
Yun-Bo Yang and Bin-Chao Huang

1Department of Mathematics, Yunnan Normal University, Kunming 650500, China
2Yunnan Key Laboratory of Modern Analytical Mathematics and Applications, Yunnan Normal University, Kunming 650500, China
3Key Laboratory of Complex System Modeling and Application for Universities in Yunnan, Yunnan Normal University, Kunming 650500, China

Correspondence should be addressed to Bin-Chao Huang; bchuang18@126.com

Received 27 January 2023; Revised 15 February 2024; Accepted 21 February 2024; Published 13 March 2024

1. Introduction

In this paper, we consider the incompressible time-dependent Navier–Stokes (NS) equations. For a bounded, regular domain $\Omega \subset \mathbb{R}^d$ ($d = 2$ or 3), we find $u: \Omega \times [0, T] \rightarrow \mathbb{R}^d$ and $p: \Omega \times [0, T] \rightarrow \mathbb{R}$ satisfying

\begin{align}
 u_t + \nu \Delta u + (u \cdot \nabla) u + \nabla p &= f \text{ in } \Omega \times [0, T], \\
 \nabla \cdot u &= 0 \text{ in } \Omega \times [0, T], \\
 u &= 0 \text{ on } \partial \Omega \times [0, T], \\
 u(0, \cdot) &= u_0(x) \text{ for } x \in \Omega,
\end{align}

where u and p represent the fluid velocity and zero-mean pressure, respectively, ν represents the kinematic viscosity, and f and u_0 are the prescribed terms.

System (1) provides a mathematical model of incompressible Newtonian viscous fluid flow. They can describe many important physical phenomena such as weather prediction or climate modeling, flow around airfoils, ocean current, and blood flow in the arteries. Therefore, it is of practical interest to design efficient numerical methods for solving NS equations. Among the numerical methods, the Galerkin finite element method is a popular method, for more details, see [1–3] and references therein. However, the
numerical solution solved by using finite methods often suffer from spurious oscillations and inaccurate approximation, the main reason for this is the fact that dominance of the convection, especially when the viscosity is too small, or the poor mass conservation. In order to deal with these effects, various stabilization techniques have been proposed.

Among these stabilization methods, one of the most popular stabilization methods applied on incompressible flow problems is the variational multiscale (VMS) method, which is based on the decomposition of the flow scales. In a type of VMS method, the flow is decomposed into the large scales and small scales, and the former is defined by projection into appropriate subspaces. For more details, we can see [4–8] and the references therein. The subgrid stabilization method is an improvement of the VMS method, which uses the two-grid techniques [9–11], and assumes that there exist fine scales and coarse scales of the flow. The main ideas of subgrid stabilization method are to first add an artificial viscosity term on a fine scales and then subtract it only on the coarse scales, see, for example [12–14]. It has ample applications about subgrid stabilization method, such as steady-state natural convection problem [15], the incompressible flow problem. This method is a combination of the subgrid stabilization method and the recently proposed sparse-grad-div method and possesses the advantage of both methods. It is robust for solving incompressible flow problems with dominance of the convection, especially when the viscosity is too small. In addition, it can keep mass conservation. Therefore, the method is very efficient for solving incompressible flow. Moreover, based on the Crank–Nicolson extrapolated scheme for temporal discretization, and mixed finite element in spatial discretization, we derive the unconditional stability and optimal convergence of the method. Numerical experiments are proposed to validate the theoretical predictions and demonstrate the efficiency of the method on a test problem for incompressible flow.

The article is arranged as follows. Section 2 introduces some notations and preliminary results that will be used throughout this article, and presents the numerical algorithm. In Section 3, we prove the unconditional stability of the proposed method. In Section 4, we perform a rigorous error analysis of the presented algorithm. A series of numerical experiments are provided to verify the efficiency of the method in Section 5. Finally, we conclude the article.

2. Mathematical Preliminaries

We first generalize some notations, definitions, and preliminary lemmas which will be used in the analysis. Let \(\Omega \subset \mathbb{R}^d \) (\(d = 2 \) or \(3 \)) be an open, bounded convex polyhedron domain, with a Lipschitz–continuous boundary \(\partial \Omega \). The inner product on \(L^2(\Omega) \) or \(L^2(\Omega)^{d \times d} \), the norm in \(L^2(\Omega) \), and the norm in \(L^\infty(\Omega) \) are denoted by \(\langle \cdot, \cdot \rangle \), \(\| \cdot \| \), and \(\| \cdot \|_{L^\infty} \), respectively. Likewise, the \(L^p(\Omega) \) norms and the Sobolev space \(W_p^k(\Omega) \) norms are denoted by \(\| \cdot \|_{L^p} \) and \(\| \cdot \|_{W_p^k} \), respectively. For the seminorm in \(W_p^k(\Omega) \), we denote it by \(\| \cdot \|_{W_p^k} \). \(H^k(\Omega) \) is the standard Hilbertian Sobolev space of order \(k \) with norm \(\| \cdot \|_k \). For the given function, \(\nu(x,t) \) defined on the entire time interval \((0,T)\), we define the norm

\[
\|\nu\|_{\text{osc},k} = \sup_{0 < t < T} \|\nu(\cdot,t)\|_k,
\]

\[
\|\nu\|_{\text{m},k} = \left(\int_0^T \|\nu(\cdot,t)\|_k^m dt \right)^{1/m}.
\]

For the mathematical setting of problem (1), the following Sobolev spaces for the velocity \(\nu \), the pressure \(p \) are introduced, respectively, by

\[
X = H^1(\Omega)^d = \left\{ \nu \in H^1(\Omega)^d : \nu = 0 \text{ on } \partial \Omega \right\},
\]

\[
M = L^2(\Omega) = \left\{ \phi \in L^2(\Omega) : \int_{\Omega} \phi dx = 0 \right\},
\]
where the space X is equipped with the L^2-scalar product (\cdot, \cdot) and the norm $\| \cdot \|$, and the space M is equipped with the usual L^2-norm. Finally, the space $H^{-1}(\Omega)$, the dual space of $H_0^1(\Omega)$, is equipped with the negative norm
\[
\| f \|_{-1} := \sup_{v \in H_0^1(\Omega)} \frac{|(f, v)|}{\| v \|}.
\]

In addition, the classical space of divergence-free functions is defined by
\[
V = \{ v \in X : (\varphi, \nabla \cdot v) = 0 \quad \forall \varphi \in M \}.
\]

