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In this article, a subgrid-sparse-grad-div method for incompressible fow problem was proposed, which is a combination of the
subgrid stabilization method and the recently proposed sparse-grad-div method. Te method maintains the advantage of both
methods: (i) It is robust for solving incompressible fow problem with dominance of the convection, especially when the viscosity
is too small. (ii) It can keep mass conservation. Terefore, the method is very efcient for solving incompressible fow. Moreover,
based on the Crank–Nicolson extrapolated scheme for temporal discretization, and mixed fnite element in spatial discretization,
we derive the unconditional stability and optimal convergence of the method. Finally, numerical experiments are proposed to
validate the theoretical predictions and demonstrate the efciency of the method on a test problem for incompressible fow.

1. Introduction

In this paper, we consider the incompressible time-
dependent Navier–Stokes (NS) equations. For a bounded,
regular domain Ω ⊂ Rd (d � 2 or 3), we fnd
u: Ω × [0, T]⟶ Rd and p: Ω × [0, T]⟶ R satisfying

ut + ]∆u +(u · ∇)u + ∇p � f inΩ ×[0, T],

∇ · u � 0 inΩ ×[0, T],

u � 0 on zΩ ×[0, T],

u(0, ·) � u0(x) for x ∈ Ω,

(1)

where u and p represent the fuid velocity and zero-mean
pressure, respectively, ] represents the kinematic viscosity,
and f and u0 are the prescribed terms.

System (1) provides a mathematical model of in-
compressible Newtonian viscous fuid fow. Tey can de-
scribe many important physical phenomena such as weather
prediction or climate modeling, fow around airfoils, ocean
current, and blood fow in the arteries. Terefore, it is of
practical interest to design efcient numerical methods for
solving NS equations. Among the numerical methods, the
Galerkin fnite element method is a popular method, for
more details, see [1–3] and references therein. However, the
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numerical solution solved by using fnite methods often
sufer from spurious oscillations and inaccurate approxi-
mation, themain reason for this is the fact that dominance of
the convection, especially when the viscosity is too small, or
the poor mass conservation. In order to deal with these
efects, various stabilization techniques have been proposed.

Among these stabilization methods, one of the most
popular stabilization methods applied on incompressible
fow problems is the variational multiscale (VMS) method,
which is based on the decomposition of the fow scales. In
a type of VMSmethod, the fow is decomposed into the large
scales and small scales, and the former is defned by pro-
jection into appropriate subspaces. For more details, we can
see [4–8] and the references therein. Te subgrid stabili-
zation method is an improvement of the VMS method,
which uses the two-grid techniques [9–11], and assumes that
there exist fne scales and coarse scales of the fow. Te main
ideas of subgrid stabilization method are to frst add an
artifcial viscosity term on a fne scales and then subtract it
of only on the coarse scales, see, for example [12–14]. It has
ample applications about subgrid stabilization method, such
as steady-state natural convection problem [15], the in-
compressible magnetohydrodynamics (MHD) [16], and
Darcy–Brinkman equations in double-difusive convection
[17], optimal control of the unsteady Navier–Stokes equa-
tions [18], and so on. Te grad-div stabilization method is
another popular stabilization method, which was studied in
[19–21]. It can be look as the penalized stabilization of the
divergence constraint. Since using the common fnite ele-
ment methods does not give divergence-free solutions, the
divergence constraint condition is damaged severely [19].
When adding the grad-div term as a penalty term with
respect to the continuity equation, it can improve the
conservation of mass. Te signifcant feature of the method
is that it enhances the discrete mass conservation and re-
duces the efect of the pressure error on the velocity error.

Recently, a new grad-div type stabilization technique,
namely, the sparse-grad-div stabilization method, was de-
rived in [22]. Te stabilization term added in this method
produces block upper triangular matrices in two dimensions
case and in three dimensions, the 2, 1 and 3, 1 blocks are
empty. Since the sparser structure of its matrices, this new
grad-div method not only can achieve the same positive
efect compare with the common grad-div method but also is
more efcient. Te new grad-div method was extended to
solve Navier–Stokes equations with a projection algorithm
[23] and to solve optimal control problem of stationary
Navier–Stokes equations [24]. Te other variant of the grad-
div stabilization can be seen in [25–27].

Te main contribution of this work is to derive a syn-
thesized stabilization fnite element method for solving
incompressible fow problem. Tis method is a combination

of the subgrid stabilization method and the recently pro-
posed sparse-grad-div method and possesses the advantage
of both methods. It is robust for solving incompressible fow
problems with dominance of the convection, especially
when the viscosity is too small. In addition, it can keep mass
conservation. Terefore, the method is very efcient for
solving incompressible fow. Moreover, based on the
Crank–Nicolson extrapolated scheme for temporal dis-
cretization, and mixed fnite element in spatial discretiza-
tion, we derive the unconditional stability and optimal
convergence of the method. Numerical experiments are
proposed to validate the theoretical predictions and dem-
onstrate the efciency of the method on a test problem for
incompressible fow.

Te article is arranged as follows. Section 2 introduces
some notations and preliminary results that will be used
throughout this article, and presents the numerical algo-
rithm. In Section 3, we prove the unconditional stability of
the proposed method. In Section 4, we perform a rigorous
error analysis of the presented algorithm. A series of nu-
merical experiments are provided to verify the efciency of
the method in Section 5. Finally, we conclude the article.

2. Mathematical Preliminaries

We frst generalize some notations, defnitions, and pre-
liminary lemmas which will be used in the analysis. Let
Ω ⊂ Rd (d � 2 or 3) be an open, bounded convex polygonal
or polyhedra domain, with a Lipschitz-continuous boundary
zΩ. Te inner product on L2(Ω) or L2(Ω)d×d, the norm in
L2(Ω), and the norm in L∞(Ω) are denoted by (·, ·), ‖ · ‖,
and ‖ · ‖∞, respectively. Likewise, the Lp(Ω) norms and the
Sobolev space Wk

p(Ω)norms are denoted by ‖ · ‖Lp and
‖ · ‖Wk

p
, respectively. For the seminorm in Wk

p(Ω), we denote
it by | · |Wk

p
. Hk(Ω) is the standard Hilbertian Sobolev space

of order k with norm ‖ · ‖k. For the given function, υ(x, t)

defned on the entire time interval (0, T), we defne the norm

‖υ‖∞,k � sup
0<t<T

‖υ(·, t)‖k,

‖υ‖m,k � 􏽚
T

0
‖υ(·, t)‖

m
k dt􏼠 􏼡

1/m

.

(2)

For the mathematical setting of problem (1), the fol-
lowing Sobolev spaces for the velocity u, the pressure p are
introduced, respectively, by

X � H
1
0(Ω)

d
� v ∈ H

1
(Ω)

d
: v � 0 on zΩ􏽮 􏽯,

M � L
2
0(Ω) � φ ∈ L

2
(Ω): 􏽚

Ω
φdx � 0􏼚 􏼛,

(3)

2 Discrete Dynamics in Nature and Society



where the space X is equipped with the L2-scalar product
(·, ·) and the norm ‖ · ‖, and the space M is equipped with the
usual L2-norm. Finally, the space H− 1(Ω), the dual space of
H1

0(Ω), is equipped with the negative norm

‖f‖− 1 � sup
v∈H1

0(Ω)

|(f, v)|

‖∇v‖
. (4)

In addition, the classical space of divergence-free
functions is defned by

V � v ∈ X: (φ,∇ · v) � 0 ∀φ ∈M􏼈 􏼉. (5)

With above notations, we can get the weak formulation
of (1) as follows: Find u: [0, T]⟶ X, p: [0, T]⟶M for
a.e. t ∈ (0, T] satisfying

ut, v( 􏼁 + ](∇u,∇v) + b
∗
(u, u, v) − (p,∇ · v) � (f, v) ∀v ∈ X,

(∇ · u, q) � 0 ∀q ∈M,

(6)

where the skew symmetrized trilinear form is defned as
follows:

b
∗
(u, v, w) �

1
2

(u · ∇v, w) −
1
2

(u · ∇w, v) ∀u, v, w ∈ X.

