1 ⊕ω2α2 ⊕ , . . . , ⊕ωnαn

�

1 − e
− 􏽘

n

j�1
ωj( ) − Ln 1− φαj􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

e
− 􏽘

n

j�1
ωj( ) − Ln ξαj􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

e
− 􏽘

n

j�1
ωj( ) − Ln ψαj􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(19)

Defnition 17 (see [59]). Let αj � (φαj, ξαj,ψαj),j � 1,2,

3, . . . , n, be the set of SVNNs, with corresponding weight
vector ω � (ω1,ω2, . . . ,ωn)T of αj, (j � 1,2,3, . . . , n) such

that ωj > 0 and􏽐
n
j�1ωj � 1.Ten, the SVNAAWGoperator

is given by the following equation:

SVNAAWG α1, α2, . . . , αn( 􏼁 � ⊗
n

j�1
αj

ωj􏼐 􏼑 � α1
ω1 ⊗ α2

ω2 ⊗ , . . . , ⊗ αn
ωn

�

e
− 􏽘

n

j�1
ωj( ) − Ln φαj􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

1 − e
− 􏽘

n

j�1
ωj( ) 1− Ln ξαj􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

1 − e
− 􏽘

n

j�1
ωj( ) 1− Ln ψαj􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(20)
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Theorem 18. Let α � (φ, ξ,ψ), α1 � (φ1, ξ1,ψ1), and α2 �

(φ2, ξ2,ψ2) be three SVNNs. Ten, we have

(i) α1 ⊕ α2 � α2 ⊕ α1
(ii) α1 ⊗ α2 � α2 ⊗ α1
(iii) λ(α1 ⊕ α2) � λα1 ⊕ λα2, λ> 0
(iv) (λ1 + λ2)α � λ1α + λ2α, λ1, λ2 > 0
(v) (α1 ⊗ α2)

λ � αλ1 ⊗ αλ2, λ> 0
(vi) αλ1 ⊗ αλ2 � α(λ1+λ2), λ1, λ2 > 0

Proof. Let α � (φ, ξ,ψ), α1 � (φ1, ξ1,ψ1), and α2 � (φ2, ξ2,
ψ2) be three SVNNs and λ, λ1, λ2, > 0. By proving Teorem
18 and by using Defnition 15, we get

(i) α1 ⊕ α2 �
1 − e

− ((− Ln(1− φα1))N+(− Ln(1− φα2))N)(1/N)

e
− ((− Ln(ξα1))N+(− Ln(ξα2))N)(1/N)

e
− ((− Ln(ψα1))N+(− Ln(ψα2))N)(1/N)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

α1 ⊕ α2 �
1 − e

− ((− Ln(1− φα2))N+(− Ln(1− φα1))N)(1/N)

e
− ((− Ln(ξα2))N+(− Ln(ξα1))N)(1/N)

e
− ((− Ln(ψα2))N+(− Ln(ψα1))N)(1/N)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

α1 ⊕ α2 � α2 ⊕ α1

(ii) α1 ⊗ α2 �
e

− ((− Ln(φα1))N+(− Ln(φα2))N)(1/N)

1 − e
− ((− Ln(1− ξα1))N+(− Ln(1− ξα2))N)(1/N)

1 − e
− ((− Ln(1− ψα1))N+(− Ln(1− ψα2))N)(1/N)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

�
e

− ((− Ln(φα2))N+(− Ln(φα1))N)(1/N)

1 − e
− ((− Ln(1− ξα2))N+(− Ln(1− ξα1))N)(1/N)

1 − e
− ((− Ln(1− ψα2))N+(− Ln(1− ψα1))N)(1/N)

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

α1 ⊗ α2 � α2 ⊗ α1
(iii) Let s � 1 − e− ((− Ln(1− φ1(α)))N+(− Ln(1− φ2(α)))N)(1/N)

Ten, Ln(1 − s) � − ((− Ln(1 − φα1))
N + (− Ln(1−

φα2))
N)(1/N). Using this equation, we get the fol-

lowing equation:

λ α1 ⊕ α2( 􏼁 � λ

1 − e
− − Ln − Ln 1− φα1􏼐 􏼑􏼐 􏼑􏼐 􏼑

N

+ − Ln− Ln 1− φα2􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

e
− − Ln ξα1􏼐 􏼑􏼐 􏼑

N

+ − Ln ξα2􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

e
− − Ln ψα1􏼐 􏼑􏼐 􏼑

N

+ − Ln ψα2􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

λ α1 ⊕ α2( 􏼁 �

1 − e
− λ − Ln 1− φα1􏼐 􏼑􏼐 􏼑

N

+ − Ln 1− φα2􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓􏼒 􏼓
(1/N)

e
− λ − Ln ξα1􏼐 􏼑􏼐 􏼑

N

+ − Ln ξα2􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓􏼒 􏼓
(1/N)

e
− λ − Ln ψα1􏼐 􏼑􏼐 􏼑

N

+ − Ln ψα2􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

λ α1 ⊕ α2( 􏼁 �

1 − e
− λ − Ln 1− φα1􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

, e
− λ − Ln ξα1􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

, e
− λ − Ln ψα1􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠⊕

1 − e
− λ − Ln 1− φα2􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

, e
− λ − Ln ξα2􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

, e
− λ − Ln ψα2􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

λ α1 ⊕ α2( 􏼁 � λα1 ⊕ λα2.

(21)
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λ1α + λ2α �

1 − e
− λ1 − Ln 1− φα( )( )

N( 􏼁
(1/N)

, e
− λ1 − Ln ξα( )( )

N( 􏼁
(1/N)

, e
− λ1 − Ln ψα( )( )

N( 􏼁
(1/N)

􏼠 􏼡⊕

1 − e
− λ2 − Ln 1− φα( )( )

N( 􏼁
(1/N)

, e
− λ2 − Ln ξα( )( )

N( 􏼁
(1/N)

, e
− λ2 − Ln ψα( )( )

N( 􏼁
(1/N)

􏼠 􏼡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

λ1α + λ2α �

1 − e
− λ1+λ2( ) − Ln 1− φα( )( )

N( 􏼁
(1/N)

,

e
− λ1+λ2( ) − Ln ξα( )( )

N( 􏼁
(1/N)

,

e
− λ1+λ2( ) − Ln ψα( )( )

N( 􏼁
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

λ1α + λ2α � λ1 + λ2( 􏼁α

(22)

α1 ⊗ α2( 􏼁
λ

�

e
− − Ln φα1􏼐 􏼑􏼐 􏼑

N

+ − Ln φα2􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

1 − e
− λ − Ln 1− ξα1􏼐 􏼑􏼐 􏼑

N

+ − Ln 1− ξα2􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

1 − e
− λ − Ln 1− ψα1􏼐 􏼑􏼐 􏼑

N

+ − Ln 1− ψα2􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

λ

,

α1 ⊗ α2( 􏼁
λ

�

e
− λ − Ln φα1􏼐 􏼑􏼐 􏼑

N

+ − Ln φα2􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓􏼒 􏼓
(1/N)