With above notations, we can get the weak formulation of (1) as follows: Find $u : [0, T] \rightarrow X, p : [0, T] \rightarrow M$ for a.e. $t \in (0, T)$ satisfying
\[
(u_t, v) + (\nabla u, \nabla v) + b^* (u, u, v) - (p, \nabla \cdot v) = (f, v) \quad \forall v \in X,\]
\[
(\nabla \cdot u, q) = 0 \quad \forall q \in M,
\]
where the skew-symmetrized trilinear form is defined as follows:
\[
b^*(u, v, w) = \frac{1}{2} (u \cdot \nabla v, w) - \frac{1}{2} (u \cdot \nabla w, v) \quad \forall u, v, w \in X.
\]

By the divergence theorem, we know
\[
b^*(u, v, w) = \int_{\Omega} u \cdot \nabla v \cdot w dx + \frac{1}{2} \int_{\partial \Omega} (\nabla \cdot u)(v \cdot w) \quad \forall u, v, w \in X.
\]

We also note that
\[
b^*(u, v, v) = 0 \quad \forall u, v \in X.
\]

The trilinear form has the following bounds, see [1, 3] for more details,
\[
|b^*(u, v, w)| \leq C |\nabla u| |\nabla v| |\nabla w| \quad \forall u, v, w \in X,
\]
\[
|b^*(u, v, w)| \leq C \|
abla u\|^2/2 \|
abla v\|/2 \|
abla w\| \quad \forall u, v, w \in X,
\]
\[
|b^*(u, v, w)| \leq C |\nabla u| |\nabla v| |\nabla w|/2 \quad \forall u, v, w \in X.
\]

In addition, if $v, \nabla v \in L^\infty(\Omega)$, we have (see e.g., Lemma 1 in [28]),
\[
|b^*(u, v, w)| \leq C \|\nabla u\| (\|\nabla v\| + \|\nabla v\|/\infty) \|\nabla w\| \quad \forall u, v, w \in X.
\]

2.1. Finite Element Approximation. We now introduce the finite element discretization of (6). Let $t_h = \{ \Omega_h \}$ and $\tau_H = \{ \Omega_H \}$ are two uniformly regular triangulation of domain Ω

\[
\| v \|_{\infty, k} := \max_{0 \leq n \leq N-1} \| v^{n+1/2} \|_h, \quad \| v \|_{m, k} := \left(\sum_{n=0}^{N-1} \| v^{n+1/2} \|_h^m \Delta t \right)^{1/m}.
\]
The discrete Gronwall lemma plays an important role in the analysis, we recall from [28, 32] as follows:

Lemma 1 (Discrete Gronwall’s lemma). Let $\Delta t, H$, and a_n, b_n, c_n, d_n (for integers $n \geq 0$) be nonnegative numbers such that

$$a_l + \Delta t \sum_{n=0}^{l} b_n \leq \Delta t \sum_{n=0}^{l-1} d_n a_n + \Delta t \sum_{n=0}^{l} c_n + H \quad \text{for} \ l \in \mathbb{N}. \quad (19)$$

Then, for all $\Delta t \geq 0$,

$$a_l + \Delta t \sum_{n=0}^{l} b_n \leq \exp \left(\Delta t \sum_{n=0}^{l-1} d_n \right) \left(\Delta t \sum_{n=0}^{l} c_n + H \right) \quad \text{for} \ l \in \mathbb{N}. \quad (20)$$

Furthermore, Young’s and Poincaré’s inequalities as follows will be used frequently.

$$ab \leq \frac{\varepsilon}{p} a^p + \frac{\varepsilon^{-q/p}}{q} b^q, a, b, p, q, \varepsilon \in \mathbb{R}, \frac{1}{p} + \frac{1}{q} = 1, p, q \in (1, \infty), \varepsilon > 0,$$

$$\|v\| \leq C_p \|\nabla v\| \quad \forall v \in X, C_p = C_p(\Omega). \quad (21)$$

Defining $P^{(2)}_h : L^2(\Omega) \rightarrow V_h$ to be the L^2 projection into V_h, satisfying for $v \in L^2(\Omega)$

$$\left(P^{(2)}_h v - v, v_h \right) = 0, \quad \forall v_h \in V_h. \quad (22)$$

In the next lemma, we give out the important properties of the sparse-grad-div operator g [22]:

$$g_{2d}(u, v) = \int_{\Omega} \left(u_{1x}v_{1x} + u_{2y}v_{2y} + 2u_{2y}v_{1x} \right) d\Omega,$$

$$g_{3d}(u, v) = \int_{\Omega} \left(u_{1x}v_{1x} + u_{2y}v_{2y} + u_{3z}v_{3z} + 2u_{2y}v_{1x} + 2u_{3z}v_{1x} + 3u_{3z}v_{2y} + u_{2y}v_{3z} \right) d\Omega. \quad (23)$$

Then, the operator g has the following properties:

(1) The operator g can be written as

$$g_{2d}(u, v) = (\nabla \cdot u, \nabla \cdot v) - (u_{1x}, v_{2x}) - (u_{2y}, v_{1x})$$

$$g_{3d}(u, v) = (\nabla \cdot u, \nabla \cdot v) - (u_{1x}, v_{2x}) - (u_{2y}, v_{1x}) + (u_{1x}, v_{3z}) - (u_{2z}, v_{1x}) \quad (24)$$

(2) Similar to grad-div stabilization, g satisfies in $2d$ or $3d, g(u, u) = \|\nabla \cdot u_h\|_r$.

(3) If $\nabla \cdot u = 0$, then in $2d$ or $3d, g(u, v) = -(u_{1x}, \nabla \cdot v)$.

Now, we give out the subgrid-sparse-grad-div algorithm as follows:

Algorithms 3 (Subgrid-Sparse-Grad-Div). The full discrete approximation of (2) is: Let $u^0_h = u_0^h = p^{(1)}_{\nabla u} u_0$, given $u_{n+1}^h, u_{n}^h \in X_h, P_0^{n+1}, P_0^n \in M_h, G_{H_{n+1}} \in L_H$, find $u_{n+1}^h \in X_h, P_0^{n+1} \in M_h, G_{H_{n+1}} \in L_H$ satisfying, for $n = 0, 1, \ldots, N - 1$...
In Algorithm 3, we first add an artificial viscosity term on a fine scale, and then subtract it off only on the coarse scales, which leads to a much better conditioning of the linear system is achieved while only altering the NS equations on fine scales. This allows us to solve incompressible flow problems with dominance of the convection, especially when the viscosity is too small.