(7)

By the divergence theorem, we know

b
∗
(u, v, w) � 􏽚

Ω
u · ∇v · wdx +

1
2
􏽚
Ω

(∇ · u)(v · w) ∀u, v, w ∈ X.

(8)

We also note that

b
∗
(u, v, v) � 0 ∀u, v ∈ X. (9)

Te trilinear form has the following bounds, see [1, 3] for
more details,

b
∗
(u, v, w)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤C‖∇u‖‖∇v‖‖∇w‖ ∀u, v, w ∈ X, (10)

b
∗
(u, v, w)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤C‖u‖

1/2
‖∇u‖

1/2
‖∇v‖‖∇w‖ ∀u, v, w ∈ X,

b
∗
(u, v, w)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤C‖∇u‖‖∇v‖‖w‖

1/2
‖∇w‖

1/2 ∀u, v, w ∈ X.

(11)

In addition, if v,∇v ∈ L∞(Ω), we have (see e.g., Lemma 1
in [28]).

b
∗
(u, v, w)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤C‖u‖ ‖v‖∞ +‖∇v‖∞( 􏼁‖∇w‖ ∀u, w ∈ X.

(12)

2.1. Finite Element Approximation. We now introduce the
fnite element discretization of (6). Let τh � Ωh􏼈 􏼉 and τH �

ΩH􏼈 􏼉 are two uniformly regular triangulation of domain Ω

into triangular in R2 or tetrahedral in R3. Tus, the com-
putational domain is defned by

Ω � ⋃K ∀K ∈ τh resp.τH( 􏼁. (13)

Here, h (respectively, H) denotes the maximum di-
ameter of the elements in τh (resp. τH) and such that h<H.
Let Xh ⊂ X, Mh ⊂M and Wh ⊂W be conforming fnite
element spaces, which defned as follows:

Xh � vh ∈ X∩C
0
(Ω)

d
: vh|K ∈ Pk(K)

d ∀K ∈ τh􏽮 􏽯,

Mh � qh ∈M∩C
0
(Ω): qh|K ∈ Ps(K) ∀K ∈ τh􏽮 􏽯,

Vh � vh ∈ Xh: qh,∇ · vh( 􏼁 � 0 ∀qh ∈Mh􏼈 􏼉,

(14)

where Pr(K) is the space of the r-th order polynomial on K.
Te conforming velocity-pressure fnite element space
(Xh,Mh) ⊂ (X,M) satisfes the discrete inf-sup condition
[2, 3], i.e., there exists a constant β> 0 independent of h such
that

inf
qh∈Mh

sup
vh∈Xh

qh,∇ · vh( 􏼁

qh

����
���� ∇vh

����
����
≥ β> 0. (15)

As we know, this discrete inf-sup condition which are
known to be valid for the classical Taylor-Hood element
(Pk, Pk− 1) [29], the (P2, P0) [30] element, and the
Scott–Vogelius elements (Pk, Pdisc

k ) on appropriate
meshes [19].

Te coarse or large scales space used in this article is
defned by LH, which is the coarse fnite element spaces of
the deformation tensor with

LH ⊆∇Xh ⊂ L ≔ lij ∈ L
2
(Ω)􏼐 􏼑

d×d
|lij � lji􏼚 􏼛. (16)

Suppose the fnite element space pair (Xh, Mh) satisfes
the following approximation properties [2, 31]:

inf
vh∈Xh

u − vh

����
����􏽮 􏽯≤Ch

k+1
‖u‖k+1 ∀u ∈ H

k+1
(Ω)􏼐 􏼑

d
∩X,

inf
vh∈Xh

u − vh

����
����1≤Ch

k
‖u‖k+1 ∀u ∈ H

k+1
(Ω)􏼐 􏼑

d
∩X,

inf
qh∈Mh

p − qh

����
����≤Ch

s+1
‖p‖s+1 ∀p ∈ H

k
(Ω)∩M.

(17)

Let ∆t be the step size for t, tn � n∆t, n � 0, 1, 2, . . ., N,
with T ≔ N∆t. For notational clarity, let vn+1/2 � v(tn+1/2)

for the continuous variable, and vn+1/2
h � vn+1

h + vn
h/2 for the

discrete variable, here tn+1/2 � (n + 1/2)∆t, in addition, we
defne the following additional norms:

‖|v‖|∞,k ≔ max0≤n≤N− 1 υn+1����
����k

, ‖| υ‖|m,k ≔ 􏽘

N− 1

n�0
υn+1����

����
m

k
∆t⎛⎝ ⎞⎠

1/m

. (18)
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Te discrete Gronwall lemma plays an important role in
the analysis, we recall from [28, 32] as follows:

Lemma 1 (Discrete Gronwall’s lemma). Let ∆t, H, and
an, bn, cn, dn (for integers n≥ 0) be nonnegative numbers such
that

al + ∆t 􏽘
l

n�0
bn ≤∆t 􏽘

l− 1

n�0
dnan + ∆t 􏽘

l

n�0
cn + H for l ∈ N. (19)

Ten, for all ∆t≥ 0,

al + ∆t 􏽘
l

n�0
bn ≤ exp ∆t 􏽘

l− 1

n�0
dn

⎛⎝ ⎞⎠ ∆t 􏽘
l

n�0
cn + H⎛⎝ ⎞⎠ for l ∈ N.

(20)

Furthermore, Young’s and Poincaré’s inequalities as
follows will be used frequently.

ab≤
ε
p

a
p

+
ε− q/p

q
b

q
, a, b, p, q, ε ∈ R,

1
p

+
1
q

� 1, p, q ∈ (1,∞), ε> 0,

‖υ‖≤Cp‖∇υ‖∀υ ∈ X, Cp � Cp(Ω).

(21)

Defning PL2

Vh
: L2(Ω)⟶ Vh to be the L2 projection into

Vh, satisfying for v ∈ L2(Ω)

P
L2

Vh
v − v, vh􏼒 􏼓 � 0, ∀vh ∈ Vh. (22)

In the next lemma, we give out the important properties
of the sparse-grad-div operator g [22]:

Lemma 2. Let Ω be a bounded regular domain, and
u, v ∈ H1(Ω)d (d � 2 or 3). Defning the sparse-grad-div
operator g by

g2d(u, v) � 􏽚
Ω

u1xv1x + u2yv2y + 2u2yv1x􏼐 􏼑dΩ,

g3d(u, v) � 􏽚
Ω

u1xv1x + u2yv2y + u3zv3z + 2u2yv1x + 2u3zv1x + u3zv2y + u2yv3z􏼐 􏼑dΩ.

(23)

Ten, the operator g has the following properties: (1) Te operator g can be written as

g2d(u, v) � (∇ · u,∇ · v) − u1x, v2x( 􏼁 − u2y, v1x􏼐 􏼑􏼐 􏼑,

g3d(u, v) � (∇ · u,∇ · v) − u1x, v2x( 􏼁 − u2y, v1x􏼐 􏼑 + u1x, v3z( 􏼁 − u3z, v1x( 􏼁􏼐 􏼑.
(24)

(2) Similar to grad-div stabilization, g satisfes in 2d or
3d,g(u, u) � ‖∇ · u‖2.