1 − e
− λ − Ln 1− ξα1􏼐 􏼑􏼐 􏼑

N

+ − Ln 1− ξα2􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓􏼒 􏼓
(1/N)

1 − e
− λ − Ln 1− ψα1􏼐 􏼑􏼐 􏼑

N

+ − Ln 1− ψα2􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

α1 ⊗ α2( 􏼁
λ

�

e
− λ − Ln φα1􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓􏼒 􏼓
(1/N)

1 − e
− λ − Ln 1− ξα1􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓􏼒 􏼓
(1/N)

1 − e
− λ − Ln 1− ψα1􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊗

e
− λ − Ln φα2􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓􏼒 􏼓
(1/N)

1 − e
− λ − Ln 1− ξα2􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓􏼒 􏼓
(1/N)

1 − e
− λ − Ln 1− ψα2􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

α1 ⊗ α2( 􏼁
λ

� αλ1 ⊗ α
λ
2.

(23)

αλ1 ⊗ αλ2 �

e
− λ1 − Ln φα( )( )

N( 􏼁( 􏼁
(1/N)

1 − e
− λ1 − Ln 1− ξα( )( )

N( 􏼁( 􏼁
(1/N)

1 − e
− λ1 − Ln 1− ψα( )( )

N( 􏼁( 􏼁
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⊗

e
− λ2 − Ln φα( )( )

N( 􏼁( 􏼁
(1/N)

1 − e
− λ2 − Ln 1− ξα( )( )

N( 􏼁( 􏼁
(1/N)

1 − e
− λ2 − Ln 1− ψα( )( )

N( 􏼁( 􏼁
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

e
− λ1+λ2( ) − Ln φα( )( )

N( 􏼁
(1/N)

1 − e
− λ1+λ2( ) − Ln 1− ξα( )( )

N( 􏼁
(1/N)

1 − e
− λ1+λ2( ) − Ln 1− ψα( )( )

N( 􏼁
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

αλ1 ⊗ αλ2 � α λ1+λ2( ).

(24)

□
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4. Single-Value Neutrosophic Aczel–Alsina
Power Average Aggregation Operators

Now, by using the basic operations of Aczel–Alsina ag-
gregation tools, we derived appropriate methodologies such
as SVNAAPWA operators with some reliable properties
under consideration of SVNNs. We also utilized a degree of
weighted support throughout this article by using the fol-
lowing equation: Yj � (ωj(1 + A(αj))/􏽐n

j�1ωj(1+

A(αj))), where the support of αj is denoted by A(αj) �

􏽐
n
j�1, ễ�1
j≠ễ

ωjSupp(αj, αễ),j � 1,2, . . . , ρ, ễ � 1,2, . . . , n

and associated weight vector of αj is ω � (ω1,ω2,

. . .ωn)T, (j � 1, 2, . . . n),ωj > 0, and 􏽐
n
j�1ωj � 1.

Defnition 19. Let αj � (φαj, ξαj,ψαj),j � 1, 2, 3, . . . , n, be
the set of SVNNs, with corresponding weight vectors Y �

(Y1,Y2,Y3, . . . ,Yn)T of αj,j � 1, 2, 3, . . . , n such that
Yj > 0 and 􏽐

n
j�1Yj � 1.Ten, the SVNAAPWA operator is

a function as follows:

SVNAAPWA α1, α2, . . . , αn( 􏼁 � ⊕
n

j�1
Yjαj􏼐 􏼑 � Y1α1 ⊕Y2α2 ⊕ , . . . , ⊕Ynαn. (25)

Theorem  0. Let αj � (φαj, ξαj,ψαj),j � 1, 2, 3, . . . , n, be
the set of SVNNs. Ten, the aggregated value of the
SVNAAPWA operator is also a SVNN as follows:

SVNAAPWA α1, α2, . . . , αn( 􏼁 �

1 − e
− 􏽐

n

j�1 Yj( ) − Ln 1− φαj􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

e
− 􏽐

n

j�1 Yj( ) − Ln ξαj􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

e
− 􏽐

n

j�1 Yj( ) − Ln ψαj􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

Proof. We will prove Teorem 20 with the help of a mathe-
matical induction technique by using the following method.

(i) For j � 2 depending on Aczel–Alsina operations of
SVNNs, we get the following equation:

Y1α1 �

1 − e
− Y1( ) − Ln 1− φα1􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

e
− Y1( ) − Ln ξα1􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

e
− Y1( ) − Ln ψα1􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Y2α2 �

1 − e
− Y2( ) − Ln 1− φα2􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

e
− Y2( ) − Ln ξα2􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

e
− Y2( ) − Ln ψα2􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(27)

Using abovementioned Defnition 19, we have the
following equation:
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SVNAAPWA α1, α2( 􏼁 � Y1α1 ⊕Y2α2 �

1 − e
− Y1( ) − Ln 1− φα1􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

e
− Y1( ) − Ln ξα1􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

e
− Y1( ) − Ln ψα1􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊕

1 − e
− Y2( ) − Ln 1− φα2􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

e
− Y2( ) − Ln ξα2􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

e
− Y2( ) − Ln ψα2􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

1 − e
− Y1( ) − Ln 1− φα1􏼐 􏼑􏼐 􏼑

N

+ Y2( ) − Ln 1− φα2􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

e
− Y1( ) − Ln ξα1􏼐 􏼑􏼐 􏼑

N

+ Y2( ) − Ln ξα2􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

e
− Y1( ) − Ln ψα1􏼐 􏼑􏼐 􏼑

N

+ Y2( ) − Ln ψα2􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

1 − e
− 􏽐

2
j�1 Yj( ) Ln 1− φαj􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

e
− 􏽐

2
j�1 Yj( ) − Ln ξαj􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

e
− 􏽐

2
j�1 Yj( ) − Ln ψαj􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(28)

Hence, this is true for j � 2. (ii) Now, suppose that this will be true for j � k. Ten,
we have the following equation:

SVNAAPWA α1, α2, . . . , αk( 􏼁 � ⊕
k

j�1
Ykαk

�

1 − e
− 􏽐

k

j�1 Yk( ) Ln 1− φαk
􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

e
− 􏽐

k

j�1 Yk( ) − Ln ξαk
􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

e
− s 􏽐

k

j�1 Yk( ) − Ln ψαk
􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(29)

Now, we have to show that it also holds for j � k + 1 as
follows:
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SVNAAPWA α1 + αk, αk+1( 􏼁 � ⊕
k

j�1
Ykαk ⊕Yk+1αk+1( 􏼁 �

1 − e
− 􏽐

k

j�1 Yj( ) Ln 1− φαj􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

e
− 􏽐

k

j�1 Yj( ) − Ln ξαj􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

e
− 􏽐

k

j�1 Yj( ) − Ln ψαj􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊕

1 − e
− Yk+1( ) Ln 1− φk+1( )( )