Remark 5. We assume that \(\alpha(h) \) is known, positive, element-wise constants. When \(\alpha(h) \equiv 0 \), Algorithm 3 becomes the Sparse-Grad-Div algorithm [22].

\[
\left(\frac{u_h^{n+1} - u_h^n}{\Delta t}, v_h \right) + b^*(\frac{3}{2} u_h^n - \frac{1}{2} u_h^{n+1/2}, u_h^n) + (\nabla v, \nabla u_h^{n+1/2}) + (v + \alpha(h))(\nabla u_h^{n+1/2}, \nabla v_h) - \alpha(h)(\nabla u_h^{n+1/2}, \nabla v_h) - (p_h^{n+1/2}, \nabla \cdot v_h) + \gamma g(u_h^{n+1/2}, v_h) = (f_h(t_{n+1/2}), v_h), \quad \forall v_h \in X_h,
\]

\[
\left(\nabla \cdot u_h^{n+1/2}, q_h \right) = 0, \quad \forall q_h \in M_h,
\]

\[
\left(G_H^{n+1/2} - \nabla u_h^{n+1/2}, I_H \right) = 0, \quad \forall I_H \in L_H.
\]

Remark 4. In Algorithm 3, we first add an artificial viscosity term on a fine scale, and then subtract it off only on the coarse scales, which leads to a much better conditioning of the linear system is achieved while only altering the NS equations on fine scales. This allows us to solve incompressible flow problems with dominance of the convection, especially when the viscosity is too small.

Remark 6. Combining the sparse-grad-div stabilization term with the pressure term, we can derive a modified pressure \(p_h = p_h + \gamma(h(u_h)_1) \), which will be used in the numerical experiments.

3. Stability Analysis

In this section, we establish the unconditional stability of Algorithm 3.

Theorem 7. Assume that \(f \in L^2(0, T; H^{-1}(\Omega)) \), \(u_0 \in L^2(\Omega) \), the solution of numerical scheme (25) satisfies the following energy estimates

\[
\left\| u_h^{n+1/2} \right\|^2 + \nu \Delta t \sum_{n=0}^{N-1} \left\| \nabla u_h^{n+1/2} \right\|^2 + 2 \Delta t \gamma \sum_{n=0}^{N-1} \left\| \nabla \cdot u_h^{n+1/2} \right\|^2 \leq \frac{1}{\gamma} \left\| f_{1/2} \right\|_{L^2 \Omega}^2 + \left\| u_h^{0} \right\|^2,
\]

and

\[
\nu \Delta t \sum_{n=0}^{N-1} \left\| G_H^{n+1/2} \right\|^2 \leq \nu \Delta t \sum_{n=0}^{N-1} \left\| \nabla u_h^{n+1/2} \right\|^2 \leq \frac{1}{\gamma} \left\| f_{1/2} \right\|_{L^2 \Omega}^2 + \left\| u_h^{0} \right\|^2.
\]

Proof. Setting \(I_H = G_H^{n+1/2} \) in the third equation of (25), then we obtain

\[
\left\| G_H^{n+1/2} \right\|^2 = \left(\nabla u_h^{n+1/2}, G_H^{n+1/2} \right) \leq \frac{1}{2} \left\| \nabla u_h^{n+1/2} \right\|^2 + \frac{1}{2} \left\| G_H^{n+1/2} \right\|^2,
\]

which yields

\[
\left\| G_H^{n+1/2} \right\|^2 \leq \left\| \nabla u_h^{n+1/2} \right\|^2.
\]

Choosing \(v_h = u_h^{n+1/2} \in V_h \) in (25), making use of Cauchy–Schwarz and Young’s inequality to the right hand side, and thanks to Lemma 2, we arrive at

\[
\frac{1}{2 \Delta t} \left(\left\| u_h^{n+1/2} \right\|^2 - \left\| u_h^n \right\|^2 \right) + \nu \left\| \nabla u_h^{n+1/2} \right\|^2 + \gamma \left\| \nabla \cdot u_h^{n+1/2} \right\|^2 \leq \alpha(h) \left\| G_H^{n+1/2} \right\| \left\| \nabla u_h^{n+1/2} \right\|^2 + \frac{\gamma}{2} \left\| \nabla u_h^{n+1/2} \right\|^2 + \frac{1}{2 \gamma} \left\| f(t_{n+1/2}) \right\|_{L^2 \Omega}^2.
\]

Multiplying through by \(2 \Delta t \) and applying (29), it gives

\[
\left\| u_h^{n+1/2} \right\|^2 - \left\| u_h^n \right\|^2 + \nu \Delta t \left\| \nabla u_h^{n+1/2} \right\|^2 \leq \frac{\Delta t}{\gamma} \left\| f(t_{n+1/2}) \right\|_{L^2 \Omega}^2.
\]
\[\| u_h^N \|^2 + \nu \Delta t \sum_{n=0}^{N-1} \| \nabla u_h^{n+1/2} \|^2 + 2 \Delta t \gamma \sum_{n=0}^{N-1} \| \nabla \cdot u_h^{n+1/2} \|^2 \]
\[\leq \frac{\Delta t}{\gamma} \sum_{n=0}^{N-1} \| f(t_{n+1/2}) \|^2 + \| u_0^{n} \|^2 , \]
\hspace{2cm} (32)

which we get the bound (27), and complete the proof. \(\Box \)

4. Error Analysis

In this section, we devote to derive the error estimate of the presented numerical scheme (25). For convenience, we denote a generic constant \(C \) whose value may depends only

\[u \in L^\infty\left(0, T ; \mathbb{H}^1(\Omega) \right) \cap H^1\left(0, T ; \mathbb{H}^{k+1} \right) \cap H^2\left(0, T ; \mathbb{H}^1(\Omega) \right) , \]
\[p \in L^2\left(0, T ; \mathbb{H}^{k+1} \right) . \]