(3) If ∇ · u � 0, then in 2d or 3d,g(u, v) � − (u1x,∇ · v).

Now, we give out the subgrid-sparse-grad-div algorithm
as follows:

Algorithm 3 (Subgrid-Sparse-Grad-Div). Te full
discrete approximation of (2) is: Let u− 1

h � u0
h � PL2

Vh
u0,

given un− 1
h , un

h ∈ Xh, pn− 1
h , pn

h ∈Mh, Gn
H ∈ LH, fnd

un+1
h ∈ Xh, pn+1

h ∈Mh, Gn+1
H ∈ LH satisfying, for

n � 0, 1, . . ., N − 1
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u
n+1
h − u

n
h

∆t
, vh􏼠 􏼡 + b

∗ 3
2
u

n
h −

1
2
u

n− 1
h , u

n+1/2
h , vh􏼒 􏼓 +(] + α(h)) ∇un+1/2

h ,∇vh􏼐 􏼑

− α(h) G
n+1/2
H ,∇vh􏼐 􏼑 − p

n+1/2
h ,∇ · vh􏼐 􏼑 + cg u

n+1/2
h , vh􏼐 􏼑

� f tn+1/2( 􏼁, vh( 􏼁, ∀vh ∈ Xh,

∇ · u
n+1
h , qh􏼐 􏼑 � 0, ∀qh ∈Mh,

G
n+1/2
H − ∇un+1/2

h , lH􏼐 􏼑 � 0, ∀lH ∈ LH.

(25)

Remark 4. In Algorithm 3, we frst add an artifcial viscosity
term on a fne scales, and then subtract it of only on the
coarse scales, which leads to a much better conditioning of
linear system is achieved while only altering the NS equa-
tions on fne scales. Tis allows us to solve incompressible
fow problem with dominance of the convection, especially
when the viscosity is too small.

Remark 5. We assume that α(h) is known, positive,
element-wise constants. When α(h) ≡ 0, Algorithm 3 be-
come the Sparse-Grad-Div algorithm [22].

Remark 6. Combining the sparse-grad-div stabilization
term with the pressure term, we can derive a modifed
pressure Ph � ph + c(uh)1x

, which will be used in the nu-
merical experiments.

3. Stability Analysis

In this section, we establish the unconditional stability of
Algorithm 3.

Theorem 7. Assume that f ∈ L2(0, T; H− 1(Ω)),
u0 ∈ L2(Ω), the solution of numerical scheme (25) satisfes the
following energy estimates

u
N
h

����
����
2

+ ]∆t 􏽘
N− 1

n�0
∇un+1/2

h

����
����
2

+ 2∆tc 􏽘
N− 1

n�0
∇ · u

n+1/2
h

����
����
2
≤
1
]

f1/2
􏼌􏼌􏼌􏼌

����
����
􏼌􏼌􏼌􏼌
2
2,− 1 + u

0
h

����
����
2
, (26)

and

]∆t 􏽘
N− 1

n�0
G

n+1/2
H

����
����
2
≤ ]∆t 􏽘

N− 1

n�0
∇un+1/2

h

����
����
2
≤
1
]

f1/2
􏼌􏼌􏼌􏼌

����
����
􏼌􏼌􏼌􏼌
2
2,− 1+ u

0
h

����
����
2
. (27)

Proof. Setting lH � Gn+1/2
H in the third equation of (25), then

we obtain

G
n+1/2
H

����
����
2

� ∇un+1/2
h , G

n+1/2
H􏼐 􏼑≤

1
2
∇un+1/2

h

����
����
2

+
1
2

G
n+1/2
H

����
����
2
,

(28)

which yields

G
n+1/2
H

����
����≤ ∇un+1/2

h

����
����. (29)

Choosing vh � un+1/2
h ∈ Vh in (25), making use of Cau-

chy–Schwarz and Young’s inequality to the right hand side,
and thanks to Lemma 2, we arrive at

1
2∆t

u
n+1
h

����
����
2

− u
n
h

����
����
2

􏼒 􏼓 +(] + α(h)) ∇un+1/2
h

����
����
2

+ c ∇ · u
n+1/2
h

����
����
2

≤ α(h) G
n+1/2
H

����
���� ∇un+1/2

h

����
���� +

]
2
∇un+1/2

h

����
����
2

+
1
2]

f tn+1/2( 􏼁
����

����
2
− 1.

(30)

Multiplying through by 2∆t and applying (29), it gives

u
n+1
h

����
����
2

− u
n
h

����
����
2

+ ]∆t ∇un+1/2
h

����
����
2

+ 2∆tc ∇ · u
n+1/2
h

����
����
2
≤
∆t

]
f tn+1/2( 􏼁

����
����
2
− 1. (31)

Summing up from n � 0 to N − 1, we obtain
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u
N
h

����
����
2

+ ]∆t 􏽘
N− 1

n�0
∇un+1/2

h

����
����
2

+ 2∆tc 􏽘
N− 1

n�0
∇ · u

n+1/2
h

����
����
2

≤
∆t

]
􏽘

N− 1

n�0
f tn+1/2( 􏼁

����
����
2
− 1 + u

0
h

����
����
2
,

(32)

and then, we obtain the estimate (26). By (29) and (32), we
get the bound of GH as follows:

]∆t 􏽘
N− 1

n�0
G

n+1/2
H

����
����
2
≤ ]∆t 􏽘

N− 1

n�0
∇un+1/2

h

����
����
2
≤
∆t

]
􏽘

N− 1

n�0
f tn+1/2( 􏼁

����
����
2
− 1 + u

0
h

����
����
2
, (33)

which we get the bound (27), and complete the proof. □

4. Error Analysis

In this section, we devote to derive the error estimate of the
presented numerical scheme (25). For convenience, we
denote a generic constant C whose value may depends only

on Ω and system parameters but is independent of the
solutions, time step size and mesh width, and it may take on
diferent value from place to place.

To establish the optimal asymptotic error estimate for
the approximation, we assume that the true solution of
problem (1) satisfes the following regularity assumptions:

u ∈ L
∞ 0, T; H

1
(Ω)􏼐 􏼑∩H

1 0, T; H
k+1

(Ω)􏼐 􏼑∩H
3 0, T; L

2
(Ω)􏼐 􏼑∩H

2 0, T; H
1
(Ω)􏼐 􏼑,

p ∈ L
2 0, T; H

s+1
(Ω)􏼐 􏼑.

(34)

Theorem 8. Let (u, p) be the solution of Navier–Stokes
equations (1) and satisfy the regularity assumptions (18),

(un+1
h , pn+1

h ) is given by the scheme (10), then we have the
following error estimate:

u(T) − u
N
h

����
����
2

+ ]∆t 􏽘
N− 1

n�0
∇u t

n+
1
2

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠ − ∇un+1/2

h

������������

������������

2

+ ∆tc 􏽘
N− 1

n�0
∇ · u

n+1/2
h

����
����
2

≤C ]h
2k+2

‖| u‖|
2
2,k+1 +

α2(h)

]
h
2k+2

‖| u‖|
2
2,k+1 +

c
2

]
h
2k

‖| u‖|
2
2,k+1 +

1
]
h
2k

‖| u‖|
2
2,k+1􏼠

+
∆t

4

]
uttt

􏼌􏼌􏼌􏼌
����

����
􏼌􏼌􏼌􏼌
2
2,0 + utt

􏼌􏼌􏼌􏼌
����

����
􏼌􏼌􏼌􏼌
4
4,0􏼒 􏼓 +

∆t
4

]
‖|∇u‖|

4
∞,0 +

∆t
4

]
􏼌􏼌􏼌􏼌∇u1/2

����
����
􏼌􏼌􏼌􏼌
4
∞,0

+
∆t

4

]
􏼌􏼌􏼌􏼌∇utt

����
����
􏼌􏼌􏼌􏼌
4
4,0 + ]∆t

4 􏼌􏼌􏼌􏼌∇utt

����
����
􏼌􏼌􏼌􏼌
2
2,0 +

h
2k

c

􏼌􏼌􏼌􏼌p − cu1x

����
����
􏼌􏼌􏼌􏼌
2
∞,k

+
α2(h)

]
H

2k
‖| u‖|

2
2,k+1􏼡.