N( 􏼁
(1/N)

e
− Yk+1 − Ln ξk+1( )( )

N( 􏼁
(1/N)

e
− Yk+1 − Ln ψk+1( )( )

N( 􏼁
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

�

1 − e
− 􏽐

k+1
j�1 Yj( ) Ln 1− φαj􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

e
− 􏽐

k+1
j�1 Yj( ) − Ln ξαj􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

e
− 􏽐

k+1
j�1 Yj( ) − Ln ψαj􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(30)

which is true for j � k + 1. □

Example 4. Let α1 � (0.99, 0.67, 0.76), α2 � (0.87, 0.56,

0.35), α3 � (0.45, 0.66, 0.89), and α4 � (0.56, 0.45, 0.76) be
the four SVNNs with weight vector (0.20, 0.35, 0.30, 0.15).

Now, we investigate the value of the SVNAAPWA operator
for N � 3 and α � 4.

Te degree of weighted support associated with SVNNs
is as follows: Yj � (ωj(1 + A(αj))/􏽐n

j�1ωj(1 + A(αj))).

Y1 � 0.2113,Y2 � 0.3322,Y3 � 0.2942,Y1 � 0.1624,

SVNAAPWA α1, α2, . . . , αn( 􏼁 �

1 − e
− 􏽐

n

j�1 Yj( ) − Ln 1− φαj􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

e
− 􏽐

n

j�1 Yj( ) − Lnξαj􏼐 􏼑
N

􏼒 􏼓
(1/N)

e
− 􏽐

n

j�1 Yj( ) − Lnψαj􏼐 􏼑
N

􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

SVNAAPWA α1, α2, α3, α4( 􏼁 �

1 − e
− 􏽐

4
j�1 Yj( ) − Ln 1− φαj􏼐 􏼑􏼐 􏼑

3
􏼒 􏼓

(1/3)

e
− 􏽐

4
j�1 Yj( ) − Ln ξαj􏼐 􏼑􏼐 􏼑

3
􏼒 􏼓

(1/3)

e
− 􏽐

4
j�1 Yj( ) − Ln ψαj􏼐 􏼑􏼐 􏼑

3
􏼒 􏼓

(1/3)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

1 − e
− Y1( ) − Ln 1− φα1􏼐 􏼑􏼐 􏼑

3
+ Y2( ) − Ln 1− φα2􏼐 􏼑􏼐 􏼑

3
+ Y3( ) − Ln 1− φα3􏼐 􏼑􏼐 􏼑

3
+ Y4( ) − Ln 1− φα4􏼐 􏼑􏼐 􏼑

3
􏼒 􏼓

(1/3)

e
− Y1( ) − Ln ξα1􏼐 􏼑􏼐 􏼑

3
+ Y2( ) − Ln ξα2􏼐 􏼑􏼐 􏼑

3
+ Y3( ) − Ln ξα3􏼐 􏼑􏼐 􏼑

3
+ Y4( ) − Ln ξα4( 􏼁( 􏼁

3
􏼒 􏼓

(1/3)

e
− Y1( ) − Ln ψα1􏼐 􏼑􏼐 􏼑

3
+ Y2( ) − Ln ψα1􏼐 􏼑􏼐 􏼑

3
+ Y3( ) − Ln ψα3􏼐 􏼑􏼐 􏼑

3
+ Y4( ) − Ln ψα4􏼐 􏼑􏼐 􏼑

3
􏼒 􏼓

(1/3)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

1 − e
− (0.2113)(− Ln(1− 0.99))3+(0.3322)(− Ln(1− 0.87))3+(0.2942)(− Ln(1− 0.45))3+(0.1624)(− Ln(1− 0.56))3( )

(1/3)

e
− (0.2113)(− Ln(0.67))3+(0.3322)(− Ln(0.56))3+(0.2942)(− Ln(0.66))3+(0.1624)(− Ln(0.45))3( )

(1/3)

e
− (0.2113)(− Ln(0.76))3+(0.3322)(− Ln(0.35))3+(0.2942)(− Ln(0.89))3+(0.1624)(− Ln(0.76))3( )

(1/3)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� (0.9432, 0.5773, 0.4809).

(31)
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Theorem  1 (idempotency). Consider αj � (φαj, ξαj,ψαj),

j � 1,2,3, . . . , n, be the set of identical SVNNs, if αn � α for
all α then we have the following equation:

SVNAAPWA α1, α2, . . . , αn( 􏼁 � α. (32)

Proof. Since αj � (φαj, ξαj,ψαj),j � 1,2,3, . . . , n, be the set
of SVNNs, we can get the following equation:

SVNAAPWA α1, α2, . . . , αn( 􏼁 �

1 − e
− 􏽐

n

j�1 Yj( ) Ln 1− φαj􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

e
− 􏽐

n

j�1 Yj( ) − Ln ξαj􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

e
− 􏽐

n

j�1 Yj( ) − Ln ψαj􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 1 − e
− Ln 1− φα( )( )

N( 􏼁
(1/N)

, e
− − Lnξα( )

N( 􏼁
(1/N)

, e
− − Ln ψα( )( )

N( 􏼁
(1/N)

􏼠 􏼡

� φα, ξα,ψα( 􏼁 � α.

(33)

Tus, we can say that SVNAAPWA(α1, α2, . . . ,

αn) � α holds. □

Theorem   (boundedness). Consider αj � (φαj, ξαj,ψαj),

j � 1,2,3, . . . , n, be the set of SVNNs if α− � min
(α1, α2, . . . , αn) and α+ � max(α1, α2, . . . , αn), and then we
have the following equation:

α− ≤ SVNAAPWA α1, α2, . . . , αn( 􏼁≤ α+
. (34)

Proof. Consider αj � (φαj, ξαj,ψαj),j � 1,2,3, . . . , n, be
the set of SVNNs. Let α− � min(α1, α2, . . . , αn) �

(φ−
α , ξ−

α ,ψ−
α) and α+ � max(α1, α2, . . . , αn) � (φ+

α , ξ+
α ,ψ+

α).