Theorem 8. Let \((u,p)\) be the solution of Navier–Stokes equations (1) and satisfy the regularity assumptions (18), \((u_0^{n+1}, p_0^{n+1})\) is given by the scheme (10), then we have the following error estimate:

\[\| u(T) - u_h^N \|^2 + \nu \Delta t \sum_{n=0}^{N-1} \left(\| \nabla u(t_{n+1/2}) \|^2 \right) + 2 \Delta t \gamma \sum_{n=0}^{N-1} \| \nabla \cdot u_h^{n+1} \|^2 \]
\[\leq C \left(\nu h^{2k+2} \| u \|_{2,k+1}^2 + \frac{\alpha^2(h)}{\gamma} h^{2k+2} \| u \|_{2,k+1}^2 + \frac{\gamma^2}{\gamma} h^{2k} \| u \|_{2,k+1}^2 + \frac{1}{\gamma} h^{2k} \| u \|_{2,k+1}^2 \right) \]
\[+ \frac{\Delta t^4}{\gamma} \left(\| u_{10,0} \|_{2,0}^4 + \| u_{4,0} \|_{2,0}^4 \right) + \frac{\Delta t^4}{\gamma} \| \nabla u \|_{\infty,0}^4 + \frac{\Delta t^4}{\gamma} \| \nabla u_{1/2} \|_{\infty,0} \]
\[+ \frac{\Delta t^4}{\gamma} \| \nabla u_{4,0} \|_{2,0}^2 + \nu \Delta t^4 \| \nabla u_0 \|_{2,0}^2 + \frac{\alpha^2(h)}{\gamma} h^{2k} \| u \|_{2,k+1}^2 \].
\hspace{2cm} (35)
Remark 9. From the right hand side of estimate (19), we can see that the sparse-grad-div operator g act to reduce the effect of pressure discretization error on the velocity error and increase the effect of the velocity discretization error.

Proof. We rewrite the continuous variational formulations of equation (2) at $t = t_{n+1}$. For $v_h \in V_h$, adding and subtracting some terms yield

$$
\left(\frac{u(t_{n+1}) - u(t_n)}{\Delta t}, v_h \right) + b^* \left(\frac{3}{2} u(t_n) - \frac{1}{2} u(t_{n-1}), \frac{u(t_{n+1}) + u(t_n)}{2}, v_h \right) + \gamma \left(\frac{u(t_{n+1}) + u(t_n)}{2}, \nabla v_h \right)
$$

$$
+ \alpha(h) \left(\frac{u(t_{n+1}) + u(t_n)}{2}, \nabla v_h \right) - (p(t_{n+1/2}), \nabla v_h) + \gamma g \left(\frac{u(t_{n+1}) + u(t_n)}{2}, v_h \right)
$$

$$
= \left(\frac{u(t_{n+1}) - u(t_n)}{\Delta t} - u_t(t_{n+1/2}), v_h \right) + b^* \left(\frac{3}{2} u(t_n) - \frac{1}{2} u(t_{n-1}), \frac{u(t_{n+1}) + u(t_n)}{2}, v_h \right)
$$

$$
- b^* (u(t_{n+1/2}), u(t_{n+1/2}), v_h) + \gamma \left(\frac{u(t_{n+1}) + u(t_n)}{2} - \nabla u(t_{n+1/2}), v_h \right)
$$

$$
+ \alpha(h) \left(\frac{u(t_{n+1}) + u(t_n)}{2}, \nabla v_h \right) - \gamma \left(u^{n+1/2}_{1x}, \nabla v_h \right) + (f(t_{n+1/2}), v_h).
$$

Denoting by $e^n = u(t_n) - u^n_0$, after subtracting (25) from (36) and performing some simple algebraic manipulations, we obtained the error equation as follows

$$
\left(\frac{e^{n+1} - e^n}{\Delta t}, v_h \right) + \gamma (\nabla e^{n+1/2}, \nabla v_h) + \alpha(h) (\nabla e^{n+1/2}, \nabla v_h) + \gamma g (e^{n+1/2}, v_h)
$$

$$
= -b^* \left(\frac{3}{2} e^{n-1} u(t_{n+1}) - \frac{1}{2} u(t_{n+1}), \frac{u(t_{n+1}) + u(t_n)}{2}, v_h \right) - b^* \left(\frac{3}{2} u_h^n - \frac{1}{2} u_h^{n-1}, e^{n+1/2}, v_h \right)
$$

$$
+ \left(\frac{u(t_{n+1}) - u(t_n)}{\Delta t} - u_t(t_{n+1/2}), v_h \right) + \gamma \left(\frac{u(t_{n+1}) + u(t_n)}{2} - \nabla u(t_{n+1/2}), v_h \right)
$$

$$
+ b^* \left(\frac{3}{2} u(t_n) - \frac{1}{2} u(t_{n-1}), \frac{u(t_{n+1}) + u(t_n)}{2}, v_h \right) - b^* (u(t_{n+1/2}), u(t_{n+1/2}), v_h)
$$

$$
+ \alpha(h) \left(\frac{u(t_{n+1}) + u(t_n)}{2} - G_h^{n+1/2}, \nabla v_h \right) + \gamma (p(t_{n+1/2}) - q_{1x}^{n+1/2}, \nabla v_h).
$$
Next, we decompose the errors into interpolation error and approximation error terms as follows:

\[e^n = (u(t_n) - P_{V_n}^2 u(t_n)) - (u^n_h - P_{V_h}^2 u(t_n)) = \eta^n - \phi^n_h, \]

(38)

and rewrite (37) as follows:

\[
\begin{align*}
\frac{1}{\Delta t} \left(\phi_h^{n+1} - \phi^n_h, v_h \right) + \gamma \left(\nabla \phi_h^{n+1/2}, \nabla v_h \right) + \alpha(h) \left(\nabla \phi_h^{n+1/2}, \nabla v_h \right) + \gamma g(\phi_h^{n+1/2}, v_h) \\
= \frac{1}{\Delta t} (\eta^{n+1} - \eta^n, v_h) + \gamma (\nabla \eta^{n+1/2}, \nabla v_h) + \alpha(h) (\nabla \eta^{n+1/2}, \nabla v_h) + \gamma g(\eta^{n+1/2}, v_h) \\
+ b^* \left(\frac{3}{2} \eta^n - \frac{1}{2} \eta^{n-1}, \frac{u(t_{n+1}) + u(t_n)}{2}, v_h \right) - b^* \left(\frac{3}{2} \phi^n_h - \frac{1}{2} \phi^{n-1}_h, \frac{u(t_{n+1}) + u(t_n)}{2}, v_h \right) \\
+ b^* \left(\frac{3}{2} \phi^n_h - \frac{1}{2} \phi^{n-1}_h, \eta^{n+1/2}, v_h \right) - b^* \left(\frac{3}{2} \phi^n_h - \frac{1}{2} \phi^{n-1}_h, \phi_h^{n+1/2}, v_h \right) \\
- \left(\frac{u(t_{n+1}) - u(t_n)}{\Delta t} - u(t_n), v_h \right) - b^* \left(\frac{3}{2} u(t_n) - \frac{1}{2} u(t_{n-1}), \frac{u(t_{n+1}) + u(t_n)}{2}, v_h \right) \\
- b^* \left(\frac{3}{2} u(t_n) - \frac{1}{2} u(t_{n-1}) - u(t_{n+1/2}), u(t_{n+1/2}), v_h \right) - \gamma \left(\nabla \frac{u(t_{n+1}) + u(t_n)}{2} - \nabla u(t_{n+1/2}), v_h \right) \\
- \alpha(h) \left(\nabla \frac{u(t_{n+1}) + u(t_n)}{2} - c_{th}^{n+1/2}, \nabla v_h \right) - \gamma (p(t_{n+1/2}) - u_{tx}^{n+1/2} - q_h, \nabla \cdot v_h),
\end{align*}
\]

(39)

for all \(q_h \in M_h \).

Setting \(v_h = \phi_h^{n+1/2} \in V_h \) in (39) and using Lemma 2, we arrived at
\[
\frac{1}{2\Delta t} \left(\| \phi_h^{n+1} \| - \| \phi_h^n \| \right)^2 + \nu \| \nabla \phi_h^{n+1/2} \|^2 + \alpha(h) \| \nabla \phi_h^{n+1/2} \|^2 + \gamma \| \nabla \phi_h^{n+1/2} \|^2
\]
\[
= \frac{1}{\Delta t} \left(\eta^{n+1} - \eta^n, \phi_h^{n+1/2} \right) + \nu \left(\nabla \eta^{n+1/2}, \nabla \phi_h^{n+1/2} \right) + \alpha(h) \left(\nabla \eta^{n+1/2}, \nabla \phi_h^{n+1/2} \right) + \gamma g(\eta^{n+1/2}, \phi_h^{n+1/2})
\]
\[
+ b^\ast \left(\frac{3}{2} \eta^n - \frac{1}{2} \eta^{n-1}, u(t_{n+1}) + u(t_n) \right) - b^\ast \left(\frac{3}{2} \eta^n - \frac{1}{2} \eta^{n-1}, u(t_{n+1}) + u(t_n) \phi_h^{n+1/2} \right)
\]
\[
+ b^\ast \left(\frac{3}{2} \eta^n - \frac{1}{2} \eta^{n-1}, \phi_h^{n+1/2} \right) - b^\ast \left(\frac{3}{2} \eta^n - \frac{1}{2} \eta^{n-1}, \phi_h^{n+1/2} \phi_h^{n+1/2} \right)
\]
\[
- \left(\frac{u(t_{n+1}) - u(t_n)}{\Delta t} - u(\frac{t_n}{n+\frac{1}{2}}) \phi_h^{n+1/2} \right)
\]
\[
(40)
\]

Due to the orthogonality of \(L^2 \) projection operator \(P_{V_h} \), that \(\eta^{n+1} - \eta^n \perp V_h, \) so \(1/\Delta t (\eta^{n+1} - \eta^n, \phi_h^{n+1}) = 0. \) Using the property (9) of the trilinear \(b, \) which implies \(b^\ast (3/2\eta^n - 1/2\eta^{n-1}, \phi_h^{n+1/2} + \phi_h^{n+1/2}) = 0. \) Next, we estimate the rest terms on the RHS of (40) one by one. First, the applications of Cauchy–Schwarz and Young’s inequality lead to

\[
\nu \left(\nabla \eta^{n+1/2}, \nabla \phi_h^{n+1/2} \right) \leq \frac{\nu}{28} \| \nabla \phi_h^{n+1/2} \|^2 + C \gamma \| \nabla \eta^{n+1/2} \|^2, \tag{41}
\]
\[\text{and} \]
\[
a(h) \left(\nabla \eta^{n+1/2}, \nabla \phi_h^{n+1/2} \right) \leq \frac{\nu}{28} \| \nabla \phi_h^{n+1/2} \|^2 + \frac{C \gamma^2(h)}{\nu} \| \nabla \eta^{n+1/2} \|^2. \tag{42}
\]

For the nonlinear term, using estimates (10) and (12), it gives

\[
b^\ast \left(\frac{3}{2} \eta^n - \frac{1}{2} \eta^{n-1}, \frac{u(t_{n+1}) + u(t_n)}{2} \phi_h^{n+1/2} \right)
\]
\[
\leq C \left(\gamma \| \nabla \eta^{n+1/2} \|^2 \right) \left(\| \nabla u(t_{n+1}) \|^2 + \| \nabla u(t_n) \|^2 \right) \left(\| \nabla \eta^{n+1/2} \|^2 + \| \nabla \eta^{n+1/2} \|^2 \right). \tag{44}
\]
and

\[b^* \left(\frac{3}{2} \phi_h^n - \frac{1}{2} \phi_h^{n-1}, \eta, \frac{\eta^{n+1/2} + \eta^{n+1/2} + \eta^{n+1/2}}{2} \right) \]

\[\leq C \left\| \frac{3}{2} \phi_h^n - \frac{1}{2} \phi_h^{n-1} \right\| \left\| \frac{\eta + \eta + \eta}{2} \right\| \left\| \frac{\eta^{n+1/2} + \eta^{n+1/2} + \eta^{n+1/2}}{2} \right\| \]

\[\leq \frac{\gamma}{28} \| \nabla \phi_h^{n+1/2} \|^2 + \frac{C}{\gamma} \left(\| \eta \|^2 + \| \eta \|^2 + \| \eta \|^2 \right) \| \nabla \eta^{n+1/2} \|^2. \] (45)

For the next nonlinear term, we have the identity

\[b^* \left(\frac{3}{2} u(t_n) - \frac{1}{2} u(t_{n-1}), \eta^{n+1/2}, \phi_h^{n+1/2} \right) \]

\[= b^* \left(\frac{3}{2} u(t_n) - \frac{1}{2} u(t_{n-1}), \eta^{n+1/2}, \phi_h^{n+1/2} \right) - b^* \left(\frac{3}{2} \eta^n - \frac{1}{2} \eta^{n-1}, \eta, \phi_h^{n+1/2} \right) + b^* \left(\frac{3}{2} \phi_h^n - \frac{1}{2} \phi_h^{n-1}, \eta^{n+1/2}, \phi_h^{n+1/2} \right). \] (46)

The right hand side of (46) can be bounded as follows.