(35)
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Remark 9. From the right hand side of estimate (19), we can
see that the sparse-grad-div operator g act to reduce the
efect of pressure discretization error on the velocity error
and increase the efect of the velocity discretization error.

Proof. We rewrite the continuous variational formulations
of equation (2) at t � tn+1. For vh ∈ Vh, adding and sub-
tracting some terms yield

u tn+1( 􏼁 − u tn( 􏼁

∆t
, vh􏼠 􏼡 + b

∗ 3
2

u tn( 􏼁 −
1
2

u tn− 1( 􏼁,
u tn+1( 􏼁 + u tn( 􏼁

2
, vh􏼠 􏼡 + ]

u tn+1( 􏼁 + u tn( 􏼁

2
,∇vh􏼠 􏼡

+ α(h)
u tn+1( 􏼁 + u tn( 􏼁

2
,∇vh􏼠 􏼡 − p tn+1/2( 􏼁,∇ · vh( 􏼁 + cg

u tn+1( 􏼁 + u tn( 􏼁

2
, vh􏼠 􏼡

�
u tn+1( 􏼁 − u tn( 􏼁

∆t
− ut tn+1/2( 􏼁, vh􏼠 􏼡 + b

∗ 3
2

u tn( 􏼁 −
1
2

u tn− 1( 􏼁,
u tn+1( 􏼁 + u tn( 􏼁

2
, vh􏼠 􏼡

− b
∗

u tn+1/2( 􏼁, u tn+1/2( 􏼁, vh( 􏼁 + ] ∇
u tn+1( 􏼁 + u tn( 􏼁

2
− ∇u tn+1/2( 􏼁, vh􏼠 􏼡

+ α(h) ∇
u tn+1( 􏼁 + u tn( 􏼁

2
,∇vh􏼠 􏼡 − c u

n+1/2
1x ,∇ · vh􏼐 􏼑 + f tn+1/2( 􏼁, vh( 􏼁.

(36)

Denoting by en � u(tn) − un
h, after subtracting (25) from

(36) and performing some simple algebraic manipulations,
we obtained the error equation as follows

e
n+1

− e
n

∆t
, vh􏼠 􏼡 + ] ∇en+1/2

,∇vh􏼐 􏼑 + α(h) ∇en+1/2
,∇vh􏼐 􏼑 + cg e

n+1/2
, vh􏼐 􏼑

� − b
∗ 3

2
e

n
−
1
2
e

n− 1
,
u tn+1( 􏼁 + u tn( 􏼁

2
, vh􏼠 􏼡 − b

∗ 3
2
u

n
h −

1
2
u

n− 1
h , e

n+1/2
, vh􏼒 􏼓

+
u tn+1( 􏼁 − u tn( 􏼁

∆t
− ut tn+1/2( 􏼁, vh􏼠 􏼡 + ] ∇

u tn+1( 􏼁 + u tn( 􏼁

2
− ∇u tn+1/2( 􏼁, vh􏼠 􏼡

+ b
∗ 3

2
u tn( 􏼁 −

1
2

u tn− 1( 􏼁,
u tn+1( 􏼁 + u tn( 􏼁

2
, vh􏼠 􏼡 − b

∗
u tn+1/2( 􏼁, u tn+1/2( 􏼁, vh( 􏼁

+ α(h) ∇
u tn+1( 􏼁 + u tn( 􏼁

2
− G

n+1/2
H ,∇vh􏼠 􏼡 + c p tn+1/2( 􏼁 − u

n+1/2
1x − qh,∇ · vh􏼐 􏼑.

(37)
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Next, we decompose the errors into interpolation error
and approximation error terms as follows:

e
n

� u tn( 􏼁 − P
L2

Vh
u tn( 􏼁􏼒 􏼓 − u

n
h − P

L2

Vh
u tn( 􏼁􏼒 􏼓 � ηn

− ϕn
h, (38)

and rewrite (37) as follows:

1
∆t

ϕn+1
h − ϕn

h, vh􏼐 􏼑 + ] ∇ϕn+1/2
h ,∇vh􏼐 􏼑 + α(h) ∇ϕn+1/2

h ,∇vh􏼐 􏼑 + cg ϕn+1/2
h , vh􏼐 􏼑

�
1
∆t

ηn+1
− ηn

, vh􏼐 􏼑 + ] ∇ηn+1/2
,∇vh􏼐 􏼑 + α(h) ∇ηn+1/2

,∇vh􏼐 􏼑 + cg ηn+1/2
, vh􏼐 􏼑

+ b
∗ 3

2
ηn

−
1
2
ηn− 1

,
u tn+1( 􏼁 + u tn( 􏼁

2
, vh􏼠 􏼡 − b

∗ 3
2
ϕn

h −
1
2
ϕn− 1

h ,
u tn+1( 􏼁 + u tn( 􏼁

2
, vh􏼠 􏼡

+ b
∗ 3

2
u

n
h −

1
2
u

n− 1
h , ηn+1/2

, vh􏼒 􏼓 − b
∗ 3

2
u

n
h −

1
2
u

n− 1
h ,ϕn+1/2

h , vh􏼒 􏼓

−
u tn+1( 􏼁 − u tn( 􏼁

∆t
− ut tn+1/2( 􏼁, vh􏼠 􏼡 − b

∗ 3
2

u tn( 􏼁 −
1
2

u tn− 1( 􏼁,
u tn+1( 􏼁 + u tn( 􏼁

2
− u tn+1/2( 􏼁, vh􏼠 􏼡

− b
∗ 3

2
u tn( 􏼁 −

1
2

u tn− 1( 􏼁 − u tn+1/2( 􏼁, u tn+1/2( 􏼁, vh􏼒 􏼓 − ] ∇
u tn+1( 􏼁 + u tn( 􏼁

2
− ∇u tn+1/2( 􏼁, vh􏼠 􏼡

− α(h) ∇
u tn+1( 􏼁 + u tn( 􏼁

2
− G

n+1/2
H ,∇vh􏼠 􏼡 − c p tn+1/2( 􏼁 − u

n+1/2
1x − qh,∇ · vh􏼐 􏼑,

(39)

for all qh ∈Mh.
Setting vh � ϕn+1/2

h ∈ Vh in (39) and using Lemma 2, we
arrived at
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1
2∆t