We have φ−
α � minj φαj􏼚 􏼛, ξ−

α � maxj ξαj􏼚 􏼛, ψ−
α � maxj

ψαj􏼚 􏼛, φ+
α � maxj ξαj􏼚 􏼛, ξ+

α � minj ξαj􏼚 􏼛, and ψ+
α � minj

ψαj􏼚 􏼛. Hence, there we have the following subsequent

inequalities:

1 − e
− 􏽐

n

j�1 Yj( ) − Ln 1− φ−
α( )( )

N􏼐 􏼑
(1/N)

≤ 1 − e
− 􏽐

n

j�1 Yj( ) − Ln 1− φαj􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

≤ 1 − e
− 􏽐

n

j�1 Yj( ) − Ln 1− φ+
α( )( )

N􏼐 􏼑
(1/N)

,

e
− 􏽐

n

j�1 Yj( ) − Ln ξ−
α( )( )

N􏼐 􏼑
(1/N)

≤ e
− 􏽐

n

j�1 Yj( ) − Ln ξ−
α( )( )

N􏼐 􏼑
(1/N)

≤ e
− 􏽐

n

j�1 Yj( ) − Ln ξ+
α( )( )

N􏼐 􏼑
(1/N)

,

e
− 􏽐

n

j�1 Yj( ) − Ln ψ−
α( )( )

N􏼐 􏼑
(1/N)

≤ e
− 􏽐

n

j�1 Yj( ) − Ln ψαj􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

≤ e
− 􏽐

n

j�1 Yj( ) − Ln ψ+
α( )( )

N􏼐 􏼑
(1/N)

.

(35)

Terefore, α− ≤ SVNAAPWA(α1, α2, . . . , αn)≤ α+. □

Theorem  3 (Monotonicity). Let αj and αj′,j � 1,2,3,

. . . , n, be two sets of SVNNs, if αj ≤ αj′ for all α. Ten, we have
the following equation:

SVNAAPWA α1, α2, . . . , αn( 􏼁≤ SVNAAPWA α1′, α2′, . . . , αn
′( 􏼁.

(36)

Now, we will represent SVN Aczel–Alsina ordered
weighted averaging (SVNAAOPWA) operator by using the
basic operations of Aczel–Alsina operations.

Defnition 24. Consider αj � (φαj, ξαj,ψαj),j � 1,2,3, . . . ,

n, be the set of SVNNs, with corresponding weight vectors of
aj. Ten, an SVNAAOPWA operator of dimension j is
a mapping SVNAAOPWA∶(L∗)n⟶ L∗ as follows:

SVNAAOPWA α1, α2, . . . , αn( 􏼁 � ⊕
n

j�1
Yjαϑ(j)􏼐 􏼑 � Y1αϑ(1) ⊕Y2αϑ(2) ⊕ , . . . ,Ynαϑ(j). (37)
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Theorem  5. Consider αj � (φαj, ξαj,ψαj),j � 1,2,3, . . . ,

n, be the set of SVNNs, with the corresponding weight vector
Y � (Y1,Y2, . . . ,Yn)T such that Yn > 0 and 􏽐

n
j�1Yj � 1. A

SVNAAOPWA operator of dimension j is a mapping
SVNAAOPWA∶(L∗)n⟶ L∗ as follows:

SVNAAOPWA α1, α2, . . . , αn( 􏼁 �

1 − e
− 􏽐

n

j�1 Yj( ) − Ln 1− φαϑ(j)
􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

e
− 􏽐

n

j�1 Yj( ) − Ln 1− ξαϑ(j)
􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

e
− 􏽐

n

j�1 Yj( ) − Ln 1− ψαϑ(j)
􏼐 􏼑􏼐 􏼑

N

􏼒 􏼓
(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (38)

Theorem  6 (Idempotency). Consider αj � (φαj, ξαj,ψαj),

j � 1,2,3, . . . , n, to be the set of identical SVNNs, for all αj �

α. Ten, we have the following equation:

SVNAAOPWA α1, α2, . . . , αn( 􏼁 � α. (39)

Theorem  7 (boundedness). Consider αj � (φαj, ξαj,ψαj),

j � 1,2,3, . . . , n, to be the set of SVNNs. Let α− �

min xjαj � max xjαj. Ten, we have the following
equation:

α− ≤ SVNAAOPWA α1, α2, . . . , αn( 􏼁≤ SVNAAOPWA α1′, α2′, . . . , αn
′( 􏼁≤ α+

. (40)

Theorem  8 (monotonicity). Let αj and αj′,j � 1, 2, 3,

. . . , n, be any two sets of SVNNs, if αj ≤ αj′ for all α. Ten, we
have the following equation:

SVNAAOPWA α1, α2, . . . , αn( 􏼁≤ SVNAAOPWA α1′, α2′, . . . , αn
′( 􏼁. (41)

Theorem  9 (commutativity). Let αj and αj′,j �

1, 2, 3, . . . , n, be any two sets of SVNNs. Ten, we have the
following equation:

SVNAAOPWA α1, α2, . . . , αn( 􏼁 � SVNAAOPWA α1′, α2′, . . . , αn
′( 􏼁,

(42)

where αj′,j � 1, 2, 3, . . . , n, is any permutation of
αj′,j � 1, 2, 3, . . . , n.

5. Single-Value Neutrosophic Aczel–Alsina
Power Weighted Geometric
Aggregation Operators

In this section, we will study new AOs of SVN weighted
geometric aggregation operator by following the
Aczel–Alsina operations.

Defnition 30. Let αj � (φαj, ξαj,ψαj),j � 1,2,3, . . . , n, be
the set of SVNNs, with corresponding weight vector Y �

(Y1,Y2, . . . ,Yn)T of αj, (j � 1,2,3, . . . , n) such thatYj > 0
and 􏽐

n
j�1Yj � 1. Ten, a SVNAAPWG operator is a func-

tion SVNAAPWG∶(L∗)j⟶ L∗ as follows:

SVNAAPWG α1, α2, . . . , αn( 􏼁 � b
n

j�1
αj

Yj􏼐 􏼑 � α1
Y1bα2

Y2b, . . . , bαn
Yn . (43)

Theorem 31. Let αj � (φαj, ξαj,ψαj)(j � 1, 2, 3, . . . , n) be
the set of SVNNs. Ten, the aggregated value of the
SVNAAPWG operator is also a SNNN as follows:
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SVNAAPWG α1, α2, . . . , αn( 􏼁 �

e
− 􏽐

n

j�1 Yj( ) − Ln φαj􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

1 − e
− 􏽐

n

j�1 Yj( ) 1− Ln ξαj􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

1 − e
− 􏽐

n

j�1 Yj( ) 1− Ln ψαj􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)
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. (44)

Example 5. Let α1 � (0.78,0.89,0.56), α2 � (0.56,0.78,0.98),

α3 � (0.69,0.43,0.51), and α4 � (0.49,0.77,0.45) be the four
SVNNs, with weight vectors (0.15,0.35,0.30,0.20). We

investigate the value of the SVNAAPWG operator for N � 3
and α � 4:

Te degree of weighted support of SVNNs is
Yj � (ωj(1 + A(αj))/􏽐n

j�1ωj(1 + A(αj))).