First,

\[b^* \left(\frac{3}{2} u(t_n) - \frac{1}{2} u(t_{n-1}), \eta^{n+1/2}, \phi_h^{n+1/2} \right) \]

\[\leq \frac{\gamma}{28} \| \nabla \phi_h^{n+1/2} \|^2 + \frac{C}{\gamma} \left(\| \nabla u(t_n) \|^2 + \| \nabla u(t_{n-1}) \|^2 \right) \| \nabla \eta^{n+1/2} \|^2. \] (47)

Next,

\[b^* \left(\frac{3}{2} \eta^n - \frac{1}{2} \eta^{n-1}, \eta, \phi_h^{n+1/2} \right) \]

\[\leq \frac{\gamma}{28} \| \nabla \phi_h^{n+1/2} \|^2 + \frac{C}{\gamma} \left(\| \nabla \eta^n \|^2 + \| \nabla \eta^{n-1} \|^2 \right) \| \nabla \eta^{n+1/2} \|^2. \] (48)

The last term in (46) can be bounded as

\[b^* \left(\frac{3}{2} \phi_h^n - \frac{1}{2} \phi_h^{n-1}, \eta^{n+1/2}, \phi_h^{n+1/2} \right) \]

\[\leq \frac{\gamma}{28} \| \nabla \phi_h^{n+1/2} \|^2 + \frac{C}{\gamma} \left(\| \nabla \phi_h^n \|^2 + \| \nabla \phi_h^{n-1} \|^2 \right) \| \nabla \eta^{n+1/2} \|^2. \] (49)

Combining estimates (47)–(49), we can get the bound of the RHS of (46). The rest of terms of (40) can be estimated as follows:
\[
\frac{u(t_{n+1}) - u(t_n)}{\Delta t} - u_t(t_{n+1/2}, \phi_{h}^{n+1/2}) \leq C \left\| \frac{u(t_{n+1}) - u(t_n)}{\Delta t} - u_t(t_{n+1/2}) \right\| \| \nabla \phi_h^{n+1/2} \|
\]

and

\[
\frac{u(t_{n+1}) - u(t_n)}{\Delta t} - u_t(t_{n+1/2}) \leq C \left\| \frac{u(t_{n+1}) - u(t_n)}{\Delta t} - u_t(t_{n+1/2}) \right\| \| \nabla \phi_h^{n+1/2} \|
\]

and

\[
\frac{u(t_{n+1}) - u(t_n)}{\Delta t} - u_t(t_{n+1/2}, \phi_{h}^{n+1/2}) \leq C \left\| \frac{u(t_{n+1}) - u(t_n)}{\Delta t} - u_t(t_{n+1/2}) \right\| \| \nabla \phi_h^{n+1/2} \|
\]

For the pressure term, we have

\[
(p(t_{n+1/2}) - p(t_{n-1/2})) \leq C \left\| (p(t_{n+1}) - p(t_{n})) \right\| \| \nabla \phi_h^{n+1/2} \|
\]

and

\[
\frac{\nabla u(t_{n+1}) + u(t_n)}{2} - \nabla u(t_{n+1/2}) \leq C \left\| \frac{\nabla u(t_{n+1}) + u(t_n)}{2} - \nabla u(t_{n+1/2}) \right\| \| \nabla \phi_h^{n+1/2} \|
\]

and

\[
\frac{\nabla u(t_{n+1}) + u(t_n)}{2} - \nabla u(t_{n+1/2}, \phi_{h}^{n+1/2}) \leq C \left\| \frac{\nabla u(t_{n+1}) + u(t_n)}{2} - \nabla u(t_{n+1/2}) \right\| \| \nabla \phi_h^{n+1/2} \|
\]

and

\[
\frac{\nabla u(t_{n+1}) + u(t_n)}{2} - \nabla u(t_{n+1/2}) \leq C \left\| \frac{\nabla u(t_{n+1}) + u(t_n)}{2} - \nabla u(t_{n+1/2}) \right\| \| \nabla \phi_h^{n+1/2} \|
\]
\[
\left(\nabla u(t_{n+1}) + u(t_n) - G_h^{n+1/2}, I_H \right) \\
= \left(\nabla u(t_{n+1}) + u(t_n) - \nabla u_h^{n+1/2}, I_H \right)
\] (55)

\[
= (\nabla e^{n+1/2}, I_H).
\]

We denote \(\Psi^n = \nabla u^n - P_{L_H^2}^{H} (\nabla u^n), Y^n_H = G^n_h - P_{L_H^2}^{H} (\nabla u^n) \); here, \(P_{L_H^2}^{H} \) is \(L^2 \) projection onto \(L_h^H \). Thanks to the orthogonality of \(L^2 \) projection operator \(P_{L_H^2}^{H} \), so

\[
(\nabla e^{n+1/2}, I_H) = \left(\nabla u(t_{n+1}) + u(t_n) - G_h^{n+1/2}, I_H \right)
\]

\[
= (\Psi^{n+1/2}, I_H) - (Y_h^{n+1/2}, I_H)
\]

\[
= - (Y_h^{n+1/2}, I_H).
\] (56)