ϕn+1
h

����
����
2

− ϕn
h

����
����
2

􏼒 􏼓 + v ∇ϕn+1/2
h

����
����
2

+ α(h) ∇ϕn+1/2
h

����
����
2

+ c ∇ · ϕn+1/2
h

����
����
2

�
1
∆t

ηn+1
− ηn

, ϕn+1/2
h􏼐 􏼑 + ] ∇ηn+1/2

,∇ϕn+1/2
h􏼐 􏼑 + α(h) ∇ηn+1/2

,∇ϕn+1/2
h􏼐 􏼑 + cg ηn+1/2

,ϕn+1/2
h􏼐 􏼑

+ b
∗ 3

2
ηn

−
1
2
ηn− 1

,
u tn+1( 􏼁 + u tn( 􏼁

2
, ϕn+1/2

h􏼠 􏼡 − b
∗ 3

2
ϕn

h −
1
2
ϕn− 1

h ,
u tn+1( 􏼁 + u tn( 􏼁

2
, ϕn+1/2

h􏼠 􏼡

+ b
∗ 3

2
u

n
h −

1
2
u

n− 1
h , ηn+1/2

, ϕn+1/2
h􏼒 􏼓 − b

∗ 3
2
u

n
h −

1
2
u

n− 1
h ,ϕn+1/2

h , ϕn+1/2
h􏼒 􏼓

−
u tn+1( 􏼁 − u tn( 􏼁

∆t
− ut t

n+
1
2

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠, ϕn+1/2

h
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

− b
∗ 3

2
u tn( 􏼁 −

1
2

u tn− 1( 􏼁 − u t
n+
1
2

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠, u t

n+
1
2

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠, ϕn+1/2

h
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

− b
∗ 3

2
u tn( 􏼁 −

1
2

u tn− 1( 􏼁,
u tn+1( 􏼁 + u tn( 􏼁

2
− u tn+1/2( 􏼁,ϕn+1/2

h􏼠 􏼡

− ] ∇
u tn+1( 􏼁 + u tn( 􏼁

2
− ∇u tn+1/2( 􏼁,∇ϕn+1/2

h􏼠 􏼡

− α(h) ∇
u tn+1( 􏼁 + u tn( 􏼁

2
− G

n+1/2
H ,∇ϕn+1/2

h􏼠 􏼡

− p tn+1/2( 􏼁 − cu
n+1/2
1x − qh,∇ · ϕn+1/2

h􏼐 􏼑.

(40)

Due to the orthogonality of L2 projection operator PL2

Vh
,

that ηn+1 − ηn⊥Vh, so 1/∆t(ηn+1 − ηn,ϕn+1
h ) � 0. Using the

property (9) of the trilinear b, which implies
b∗(3/2un

h − 1/2un− 1
h ,ϕn+1/2

h ,ϕn+1/2
h ) � 0. Next, we estimate the

rest terms on the RHS of (40) one by one. First, the ap-
plications of Cauchy–Schwarz and Young’s inequality lead
to

] ∇ηn+1/2
h ,∇ϕn+1/2

h􏼐 􏼑≤
]
28
∇ϕn+1/2

h

����
����
2

+ C] ∇ηn+1/2����
����
2
, (41)

and

α(h) ∇ηn+1/2
h ,∇ϕn+1/2

h􏼐 􏼑≤
]
28
∇ϕn+1/2

h

����
����
2

+
Cα2(h)

]
∇ηn+1/2����

����
2
, (42)

also

cg ηn+1/2
h ,ϕn+1/2

h􏼐 􏼑≤Cc ∇ηn+1/2
h

����
���� ∇ϕn+1/2

h

����
����≤

]
28
∇ϕn+1/2

h

����
����
2

+
Cc

2

]
∇ηn+1/2����

����
2
. (43)

For the nonlinear term, using estimates (10) and (12), it
gives

b
∗ 3

2
ηn

−
1
2
ηn− 1

,
u tn+1( 􏼁 + u tn( 􏼁

2
, ϕn+1/2

h􏼠 􏼡

≤C ∇
3
2
ηn

−
1
2
ηn− 1

􏼒 􏼓

�������

�������
∇

u tn+1( 􏼁 + u tn( 􏼁

2

��������

��������
∇ϕn+1/2

h

����
����

≤
]
28
∇ϕn+1/2

h

����
����
2

+
C

]
∇u tn+1( 􏼁

����
����
2

+ ∇u tn( 􏼁
����

����
2

􏼒 􏼓 ∇ηn
����

����
2

+ ∇ηn− 1����
����
2

􏼒 􏼓,

(44)
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and

b
∗ 3

2
ϕn

h −
1
2
ϕn− 1

h ,
u tn+1( 􏼁 + u tn( 􏼁

2
, ϕn+1/2

h􏼠 􏼡

≤C
3
2
ϕn

h −
1
2
ϕn− 1

h

�������

�������

u tn+1( 􏼁 + u tn( 􏼁

2

��������

��������∞
+ ∇

u tn+1( 􏼁 + u tn( 􏼁

2

��������

��������∞
􏼠 􏼡 ∇ϕn+1/2

h

����
����

≤
]
28
∇ϕn+1/2

h

����
����
2

+
C

]
u tn+1( 􏼁 + u tn( 􏼁

����
����
2
∞ + ∇ u tn+1( 􏼁 + u tn( 􏼁( 􏼁

����
����
2
∞􏼒 􏼓 ϕn

h

����
����
2

+ ϕn− 1
h

����
����
2

􏼒 􏼓,

(45)

For the next nonlinear term, we have the identity

b
∗ 3

2
u

n
h −

1
2
u

n− 1
h , ηn+1/2

, ϕn+1/2
h􏼒 􏼓

� b
∗ 3

2
u tn( 􏼁 −

1
2

u tn− 1( 􏼁, ηn+1/2
, ϕn+1/2

h􏼒 􏼓 − b
∗ 3

2
ηn

−
1
2
ηn− 1

, ηn+1/2
, ϕn+1/2

h􏼒 􏼓

+ b
∗ 3

2
ϕn

h −
1
2
ϕn− 1

h , ηn+1/2
, ϕn+1/2

h􏼒 􏼓.

(46)

Te right hand side of (46) can be bounded as follows.
First,

b
∗ 3

2
u tn( 􏼁 −

1
2

u tn− 1( 􏼁, ηn+1/2
, ϕn+1/2

h􏼒 􏼓

≤
]
28
∇ϕn+1/2

h

����
����
2

+
C

]
∇u tn( 􏼁

����
����
2

+ ∇u tn− 1( 􏼁
����

����
2

􏼒 􏼓 ∇ηn+1/2����
����
2
.

(47)

Next,

b
∗ 3

2
ηn

−
1
2
ηn− 1

, ηn+1/2
,ϕn+1/2

h􏼒 􏼓

≤
]
28
∇ϕn+1/2

h

����
����
2

+
C

]
∇ηn

����
����
2

+ ∇ηn− 1����
����
2

􏼒 􏼓 ∇ηn+1/2����
����
2
.

(48)

Te last term in (46) can be bounded as

b
∗ 3

2
ϕn

h −
1
2
ϕn− 1

h , ηn+1/2
,ϕn+1/2

h􏼒 􏼓

≤C

�������������������������
3
2
ϕn

h −
1
2
ϕn− 1

h

�������

�������

3
2
∇ϕn

h −
1
2
∇ϕn− 1

h

�������

�������

􏽳

∇ηn+1/2����
���� ∇ϕn+1/2

h

����
����

≤
]
28
∇ϕn+1/2

h

����
����
2

+
C

]
3
2
ϕn

h −
1
2
ϕn− 1

h

�������

�������

3
2
∇ϕn

h −
1
2
∇ϕn− 1

h

�������

�������
∇ηn+1/2����

����

≤
]
28
∇ϕn+1/2

h

����
����
2

+
C

]
ϕn

h + ϕn− 1
h

����
���� ∇ϕn

h + ∇ϕn− 1
h

����
���� ∇ηn+1/2����

����

≤
]
28
∇ϕn+1/2

h

����
����
2

+
Ch

− 1

]
ϕn

h + ϕn− 1
h

����
���� ∇ηn+1/2����

����.