Y1 � 0.1613,Y2 � 0.3332,Y3 � 0.2938,Y1 � 0.2118,

SVNAAPWG α1, α2, α3, . . . , αn( 􏼁 �

e
− 􏽐

n

j�1 Yj( ) − Ln φαj􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

1 − e
− 􏽐

n

j�1 Yj( ) − Ln 1− ξαj􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)

1 − e
− 􏽐

n

j�1 Yj( ) − Ln 1− ψαj􏼐 􏼑􏼐 􏼑
N

􏼒 􏼓
(1/N)
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,

SVNAAPWG α1, α2, α3, α4( 􏼁 �

e
− 􏽐

4
j�1 Yj( ) − Ln φαj􏼐 􏼑􏼐 􏼑

3
􏼒 􏼓

(1/3)

1 − e
− 􏽐

4
j�1 Yj( ) − Ln 1− ξαj􏼐 􏼑􏼐 􏼑

3
􏼒 􏼓

(1/3)

1 − e
− 􏽐

4
j�1 Yj( ) − Ln 1− ψαj􏼐 􏼑􏼐 􏼑

3
􏼒 􏼓

(1/3)
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�

e
− Y1( ) − Ln φα1􏼐 􏼑􏼐 􏼑

3
+ Y2( ) − Ln φα2􏼐 􏼑􏼐 􏼑

3
+ Y3( ) − Ln φα3􏼐 􏼑􏼐 􏼑

3
+ Y4( ) − Ln φα4􏼐 􏼑􏼐 􏼑

3
􏼒 􏼓

(1/3)

1 − e
− Y1( ) − Ln 1− ξα1􏼐 􏼑􏼐 􏼑

3
+ Y2( ) − Ln 1− ξα2􏼐 􏼑􏼐 􏼑

3
+ Y3( ) − Ln 1− ξα3􏼐 􏼑􏼐 􏼑

3
+ Y4( ) − Ln 1− ξα4( 􏼁( 􏼁

3
􏼒 􏼓

(1/3)

1 − e
− Y1( ) − Ln 1− ψα1􏼐 􏼑􏼐 􏼑

3
+ Y2( ) − Ln 1− ψα2􏼐 􏼑􏼐 􏼑

3
+ Y3( ) − Ln 01− ψα3􏼐􏼐 􏼑

3
+ Y4( ) − Ln 1− ψα4􏼐 􏼑􏼐 􏼑

3
􏼒 􏼓

(1/3)
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�

e
− (0.1613)(− Ln(0.78))3+(0.3332)(− Ln(0.56))3+(0.2938)(− Ln(0.69))3+(0.2118)(− Ln(0.49))3( )

(1/3)

1 − e
− (0.1613)(− Ln(1− 0.89))3+(0.3332)(− Ln(1− 0.78))3+(0.2938)(− Ln(1− 0.43))3+(0.2118)(− Ln(1− 0.77))3( )

(1/3)

1 − e
− (0.1613)(− Ln(1− 0.56))3+(0.3332)(− Ln(1− 0.98))3+(0.2938)(− Ln((1|− 0.51)3+(0.2118)(− Ln(1− 0.45))3( )

(1/3)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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� (0.5815, 0.7845, 0.9343).

(45)

We can state the following characteristics of the
SVNAAPWGoperator by using the Aczel–Alsina operations
on SVNNs.

Theorem 3 (idempotency). Let αj � (φαj, ξαj,ψαj),

j � 1,2,3, . . . , n, be the set of identical SVNNs, αn � α for all
α. Ten, we have the following equation:

SVNAAPWG α1, α2, . . . , αn( 􏼁 � α. (46)

Theorem 33 (boundedness). Let αj � (φαj, ξαj,ψαj),j �

1,2,3, . . . , n, be the set of SVNNs. Let α− � min(α1,
α2, . . . , αn), and α+ � max(α1, α2, . . . , αn). Ten, we have the
following equation:

α− ≤ SVNAAPWG α1, α2, . . . , αn( 􏼁≤ α+
. (47)
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Theorem 34 (Monotonicity). Let αj and αj′,j � 1,

2,3, . . . , n, be any two sets of SVNNs, if αj ≤ αj′ for all α.Ten,
we have the following equation:

SVNAAPWG α1, α2, . . . , αn( 􏼁≤ SVNAAPWG α1′, α2′, . . . , αn
′( 􏼁.

(48)

We can prove all these theorems in the same way as
explained in Section 4.

6. Model of MADM Techniques with
SVNN Information

In this section, we solved a MADM technique by using
SVNAAPWA and SVNAAPWG operators under the system
of SVN information. Consider (Ƃ1,Ƃ2, . . . ,Ƃκ) to be the set
of alternatives and Ɇ � (Ɇ1,Ɇ2, . . . ,Ɇn) to be the set of at-
tributes with corresponding weight vectors ω � (ω1,

ω2, . . .ωn)T, (j � 1,2, . . . n),ωj > 0, and 􏽐
n
j�1ωj � 1. A

decision matrix R � (Yηj)κ×n containing the information
under SVNNs given by decision-making is as follows:

R � Yηj􏼐 􏼑κ×n
�

φα11, ξα11,ψα11􏼐 􏼑

φα21, ξα21,ψα21􏼐 􏼑

⋮

φακ1, ξακn
,ψακ1􏼐 􏼑

φα12, ξα12,ψα12􏼐 􏼑

φα22, ξα22,ψα22􏼐 􏼑

⋮

φακ2, ξακ2,ψακ2􏼐 􏼑

· · ·

· · ·

⋱

⋮

φα1n
, ξα1n

,ψα1n
􏼐 􏼑

φα2n
, ξα2n

,ψα2n
􏼐 􏼑

⋮

φακn
, ξακn

,ψακn
􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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. (49)

In the decision matrix, each 3-tuple (φαηj, ξαηj,ψαηj)

represents the value of SVNN and φαηj ∈ [0, 1], ξαηj ∈ [0, 1],
and ψαηj ∈ [0, 1] such that 0≤φαηj + ξαηj + ψαηj ≤ 3. Tere
are two types of attributes: cost factor and benefcial factor. If
a cost factor is involved, then the decision matrix is
transformed into the following normalized matrix:

R � Yηj􏼐 􏼑κ×n
�

φηj, ξηj,ψηj􏼐 􏼑, if benefit factor,

ψηj, ξηj,φηj􏼐 􏼑, if cost factor.

⎧⎪⎨

⎪⎩

(50)

We will follow the following steps of the algorithm to
solve a given MADM technique by the decision maker.

Step 1: the decision maker collects the information and
arranged it in a decision matrix based on SVNNs.
Step 2: if the cost factor is involved in the set of at-
tributes, then we need to transform the decision matrix
into a normalized matrix.
Step 3: calculate support value as follows:

Supp Yηj, Yηễ􏼐 􏼑 � 1 − d Yηj, Yηễ􏼐 􏼑,

where

η � 1,2, . . . , κ,j, ễ � 1,2, . . . , n,

(51)

where d(Yηj, Yηễ) � (1/3)(|φηj − φηễ| + |ξηj − ξηễ|+
|ψηj − ψηễ|) is the expression for distance.
Step 4: compute weighted support of αηj by using the
weights of the characteristics ω � (ω1,ω2, . . .ωn)T, (j

� 1, 2, . . . n),ωj > 0, and 􏽐
n
j�1ωj � 1:

A Yηj􏼐 􏼑 � 􏽘
n

j�1,ễ�1,

j≠ễ.