Choosing \(l_H = Y_h^{n+1/2} \) in above equation, it gives

\[
\| Y_h^{n+1/2} \|^2 = - (\nabla e^{n+1/2}, Y_h^{n+1/2})
\]

\[
\leq \| \nabla e^{n+1/2} \| \| Y_h^{n+1/2} \|
\]

\[
\leq \frac{1}{2} \| \nabla e^{n+1/2} \|^2 + \frac{1}{2} \| Y_h^{n+1/2} \|^2,
\] (57)

which yields

\[
\| Y_h^{n+1/2} \| \leq \| \nabla e^{n+1/2} \| \leq \| \nabla e^{n+1/2} \| + \| \nabla \phi^{n+1/2} \|,
\] (58)

and

\[
\alpha(h) \left(\nabla u(t_{n+1}) + u(t_n) - G_h^{n+1/2}, \nabla \phi^{n+1/2} \right)
\]

\[
\leq \alpha(h) \| \Psi^{n+1/2} + Y_h^{n+1/2} \| |\nabla \phi^{n+1/2}|
\]

\[
\leq \alpha(h) \left(\| \Psi^{n+1/2} \| + \| Y_h^{n+1/2} \| \right) |\nabla \phi^{n+1/2}|
\]

\[
\leq \alpha(h) \left(\| \Psi^{n+1/2} \| + \| \eta^{n+1/2} \| + \| \phi^{n+1/2} \| \right) |\nabla \phi^{n+1/2}|
\]

\[
\leq \alpha(h) \| \nabla \phi^{n+1/2} \|^2 + \frac{\gamma}{14} \| \phi^{n+1/2} \|^2 + \frac{C \alpha^2(h)}{\gamma} \| \eta^{n+1/2} \|^2.
\] (59)

After inserting the bound (41)–(59) into (40), multiplying by \(2 \Delta t \) on both side, and taking the sum from \(n = 1 \) to \(N - 1 \), noting that \(\phi^0_h = 0 \), we have
\[\|\phi_h^N\|^2 + \nu \Delta t \sum_{n=0}^{N-1} \|\nabla \phi_h^{n+1/2}\|^2 + \Delta t y \sum_{n=0}^{N-1} \|\nabla \cdot \phi_h^{n+1/2}\|^2 \]
\[\leq C \Delta t \sum_{n=0}^{N-1} [\nu \|\eta^{n+1/2}\|^2 + \frac{a^2(h)}{y} \|\nabla \eta^{n+1/2}\|^2 + \frac{\gamma^2}{y} \|\nabla \eta^{n+1/2}\|^2]\]
\[+ \frac{1}{y} \left(\|\nabla u(t_{n+1})\|^2 + \|\nabla u(t_{n})\|^2\right) \left(\|\nabla \eta^n\|^2 + \|\nabla \eta^{n-1}\|^2\right)\]
\[+ \frac{1}{y} \left(\|\nabla \eta^n\|^2 + \|\nabla \eta^{n-1}\|^2\right) \left(\|\nabla \eta^n\|^2 + \|\nabla \eta^{n-1}\|^2\right) + \frac{\Delta t^3}{y} \int_{t_n}^{t_{n+1}} \|u_{tt}\|^2 \, dt\]
\[+ \frac{\Delta t^4}{y} \left(\|\nabla u(t_0)\|^4 + \|\nabla u(t_{n-1})\|^4\right) + \frac{\Delta t^3}{y} \int_{t_n}^{t_{n+1}} \|u_{tt}\|^4 \, dt\]
\[+ \frac{\Delta t^4}{y} \|\nabla u(t_{n+1/2})\|^4 + y \Delta t^3 \int_{t_n}^{t_{n+1}} \|\nabla u_{tt}\|^2 \, dt + \frac{1}{y} \inf_{t \in [t_n, t_{n+1}]} \|u(t_{n+1/2}) - u(t_{n})\|^2 \, dt\]
\[+ \frac{\alpha^2(h)}{y} \inf_{t \in [t_n, t_{n+1}]} \|\nabla u_{tt}\|^2 - \|u_{tt}\|^2\]
\[+ \frac{1}{y} \left(\|u(t_{n+1}) + u(t_{n})\|^2 + \|\nabla (u(t_{n+1}) + u(t_{n}))\|^2\right) \left(\|\phi_h^n\|^2 + \|\phi_h^{n-1}\|^2\right)\]
\[+ \frac{h^{-1}}{y} \|\phi_h^n + \phi_h^{n-1}\| \|\nabla \eta^{n+1/2}\|\right].\]

Absorbing constants into \(C\), it gives

\[\|\phi_h^N\|^2 + \nu \Delta t \sum_{n=0}^{N-1} \|\nabla \phi_h^{n+1/2}\|^2 + \Delta t y \sum_{n=0}^{N-1} \|\nabla \cdot \phi_h^{n+1/2}\|^2 \]
\[\leq C \left(y h^{2k+2} \|u\|_{L_{1,k+1}^2}^2 + \frac{a^2(h)}{y} h^{2k} \|u\|_{L_{1,k+1}^2}^2 + \frac{\nu}{y} h^{2k} \|u\|_{L_{1,k+1}^2}^2 + \frac{1}{y} h^{2k} \|u\|_{L_{1,k+1}^2}^2\right)\]
\[+ \frac{\Delta t^4}{y} \left(\|u_{tt}\|_{L_{1,0}^2}^2 + \|u_{tt}\|_{H_{0,0}^2}^2\right) + \frac{\Delta t^4}{y} \|\nabla u_{tt}\|_{L_{1,0}^2}^4 + \frac{\Delta t^4}{y} \|\nabla u_{tt}\|_{H_{0,0}^2}^4\]
\[+ \frac{\Delta t^4}{y} \|\nabla u_{tt}\|_{H_{0,0}^2}^4 + \frac{h^2}{y} \|\nabla u_{tt}\|_{L_{1,0}^2}^2 + \frac{\alpha^2(h)}{y} h^{2k} \|u\|_{L_{1,k+1}^2}^2\]
\[+ \left(C \frac{\Delta t}{y} + \frac{1}{y} h^{2k-1} \Delta t \|u\|_{L_{1,k+1}^2}^2\right) \sum_{n=0}^{N-1} \|\phi_h^n\|^2.\]

Hence, with \(0 < \Delta t, h < 1\), from the discrete Gronwall lemma yields
\[\| \phi_h^{n+1} - \phi_h^n \|^2 + \gamma \Delta t \sum_{n=0}^{N-1} \| \nabla \phi_h^{n+1/2} \|^2 + \Delta t \gamma \sum_{n=0}^{N-1} \| \nabla \cdot \phi_h^{n+1/2} \|^2 \leq C \left(\right) \]

By applying the triangle inequality, we obtain the error estimate (35).

\[\text{Corollary 10. Consider the numerical method (10), under the assumptions of Theorem 8, with } (X_h, M_h) \text{ given by the } \]

\[\| u(T) - u_h^{n+1} \|^2 + \gamma \Delta t \sum_{n=0}^{N-1} \| \nabla u(t_{n+1/2}) - \nabla u_h^{n+1/2} \|^2 + \Delta t \gamma \sum_{n=0}^{N-1} \| \nabla \cdot u_h^{n+1/2} \|^2 \]

\[\leq C(\Delta t^4 + h^4 + \alpha^2(h) H^4). \]

5. Numerical Experiments

Herein, we perform some numerical experiments to test the effectiveness of the presented method. We choose \(P_2 - P_1 \) finite element pair to approximate the velocity and pressure. The domain \(\Omega \) is subdivided into triangles. All the numerics were implemented by using the public domain finite element software package Freefem++ [33].