(49)

Combining estimates (47)–(49), we can get the bound of
the RHS of (46). Te rest of terms of (40) can be estimated as
follows:
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u tn+1( 􏼁 − u tn( 􏼁

∆t
− ut tn+1/2( 􏼁, ϕn+1/2

h􏼠 􏼡

≤C
u tn+1( 􏼁 − u tn( 􏼁

∆t
− ut tn+1/2( 􏼁

��������

��������
∇ϕn+1/2

h

����
����

≤
]
28
∇ϕn+1/2

h

����
����
2

+
C

]
∆t

3
􏽚

tn+1

tn

uttt
����

����
2
dt,

(50)

and

b
∗ 3

2
u tn( 􏼁 −

1
2

u tn− 1( 􏼁,
u tn+1( 􏼁 + u tn( 􏼁

2
− u tn+1/2( 􏼁, ϕn+1/2

h􏼠 􏼡

≤C
3
2
∇u tn( 􏼁 −

1
2
∇u tn− 1( 􏼁

�������

�������
∇

u tn+1( 􏼁 + u tn( 􏼁

2
− ∇u tn+1/2( 􏼁

��������

��������
∇ϕn+1/2

h

����
����

≤
]
28
∇ϕn+1/2

h

����
����
2

+
C

]
∆t

3 ∇u tn( 􏼁
����

����
2

+ ∇u tn− 1( 􏼁
����

����
2

􏼒 􏼓 􏽚
tn+1

tn

∇utt

����
����
2
dt

≤
]
28
∇ϕ

n+
1
2

h

�������������

�������������

2

+
C

]
∆t

4 ∇u tn( 􏼁
����

����
4

+ ∇u tn− 1( 􏼁
����

����
4

􏼒 􏼓 +
C

]
∆t

3
􏽚

tn+1

tn

∇utt

����
����
4
dt,

(51)

and

b
∗ 3

2
u tn( 􏼁 −

1
2

u tn− 1( 􏼁 − u tn+1/2( 􏼁, u tn+1/2( 􏼁, ϕn+1/2
h􏼒 􏼓

≤C ∇
3
2

u tn( 􏼁 −
1
2

u tn− 1( 􏼁 − u tn+1/2( 􏼁􏼒 􏼓

�������

�������
∇u tn+1/2( 􏼁

����
���� ∇ϕn+1/2

h

����
����

≤
]
28
∇ϕn+1/2

h

����
����
2

+
C

]
∇

3
2

u tn( 􏼁 −
1
2

u tn− 1( 􏼁 − u tn+1/2( 􏼁􏼒 􏼓

�������

�������
∇u tn+1/2( 􏼁

����
����

≤
]
28
∇ϕn+1/2

h

����
����
2

+
C

]
∆t

3 ∇u tn+1/2( 􏼁
����

����
2

􏽚
tn+1

tn

∇utt

����
����
2
dt

≤
]
28
∇ϕn+1/2

h

����
����
2

+
C

]
∆t

4 ∇u tn+1/2( 􏼁
����

����
4

+
C

]
∆t

3
􏽚

tn+1

tn

∇utt

����
����
4
dt,

(52)

and

] ∇
u tn+1( 􏼁 + u tn( 􏼁

2
− ∇u tn+1/2( 􏼁,∇ϕn+1/2

h􏼠 􏼡

≤C ∇
u tn+1( 􏼁 + u tn( 􏼁

2
− ∇u tn+1/2( 􏼁

��������

��������
∇ϕn+1/2

h

����
����

≤
]
28
∇ϕn+1/2

h

����
����
2

+ C]∆t
3

􏽚
tn+1

tn

∇utt

����
����
2
dt.

(53)

For the pressure term, we have

p tn+1/2( 􏼁 − cu
n+1/2
1x − qh,∇ · ϕn+1/2

h􏼐 􏼑

≤ p tn+1/2( 􏼁 − cu
n+1/2
1x − qh

����
���� ∇ · ϕn+1/2

h

����
����

≤
c

2
∇ · ϕn+1/2

h

����
����
2

+
C

c
p tn+1/2( 􏼁 − cu

n+1/2
1x − qh

����
����
2
dt.

(54)

Finally, we estimate the coarse mesh projection term, by
the third equation of (25), we know for lH ∈ LH
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∇
u tn+1( 􏼁 + u tn( 􏼁

2
− G

n+1/2
H , lH􏼠 􏼡

� ∇
u tn+1( 􏼁 + u tn( 􏼁

2
− ∇un+1/2

h , lH􏼠 􏼡

� ∇en+1/2
, lH􏼐 􏼑.

(55)

We denoteΨn � ∇un − PL2

LH
(∇un), Υn

H � Gn
H− PL2

LH
(∇un);

here, PL2

LH
is L2 projection onto LH. Tanks to the orthog-

onality of L2 projection operator PL2

LH
, that Ψn⊥LH, so

∇en+1/2
, lH􏼐 􏼑 � ∇

u tn+1( 􏼁 + u tn( 􏼁

2
− G

n+1/2
H , lH􏼠 􏼡

� Ψn+1/2
, lH􏼐 􏼑 − Υn+1/2

h , lH􏼐 􏼑

� − Υn+1/2
h , lH􏼐 􏼑.

(56)

Choosing lH � Υn+1/2
h in above equation, it gives

Υn+1/2
h

����
����
2

� − ∇en+1/2
,Υn+1/2

h􏼐 􏼑

≤ ∇en+1/2����
���� Υn+1/2

h

����
����

≤
1
2
∇en+1/2����

����
2

+
1
2
Υn+1/2

h

����
����
2
,

(57)

which yields

Υn+1/2
h

����
����≤ ∇en+1/2����

����≤ ∇ηn+1/2����
���� + ∇ϕn+1/2

h

����
����, (58)

and

α(h) ∇
u tn+1( 􏼁 + u tn( 􏼁

2
− G

n+1/2
H ,∇ϕn+1/2

h􏼠 􏼡

≤ α(h) Ψn+1/2
+ Υn+1/2

h

����
���� ∇ϕn+1/2

h

����
����

≤ α(h) Ψn+1/2����
���� + Υn+1/2

h

����
����􏼐 􏼑 ∇ϕn+1/2

h

����
����

≤ α(h) Ψn+1/2����
���� + ∇ηn+1/2����

���� + ∇ϕn+1/2
h

����
����􏼐 􏼑 ∇ϕn+1/2

h

����
����

≤ α(h) ∇ϕn+1/2
h

����
����
2

+
]
14
∇ϕn+1/2

h

����
����
2

+
Cα2(h)

]
Ψn+1/2����

����
2

+
Cα2(h)

]
∇ηn+1/2����

����
2
.