ωjSupp Yηj, Yηễ􏼐 􏼑,

η � 1, 2, . . . , κ,j, ễ � 1, 2, . . . , n,

(52)

and investigate weights corresponding to the SVNNs of
Yηj, η � 1, 2, . . . , κ,j � 1, 2, . . . , n.

Yηj �
ωj 1 + A Yηj􏼐 􏼑􏼐 􏼑

􏽐
n
j�1ωj 1 + A Yηj􏼐 􏼑􏼐 􏼑

, η � 1, 2, . . . , κ,j � 1, 2, . . . , n, (53)

where the associated weight vector of Yηj is Yηj > 0,
􏽐

n
j�1Yηj � 1, η � 1,2, . . . , κ, andj � 1,2, . . . , n.

Step 5: apply our derived approaches of the
SVNAAPWA and SVNAAPWG operators on in-
formation depicted in the decision matrix.

Rη � SVNAAPWA Y11, Y22, . . . , Yκn( 􏼁,

Rη � SVNAAPWG Y11, Y22, . . . , Yκn( 􏼁.
(54)

Step 6: compute the score value of Rη, η � 1,2, . . . , κ,
under consideration of SVNs and rearrange all ac-
quired score values of alternative to choose a desirable
optimal option.

If the score values of optimal options are the same, the
decision maker faces some difculties in the selection
process and can categorize or classify desirable options from
a group of options. For this purpose, the accuracy function is
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defned in equation (14). Figure 1 also covers the steps of an
algorithm of the MADM problem.

6.1. Application. Te construction sector is one of the
modern agencies and organizations that has a big impact on
the economy of any nation. All of the real estate and in-
frastructure surrounding us were constructed by various
parts of the construction economy. Te building sector is an
essential kind that signifcantly afects a nation’s economic
growth. Te construction industry, which is driven by in-
vestment, is very important to the government. Te gov-
ernment enters into contracts with the building trade to
construct infrastructure for the health, transportation, and
educational sectors. Te prosperity of each nation depends
on the construction industry.

6.2. Numerical Example. In this numerical example, we
investigate suitable construction materials for the con-
struction process of a building. Tere are several con-
struction materials but we have selected suitable cement for
the construction process of our building. Consider fve

diferent types of cement Ɇ � (Ɇ1,Ɇ2,Ɇ3,Ɇ4,Ɇ5); panel se-
lect suitable cement based on given characteristics (attri-
butes) Ƃ � (Ƃ1,Ƃ2,Ƃ3,Ƃ4). Here, Ƃ1 represents the color of
cement, Ƃ2 represents the materials, Ƃ3 represents the
quality of the cement, and Ƃ4 represents the availability of
cement in the market.

To evaluate and investigate the suitable cement decision
maker provided a set of weight vectors Y � (0.20,0.35,

0.30,0.15) for the selection of the best cement, we follow the
following steps of the Algorithm 1.

After ranking and ordering of score values, we observed
that Ɇ1≻Ɇ5≻Ɇ3≻Ɇ4≻Ɇ2 and Ɇ5≻Ɇ1≻Ɇ2≻Ɇ3≻Ɇ4 for
SVNAAPWA and SVNAAPWG operators. We have seen Ɇ1
is the best objective (cement), by both AOs of the

To Solve a Real-Life Problem Under a MADM Technique

Algorithm Single Valued
Neutrosophic set

TMV AMV FMV

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Collection of Information Based on
SVNNs by the Decision Maker

Transform Standard Matrix into
Normalize Decision Matrix

Investigate Supports values

Compute Degree of Weighted Supports by the SVNNs

Evaluate SVN Information by Using the SVNAAPWA and SVNAAPWG Operators

Investigate Score Values by the Results of Current AOs, to Select Suitable
Alternative by Using Ranking & Ordering Process

Figure 1: Flowchart of an algorithm.

Table 2: SVN information given by the decision maker.

Ɇ1 Ɇ Ɇ3 Ɇ4 Ɇ5

Ƃ1 (0.67, 0.85, 0.95) (0.52, 0.48, 0.76) (0.75, 0.59, 0.83) (0.28, 0.69, 0.84) (0.96, 0.81, 0.99)

Ƃ (0.97, 0.49, 0.83) (0.57, 0.83, 0.79) (0.81, 0.92, 0.98) (0.47, 0.68, 0.89) (0.95, 0.86, 0.93)

Ƃ3 (0.59, 0.64, 0.78) (0.76, 0.84, 0.86) (0.79, 0.94, 0.28) (0.56, 0.73, 0.85) (0.84, 0.76, 0.49)

Ƃ4 (0.58, 0.76, 0.56) (0.65, 0.76, 0.92) (0.47, 0.82, 0.38) (0.58, 0.75, 0.91) (0.86, 0.75, 0.72)

Table 3: Te consequences of our proposed methodologies.

SVNAAPWA SVNAAPWG
(0.8348, 0.6384, 0.7870) (0.7125, 0.6841, 0.8342)

(0.6422, 0.7349, 0.8238) (0.6223, 0.7786, 0.8363)

(0.7566, 0.8293, 0.5623) (0.7265, 0.8829, 0.8450)

(0.4855, 0.7076, 0.8707) (0.4604, 0.7095, 0.8739)

(0.9209, 0.8013, 0.7503) (0.9039, 0.8082, 0.8962)
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Table 4: Score values by the SVNAAPWA and SVNAAPWG operators.

AOs R(Ɇ1) R(Ɇ ) R(Ɇ3) R(Ɇ4) R(Ɇ5)
Ranking and
ordering

SVNAAPWA 0.4698 0.3612 0.4550 0.3024 0.4564 Ɇ1 ≻Ɇ5 ≻Ɇ3 ≻Ɇ4 ≻Ɇ2
SVNAAPWG 0.3981 0.3358 0.3328 0.2923 0.3998 Ɇ5 ≻Ɇ1 ≻Ɇ2 ≻Ɇ3 ≻Ɇ4

Step 1: the decision maker collects the information under the system of SVNNs as depicted in Table 2.
Step 2: there is no need to perform the transformation of the decision matrix into a normalized matrix because there is no involved
cost factor in the set of attributes.
Step 3: investigate support by given information using Supp(Yηj, Yηễ) � 1 − d(Yηj, Yηễ) where η � 1,2, . . . , κ,j,ễ � 1,2, . . . , n.
Step 4: compute weighted supports A(Yηj), η � 1,2, . . . , κ,j, ễ � 1,2, . . . , n based on weight vectors (0.20,0.35,0.30,0.15) of criteria
associated with the alternatives.
And also investigate weights Yηj of Yηj, η � 1,2, . . . , κ,j,ễ � 1,2, . . . , n associated with the SVNNs, acquired results shown in the
following matrix.