(59)

After inserting the bound (41)–(59) into (40), multi-
plying by 2∆t on both side, and taking the sum from n � 1 to
N − 1, noting that ϕ0h � 0, we have
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ϕN
h

����
����
2

+ ]∆t 􏽘
N− 1

n�0
∇ϕn+1/2

h

����
����
2

+ ∆tc 􏽘
N− 1

n�0
∇ · ϕn+1/2

h

����
����
2

≤C∆t 􏽘
N− 1

n�0
][ ηn+1/2����

����
2

+
α2(h)

]
∇ηn+1/2����

����
2

+
c
2

]
∇ηn+1/2����

����
2

+
1
]
∇u tn+1( 􏼁

����
����
2

+ ∇u tn( 􏼁
����

����
2

􏼒 􏼓 ∇ηn
����

����
2

+ ∇ηn− 1����
����
2

􏼒 􏼓

+
1
]
∇u tn( 􏼁

����
����
2

+ ∇u tn− 1( 􏼁
����

����
2

􏼒 􏼓 ∇ηn+1/2����
����
2

+
1
]
∇ηn

����
����
2

+ ∇ηn− 1����
����
2

􏼒 􏼓 ∇ηn+1/2����
����
2

+
∆t

3

]
􏽚

tn+1

tn

uttt

����
����
2
dt

+
∆t

4

]
∇u tn( 􏼁

����
����
4

+ ∇u tn− 1( 􏼁
����

����
4

􏼒 􏼓 +
∆t

3

]
􏽚

tn+1

tn

∇utt

����
����
4
dt

+
∆t

4

]
∇u tn+1/2( 􏼁

����
����
4

+ ]∆t
3

􏽚
tn+1

tn

∇utt

����
����
2
dt +

1
c

inf
qh∈Mh

p tn+1/2( 􏼁 − cu
n+1/2
1x − qh

����
����
2
dt

+
α2(h)

]
inf

lh∈LH

∇un+1/2
− lH

����
����
2

+
1
]

u tn+1( 􏼁 + u tn( 􏼁
����

����
2
∞ + ∇ u tn+1( 􏼁 + u tn( 􏼁( 􏼁

����
����
2
∞􏼒 􏼓 ϕn

h

����
����
2

+ ϕn− 1
h

����
����
2

􏼒 􏼓

+
h

− 1

]
ϕn

h + ϕn− 1
h

����
���� ∇ηn+1/2����

����􏼣.

(60)

Absorbing constants into C, it gives

ϕN
h

����
����
2

+ ]∆t 􏽘
N− 1

n�0
∇ϕn+1/2

h

����
����
2

+ ∆tc 􏽘
N− 1

n�0
∇ · ϕn+1/2

h

����
����
2

≤C ]h
2k+2

‖ | u‖|
2
2,k+1 +

α2(h)

]
h
2k

‖ | u‖|
2
2,k+1 +

c
2

]
h
2k

‖ | u‖|
2
2,k+1 +

1
]
h
2k

‖ | u‖|
2
2,k+1􏼠

+
∆t

4

]
uttt

􏼌􏼌􏼌􏼌
����

����|
2
2,0 + utt

􏼌􏼌􏼌􏼌
����

����|
4
4,0􏼐 􏼑 +

∆t
4

]
‖ |∇u‖|

4
∞,0 +

∆t
4

]
|∇u1/2

����
����|
4
∞,0

+
∆t

4

]
|∇utt

����
����|
4
4,0 + ]∆t

4
|∇utt

����
����|
2
2,0 +

h
2k

c
p − cu1x

􏼌􏼌􏼌􏼌
����

����|
2
∞,k +

α2(h)

]
H

2k
‖ | u‖|

2
2,k+1􏼡

+ C
∆t

]
+
1
]
h
2k− 1∆t‖ | u‖|

2
∞,k+1􏼠 􏼡 􏽘

N− 1

n�0
ϕn

h

����
����
2
.

(61)

Hence, with 0<∆t, h< 1, from the discrete Gronwall
lemma yields
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ϕN
h

����
����
2

+ ]∆t 􏽘
N− 1

n�0
∇ϕn+1/2

h

����
����
2

+ ∆tc 􏽘
N− 1

n�0
∇ · ϕn+1/2

h

����
����
2

≤C ]h
2k+2

‖| u‖|
2
2,k+1 +

α2(h)

]
h
2k

‖| u‖|
2
2,k+1 +

c
2

]
h
2k

‖| u‖|
2
2,k+1 +

1
]
h
2k

‖| u‖|
2
2,k+1􏼠

+
∆t

4

]
uttt

􏼌􏼌􏼌􏼌
����

����
􏼌􏼌􏼌􏼌
2
2,0 + utt

􏼌􏼌􏼌􏼌
����

����
􏼌􏼌􏼌􏼌
4
4,0􏼐 􏼑 +

∆t
4

]
‖|∇u‖|

4
∞,0 +

∆t
4

]
􏼌􏼌􏼌􏼌∇u1/2

����
����
􏼌􏼌􏼌􏼌
4
∞,0

+
∆t

4

]
􏼌􏼌􏼌􏼌∇utt

����
����
􏼌􏼌􏼌􏼌
4
4,0 + ]∆t

4 􏼌􏼌􏼌􏼌∇utt

����
����
􏼌􏼌􏼌􏼌
2
2,0 +

h
2k

c
p − cu1x

􏼌􏼌􏼌􏼌
����

����
􏼌􏼌􏼌􏼌
2
∞,k

+
α2(h)

]
H

2k
‖| u‖|

2
2,k+1􏼡.

(62)

By applying the triangle inequality, we obtain the error
estimate (35). □

Corollary 1 . Consider the numerical method (10), under
the assumptions of Teorem 8, with (Xh, Mh) given by the

Taylor-Hood approximation element (k � 2, s � 1), and
choose LH � P1(τH), then there exist a positive constant C

such that

u(T) − u
N
h

����
����
2

+ ]∆t 􏽘
N− 1

n�0
∇u tn+1/2( 􏼁 − ∇un+1/2

h

����
����
2

+ ∆tc 􏽘
N− 1

n�0
∇ · u

n+1/2
h

����
����
2

≤C ∆t
4

+ h
4

+ α2(h)H
4

􏼐 􏼑.

(63)

5. Numerical Experiments

Herein, we perform some numerical experiments to test the
efectiveness of the presented method. We choose P2 − P1
fnite element pair to approximate the velocity and pressure.
Te domain Ω is subdivided into triangles. All the numerics
were implemented by using the public domain fnite element
software package Freefem++ [33].

Tere are two test problems are performed. First, we
perform a problem with known analytical solution to val-
idate the convergence rates of Algorithm 3. Te next ex-
periment is for simulating the benchmark problem of fow
around a cylinder [34, 35]. In all cases, the proposed
methods perform very efectively.

5.1. Convergence Rate Verifcation. Our frst example is
designed to verify the predicted convergence rates of Al-
gorithm 3. Te problem is an interesting test problem for
simulating decay of Green–Taylor vortex [36–38], which has
following the analytic solution.
u1(x, y, t) � − cos(nπx) sin(nπy) exp − 2n

2π2]t􏼐 􏼑,

u2(x, y, t) � sin(nπx) cos(nπy) exp − 2n
2π2]t􏼐 􏼑,

p(x, y, t) � −
1
4

(cos(2nπx) + cos(2nπy)) exp − 2n
2π2]t􏼐 􏼑.

(64)

Tis is a solution of the NSE with f � 0, consisting of an
n × n array of oppositely signed vortices that decay in time.
Te initial condition at t � 0 is above true solution. We

consider the convergence rates of Algorithm 3 to this so-
lution on the domain Ω � (0, 1) × (0, 1) and time interval
[0, T]. Taking n � 1, α(h) � h, c � 1, fnal time T � 1, and
setting the values of the time step size ∆t and the mesh width
h so that for a refnement, each of ∆t and h gets cut in a half.
We choose Re � 100,1000 and 10000. Te convergence rates
are calculated from the errors at two successive values of h in
the usual manner by postulating E(h) � Chr and solving the
formula.

r �
log E hi( 􏼁/E hi+1( 􏼁( 􏼁

log hi/hi+1( 􏼁
, (65)

where E(hi) and E(hi+1) are the errors corresponding to the
mesh size hi and hi+1, respectively. Te results are shown in
Tables 1–3. We can see from that, the proposed Subgrid-
Sparse-Div-Grad stabilization method can keep the rates of
convergence excellently for diferent Re values, which are in
good agreement with the theoretical convergence rates
predictions.

5.2. Flow around aCylinder. Te second example is the two-
dimensional fow around a cylinder, which is a popular
benchmark problem for testing numerical schemes of time-
dependent Navier–Stokes equations. Te domain
Ω � [0, 2.2] × [0, 0.41] contains a cylinder centered at (0.2,
0.2) with radius 0.05, we can see Figure 1 for more details.

No slip boundary conditions are endowed on the top and
bottom walls, and the infow and outfow profles are set as
follows:
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Table 1: Errors and convergence rates by using the Subgrid-Sparse-Div-Grad stabilization method with T � 1, H � 2h,∆t � (1/20)h,Re � 100.

1/h ‖|u − uh‖|∞,0 Rate ‖|p − Ph‖|2,0 Rate ‖|u − uh‖|2,1 Rate ‖|∇ · uh‖|2,0 Rate

4 0.0453001 0.209124 0.324832 0.101103
8 0.00544822 3.05566 0.060671 1.78528 0.0718307 2.17702 0.0291351 1.79499
16 0.000544163 3.32368 0.00817061 2.89249 0.0148829 2.27094 0.00772961 1.91429
32 4.6711e − 005 3.5422 0.000871184 3.22939 0.00329518 2.17523 0.0019698 1.97235
64 3.64707e − 006 3.67895 0.000104475 3.05983 0.000769529 2.09831 0.000495154 1.9921
128 3.78758e − 007 3.26739 2.32851e − 005 2.16567 0.000181992 2.0801 0.000124009 1.99743

Table 2: Errors and convergence rates by using the Subgrid-Sparse-Div-Grad stabilizationmethod with T � 1, H � 2h,∆t � (1/20)h,Re � 1000.

1/h ‖|u − uh‖|∞,0 Rate ‖|p − Ph‖|2,0 Rate ‖|u − uh‖|2,1 Rate ‖|∇ · uh‖|2,0 Rate

4 0.0561753 0.222197 0.382246 0.109382
8 0.00788031 2.83361 0.0712768 1.64034 0.0973817 1.97278 0.0316068 1.79107
16 0.000979067 3.00877 0.0113473 2.65109 0.0227512 2.09771 0.00846383 1.90085
32 0.000113075 3.11413 0.00151224 2.90759 0.00482211 2.2382 0.00217781 1.95843
64 1.25936e − 005 3.16651 0.000204634 2.88556 0.00104638 2.20426 0.000549488 1.98672
128 1.29559e − 006 3.28102 3.69974e − 005 2.46755 0.00024069 2.12016 0.000137294 2.00082

Table 3: Errors and convergence rates by using the Subgrid-Sparse-Div-Grad stabilizationmethod with T � 1, H � 2h,∆t � (1/20)h,Re � 10000.

1/h ‖|u − uh‖|∞,0 Rate ‖|p − Ph‖|2,0 Rate ‖|u − uh‖|2,1 Rate ‖|∇ · uh‖|2,0 Rate

4 0.0573318 0.223624 0.388846 0.110302
8 0.00820862 2.80412 0.0725471 1.62408 0.101548 1.93704 0.0318856 1.79048
16 0.00109348 2.90821 0.0118066 2.61932 0.0253046 2.00469 0.00855174 1.89862
32 0.000130748 3.06407 0.00163511 2.85214 0.00567973 2.15551 0.0022066 1.95439
64 1.56252e − 005 3.06484 0.000233484 2.80799 0.00123601 2.20013 0.000559333 1.98004
128 1.88945e − 006 3.04783 4.27739e − 005 2.44852 0.00027947 2.14492 0.000140592 1.99219

0.2

0.2

0.1

2.2

0.41

Figure 1: Computational domain for the two-dimensional fow past a cylinder.

(a) (b)

Figure 2: Te mesh used for computing fow around a cylinder. (a) Te coarse mesh TH. (b) Te fne mesh Th.

Table 4: Te results of maximal drag/lift coefcients and pressure diference by using the Subgrid-Sparse-Div-Grad stabilization method.

∆t tcd,max
cd,max tcl,max

cl,max ∆p(8 s)

0.01 3.95 2.94834 5.69 0.613275 − 0.11232
0.005 3.94 2.94721 5.695 0.49686 − 0.112598
0.001 3.937 2.94673 5.694 0.486905 − 0.112503
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Figure 3: Te development of cd(t), cl(t) and ∆p(t) by the Subgrid-Sparse-Div-Grad stabilization method with ∆t � 0.005, α(h) � h, and
c � 1.

Figure 4:Te velocity feld at times t � 2, 4, 5, 6, 7, 8 for the NS equation solved by the Subgrid-Sparse-Div-Grad stabilizationmethod with
α(h) � h and c � 1.

16 Discrete Dynamics in Nature and Society



u1(0, y, t) � u1(2.2, y, t) �
6

0.412
sin

πt

8
􏼒 􏼓y(0.41 − y),

u2(0, y, t) � u2(2.2, y, t) � 0.

(66)

Taking the initial condition u(x, y, 0) � 0, the viscosity
] � 10− 3, and the external force f � 0. Computations are
implemented with fnal time T � 8. A fne mesh τh with

14508 triangulations and a coarse mesh τH with 3609 tri-
angulations are given in Figure 2. And these meshes are used
in this test.

Te diference of pressure is defned by
∆p(t) � p(t; 0.15, 0.2) − p(t; 0.25, 0.2) and the drag and lift
coefcients are defned as follows [34]:

cd(t) � − 20􏽚
Ω

]∇u(t): ∇vd +(u(t) · ∇)u(t) · vd − p(t) ∇ · vd( 􏼁􏼂 􏼃dxdy,

cl(t) � − 20􏽚
Ω

]∇u(t): ∇vl +(u(t) · ∇)u(t) · vl − p(t) ∇ · vl( 􏼁􏼂 􏼃dxdy,

(67)

where vd � (1, 0)T on the nodes around the cylinder and
vanishes everywhere else and vl � (0, 1)T on the nodes
around the cylinder and vanishes everywhere else.

Te following reference intervals for the benchmark drag
and lift coefcients are given in [34, 35] as:

c
ref
d,max ∈ [2.93, 2.97], c

ref
l,max ∈ [0.47, 0.49],∆p

ref ∈ [− 0.115, − 0.105]. (68)

Table 4 shows cd,max and ∆p(8 s) are exactly in the
interval of reference values, cl,max is exactly in the bench-
mark interval when the time step size not too large. Te
evolutions of cd(t), cd(t) and ∆p(t) with ∆t � 0.005,
α(h) � h, c � 1 by the Subgrid-Sparse-Div-Grad stabiliza-
tion method are shown in Figure 3, which is in perfect
agreement with with the results provided in [34]. Te ve-
locity feld at times t � 2, 4, 5, 6, 7, 8 with α(h) � h, c � 1
are shown in Figure 4, we can see the vortex street forms

successfully. Finally, a plot of ‖∇ · un
h‖ vs. time for diferent

methods is given in Figure 5, we can see that our method can
keep mass conservation with time evolve.

6. Conclusions

In this article, we considered the synthesis of subgrid sta-
bilization method with sparse div-grad stabilization method,
derived the subgrid-sparse-grad-div stabilization method,

Subgrid−Sparse−Div−Grad method
Sparse−Div−Grad method
Common method

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

||

Δ · u
n h||

1 2 3 4 5 6 7 80
time

Figure 5: Te development of ‖∇ · un
h‖ by using diferent methods.
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which is particularly efcient and maintains the best algo-
rithmic features of each. Te stability and convergence of
this method were given. Numerical test verifed the theo-
retical preconditions and demonstrated the efectiveness of
the method. Te application of the method to other coupled
equations [39, 40] will be consider in the future.
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