Y �

0.2075 0.3319 0.3017
0.2027 0.3395 0.2963
0.2073
0.2057
0.2100

0.3385
0.3367
0.3370

0.2972
0.2970
0.2907

0.1589
0.1615
0.1570
0.1607
0.1622

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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Step 5:We apply our proposedmethodologies of SVNAAPWA and SVNAAPWGoperators for the parametric value ofN � 1. Table 3
covers the results of the SVNAAPWA and SVNAAPWG operators.

SVNAAPWA(Y11, Y22, . . . , Yκn) �

1 − e
− (􏽐

n

j�1(Yj)(− Ln(1− φαηễ
))N)(1/N)

e
− (􏽐

n

j�1(Yj)(− Ln(ξαηễ))
N)(1/N)

e
− (􏽐

n

j�1(Yj)(− Ln(ψαηễ
))N)(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

And, SVNAAPWG(Y11, Y22, . . . , Yκn) �

e
− (􏽐

n

j�1(Yj)(− Ln(φαηễ
))N)(1/N)

1 − e
− (􏽐

n

j�1(Yj)(− Ln(1− ξαηễ))
N)(1/N)

1 − e
− (􏽐

n

j�1(Yj)(− Ln(1− ψαηễ
))N)(1/N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

It is worth noticing that the results obtained in Table 3 are well in accordance with the Defnition #.
Step 6: investigate score values by using the consequences of the SVNAAPWA and SVNAAPWG operators which are shown in
Table 3. Obtained results of the score values are shown in Table 4.

ALGORITHM 1: Procedure for decision-making process.

SVNAAPWA SVNAAPWG
0.0000
0.0500
0.1000
0.1500
0.2000
0.2500
0.3000
0.3500
0.4000
0.4500
0.5000

Figure 2: Graphical representation of the score values depicted in Table 4.
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Table 5: Te consequences of the SVNAAPWA operator for the variation of N.

R(Ɇ1) R(Ɇ ) R(Ɇ3) R(Ɇ4) R(Ɇ5)
Ranking and
ordering

N � 1 0.4698 0.3612 0.4550 0.3024 0.4564 Ɇ1 ≻Ɇ5 ≻Ɇ3 ≻Ɇ4 ≻Ɇ2
N � 10 0.6039 0.4660 0.6100 0.3302 0.5474 Ɇ3 ≻Ɇ1 ≻Ɇ5 ≻Ɇ2 ≻Ɇ4
N �  5 0.6254 0.4894 0.6306 0.3407 0.5613 Ɇ3 ≻Ɇ2 ≻Ɇ5 ≻Ɇ2 ≻Ɇ4
N � 40 0.6309 0.4958 0.6363 0.3445 0.5653 Ɇ3 ≻Ɇ1 ≻Ɇ5 ≻Ɇ2 ≻Ɇ4
N � 65 0.6344 0.5000 0.6402 0.3475 0.5682 Ɇ3 ≻Ɇ1 ≻Ɇ5 ≻Ɇ2 ≻Ɇ4
N � 80 0.6354 0.5012 0.6414 0.3485 0.5691 Ɇ3 ≻Ɇ1 ≻Ɇ5 ≻Ɇ2 ≻Ɇ4
N � 100 0.6363 0.5023 0.6435 0.3494 0.5699 Ɇ3 ≻Ɇ1 ≻Ɇ5 ≻Ɇ2 ≻Ɇ4
N � 135 0.6373 0.5034 0.6439 0.3504 0.5708 Ɇ3 ≻Ɇ1 ≻Ɇ5 ≻Ɇ2 ≻Ɇ4
N � 150 0.6376 0.5038 0.6439 0.3507 0.5711 Ɇ3 ≻Ɇ1 ≻Ɇ5 ≻Ɇ2 ≻Ɇ4
N �  00 0.6382 0.5045 0.6446 0.3514 0.5716 Ɇ3 ≻Ɇ1 ≻Ɇ5 ≻Ɇ2 ≻Ɇ4

Table 6: Te consequences of the SVNAAPWG operator for the variation of N.

R(Ɇ1) R(Ɇ ) R(Ɇ3) R(Ɇ4) R(Ɇ5)
Ranking and
ordering

N � 1 0.3981 0.3358 0.3328 0.2923 0.3998 Ɇ5 ≻Ɇ1 ≻Ɇ2 ≻Ɇ3 ≻Ɇ4
N � 10 0.2942 0.2860 0.2133 0.2443 0.3473 Ɇ5 ≻Ɇ1 ≻Ɇ2 ≻Ɇ4 ≻Ɇ3
N �  5 0.2746 0.2687 0.1959 0.2258 0.3374 Ɇ5 ≻Ɇ1 ≻Ɇ2 ≻Ɇ4 ≻Ɇ3
N � 40 0.2695 0.2633 0.1912 0.2195 0.3347 Ɇ5 ≻Ɇ1 ≻Ɇ2 ≻Ɇ4 ≻Ɇ3
N � 65 0.2662 0.2597 0.1882 0.2148 0.3329 Ɇ5 ≻Ɇ1 ≻Ɇ2 ≻Ɇ4 ≻Ɇ3
N � 80 0.2651 0.2586 0.1873 0.2133 0.3323 Ɇ5 ≻Ɇ1 ≻Ɇ2 ≻Ɇ4 ≻Ɇ3
N � 100 0.2641 0.2575 0.1865 0.2120 0.3318 Ɇ5 ≻Ɇ1 ≻Ɇ2 ≻Ɇ4 ≻Ɇ3
N � 135 0.2631 0.2565 0.1857 0.2106 0.3314 Ɇ5 ≻Ɇ1 ≻Ɇ2 ≻Ɇ4 ≻Ɇ3
N � 150 0.2628 0.2562 0.1854 0.2102 0.3312 Ɇ5 ≻Ɇ1 ≻Ɇ2 ≻Ɇ4 ≻Ɇ3
N �  00 0.2621 0.2555 0.1849 0.2093 0.3309 Ɇ5 ≻Ɇ1 ≻Ɇ2 ≻Ɇ4 ≻Ɇ3
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Figure 3: Graphical representation of the score values depicted in Table 5.
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Figure 4: Graphical representation of the score values depicted in Table 6.

Table 7: Te results of the comparative analysis.

AOs Environment Ranking
SVNAAPWA (current work) SVNNs Ɇ1 ≻Ɇ5 ≻Ɇ3 ≻Ɇ4 ≻Ɇ2
SVNAAPWG (current work) SVNNs Ɇ5 ≻Ɇ1 ≻Ɇ2 ≻Ɇ3 ≻Ɇ4
SVNWA [62] SVNNs Ɇ1 ≻Ɇ5 ≻Ɇ3 ≻Ɇ2 ≻Ɇ4
SVNWG [62] SVNNs Ɇ1 ≻Ɇ5 ≻Ɇ2 ≻Ɇ3 ≻Ɇ4
SVNDWA [61] SVNNs Ɇ1 ≻Ɇ3 ≻Ɇ5 ≻Ɇ2 ≻Ɇ4
SVNDWG [61] SVNNs Ɇ1 ≻Ɇ5 ≻Ɇ2 ≻Ɇ3 ≻Ɇ4
SVNEWA [63] SVNNs Ɇ1 ≻Ɇ5 ≻Ɇ3 ≻Ɇ2 ≻Ɇ4
SVNEWG [63] SVNNs Ɇ1 ≻Ɇ5 ≻Ɇ3 ≻Ɇ2 ≻Ɇ4
SVNAAWA [59] SVNNs Ɇ1 ≻Ɇ5 ≻Ɇ3 ≻Ɇ2 ≻Ɇ4
SVNAAWA [59] SVNNs Ɇ1 ≻Ɇ5 ≻Ɇ2 ≻Ɇ3 ≻Ɇ4
Aiwu et al. [64] IVSVNNs Failed
Zhou et al. [65] IVSVNNs Failed
Mahmood and Ali [66] CSVNNs Failed
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Figure 5: Te results of the comparative study.
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SVNAAPWA and SVNAAPWG operators. We also present
the score values of the SVNAAPWA and SVNAAPWG
operators in the graphical representation of Figure 2.

6.3. Infuence of Diferent Parametric Values of N on Our
Proposed Methodologies. To determine the efect of dif-
ferent parametric values N on the results of our proposed
methodologies, we evaluated our discussed AOs for
various parametric values of N, and the results of
SVNAAPWA and SVNAAPWG operators are shown in
Tables 5 and 6, respectively. We observed that when
parametric values of N increase, the results of our pro-
posed methodologies gradually increase and the ranking
of score values remain unchanged. Tis obtained tech-
nique of the ranking of score values provides isotonicity
property, enabling decision-makers to select the ideal
value following their preferences.

We also studied the results of score values of
SVNAAPWA and SVNAAPWG operators in a graphical
representation in Figures 3 and 4, respectively.

7. Comparative Study

In this section, we compared the results of invented works
with the results of existing AOs. We applied some existing
AOs on a decision matrix given by the decision maker. To
fnd stability and feasibility of our invented works, we ap-
plied diferent existing AOs such as SVN Dombi weighted
AOs given by Chen and Ye [61], SVN weighted average and
geometric AOs given by Peng et al. [62], AOs of SVNNs
given by [59], SVN Einstein weighted AOs given by Ye et al.
[63], AOs of interval-valued SVNSs (IVSVNNs) given by
Aiwu et al. [64], AOs of IVSVNNs based on frank operations
developed by the Zhou et al. [65], and the theory of SVNNs
in the framework of complex SVNNs (CSVNNs) by utilizing
the idea of prioritization methods explored by Mahmood
and Ali [66]. Te results of applied existing AOs [59, 61–66]
are shown in Table 7.

We observe that existing AOs discussed in [49–51] failed
to aggregate this information. Te graphical representation
of the results of the comparative study is shown in Figure 5,
which are depicted in Table 7.

Table 8: Abbreviations and their meanings.

Abbreviations Meanings
AOs Aggregation operators
PyFS Pythagorean fuzzy set
NS neutrosophic set
A-TNM Aczel–Alsina t-norm
A-TCNM Aczel–Alsina t-conorm
SVNWA single-valued neutrosophic weighted average
SVNWG single-valued neutrosophic weighted geometric
SVNDWA single-valued neutrosophic Dombi weighted average
SVNDWG single-valued neutrosophic Dombi weighted geometric
SVNEWA single-valued neutrosophic Einstein weighted average
SVNEWG single-valued neutrosophic Einstein weighted geometric
SVNAAWA single-valued neutrosophic Aczel–Alsina weighted average
SVNAAWG single-valued neutrosophic Aczel–Alsina weighted geometric
SVNAAPWA single-valued neutrosophic Aczel–Alsina power-weighted averaging
MADM Multi-attribute decision making
SVNAAPWG single-valued neutrosophic Aczel–Alsina power weighted geometric
TV Truth value
AV Abstinence value
FV Falsity value
SVNS single-valued neutrosophic set
SVN single-valued neutrosophic
SVNN single-valued neutrosophic number
IVIFS Interval-valued intuitionistic fuzzy set
IVPyFS Interval-valued pythagorean fuzzy set
FS Fuzzy set
IFS Intuitionistic fuzzy set
PA Power average
TNM t-norm
TCNM t-conorm
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8. Conclusion

TeMADM technique is a convenient mathematical process
that is used in every feld of life, such as computational and
environmental science, green supplier enterprises, con-
struction development, game theory, computer pro-
gramming, and social decision-making. In our daily life,
a MADM technique plays a vital role in performing a se-
lection process for suitable objects. AOs are the useful and
efective components of a decision-making or MADM
technique. In this article, we expressed the theoretic con-
cepts of SVNNs, having a large capacity to handle vague and
imprecision information under diferent fuzzy environ-
ments. Another useful and well-known theoretic concept
provides support for diferent input arguments. Tere are
several types of algebraic sum and algebraic products gen-
erated by the numerous triangular norms, but Aczel–Alsina
aggregation expressions provide an efective and fexible
smooth approximation. Recently, numerous research
scholars utilized theoretic concepts of Aczel–Alsina aggre-
gation expressions for new creation and evaluated some
appropriate real-life applications. By inspiring the efec-
tiveness and reliability of Aczel–Alsina aggregation tools, we
derived some new approaches, including SVNAAPWA and
SVNAAPWG operators. Some appropriate properties of our
derived approaches are also characterized. To solve
a MADM technique, we presented an application based on
the selection process under consideration of construction
enterprises. To check the reliability and validity of our de-
rived approaches, we gave a numerical example to evaluate
a suitable construction material based on SVN information.
We made a comprehensive comparative study to compare
the results of the existing AOs with our proposed
methodologies.

Future studies can further expand on the existing model
by breaking down the true value into smaller “subtruths,”
abstinence into smaller “subabstinences,” and falsity values
into smaller “subfalsehoods.” Moreover, we will extend our
proposed methodologies in the framework of PF Maclaurin
symmetric mean [67] and bipolar soft sets [68]. Moreover,
we also explored our invented approaches in the form of
a complex bipolar fuzzy soft set [69] and a T-spherical fuzzy
set [70]. Furthermore, Table 8 covers all abbreviations used
in this article.
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