There are two test problems are performed. First, we perform a problem with known analytical solution to validate the convergence rates of Algorithm 3. The next experiment is for simulating the benchmark problem of flow around a cylinder [34, 35]. In all cases, the proposed methods perform very effectively.

5.1. Convergence Rate Verification. Our first example is designed to verify the predicted convergence rates of Algorithm 3. The problem is an interesting test problem for simulating decay of Green–Taylor vortex [36–38], which has following the analytic solution.

\[u_1(x, y, t) = -\cos(\pi x) \sin(\pi y) \exp(-2\pi^2 y^2 t), \]

\[u_2(x, y, t) = \sin(\pi x) \cos(\pi y) \exp(-2\pi^2 y^2 t), \]

\[p(x, y, t) = -\frac{1}{4} (\cos(2\pi x) + \cos(2\pi y)) \exp(-2\pi^2 y^2 t). \]

This is a solution of the NSE with \(f = 0 \), consisting of an \(n \times n \) array of oppositely signed vortices that decay in time. The initial condition at \(t = 0 \) is above true solution. We consider the convergence rates of Algorithm 3 to this solution on the domain \(\Omega = [0, 1) \times [0, 1) \) and time interval \([0, T]\). Taking \(n = 1 \), \(\alpha(h) = h \), \(\gamma = 1 \), final time \(T = 1 \), and setting the values of the time step size \(\Delta t \) and the mesh width \(h \) so that for a refinement, each of \(\Delta t \) and \(h \) gets cut in a half. We choose \(\text{Re} = 100, 1000 \) and 10000. The convergence rates are calculated from the errors at two successive values of \(h \) in the usual manner by postulating \(E(h) = Ch^r \) and solving the formula.

\[r = \frac{\log(E(h_{1}))/E(h_{1+i})}{\log(h_{1}/h_{1+i})}. \]

where \(E(h_i) \) and \(E(h_{i+1}) \) are the errors corresponding to the mesh size \(h_i \) and \(h_{i+1} \), respectively. The results are shown in Tables 1–3. We can see from that, the proposed Subgrid-Sparse-Div-Grad stabilization method can keep the rates of convergence excellently for different Re values, which are in good agreement with the theoretical convergence rates predictions.

5.2. Flow around a Cylinder. The second example is the two-dimensional flow around a cylinder, which is a popular benchmark problem for testing numerical schemes of time-dependent Navier–Stokes equations. The domain \(\Omega = [0, 2.2] \times [0, 0.41] \) contains a cylinder centered at \((0.2, 0.2)\) with radius 0.05, we can see Figure 1 for more details.

No slip boundary conditions are endowed on the top and bottom walls, and the inflow and outflow profiles are set as follows:
Table 1: Errors and convergence rates by using the Subgrid-Sparse-Div-Grad stabilization method with $T = 1, H = 2h, \Delta t = (1/20)h, Re = 100$.

<table>
<thead>
<tr>
<th>$1/h$</th>
<th>$|u - u_h|_{\infty,0}$</th>
<th>Rate</th>
<th>$|p - P_h|_{L_2,0}$</th>
<th>Rate</th>
<th>$|u - u_h|_{L_2,1}$</th>
<th>Rate</th>
<th>$|\nabla \cdot u_h|_{L_2,0}$</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.0453001</td>
<td>0.209124</td>
<td>0.324832</td>
<td>0.101103</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.00544822</td>
<td>3.05566</td>
<td>0.060671</td>
<td>1.78528</td>
<td>0.0718307</td>
<td>2.17702</td>
<td>0.0291351</td>
<td>1.79499</td>
</tr>
<tr>
<td>16</td>
<td>0.000544163</td>
<td>3.32368</td>
<td>0.0817061</td>
<td>2.89249</td>
<td>0.0488897</td>
<td>2.27094</td>
<td>0.0077961</td>
<td>1.91429</td>
</tr>
<tr>
<td>32</td>
<td>4.6711e-05</td>
<td>3.5422</td>
<td>0.00871184</td>
<td>3.22939</td>
<td>0.0032958</td>
<td>2.17523</td>
<td>0.0019698</td>
<td>1.97235</td>
</tr>
<tr>
<td>64</td>
<td>3.64707e-06</td>
<td>3.67895</td>
<td>0.000104475</td>
<td>3.05983</td>
<td>0.00769529</td>
<td>2.09831</td>
<td>0.000495154</td>
<td>1.9921</td>
</tr>
<tr>
<td>128</td>
<td>3.78758e-07</td>
<td>2.32851e-05</td>
<td>2.16567</td>
<td>0.00181992</td>
<td>2.0801</td>
<td>0.000124009</td>
<td>1.99743</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Errors and convergence rates by using the Subgrid-Sparse-Div-Grad stabilization method with $T = 1, H = 2h, \Delta t = (1/20)h, Re = 1000$.

<table>
<thead>
<tr>
<th>$1/h$</th>
<th>$|u - u_h|_{\infty,0}$</th>
<th>Rate</th>
<th>$|p - P_h|_{L_2,0}$</th>
<th>Rate</th>
<th>$|u - u_h|_{L_2,1}$</th>
<th>Rate</th>
<th>$|\nabla \cdot u_h|_{L_2,0}$</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.0561753</td>
<td>0.222197</td>
<td>0.382246</td>
<td>0.109382</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.00788031</td>
<td>2.83361</td>
<td>0.0712768</td>
<td>1.64034</td>
<td>0.0973817</td>
<td>1.97278</td>
<td>0.0316068</td>
<td>1.79107</td>
</tr>
<tr>
<td>16</td>
<td>0.000979067</td>
<td>3.00877</td>
<td>0.0113473</td>
<td>2.65109</td>
<td>0.0227512</td>
<td>2.09771</td>
<td>0.00846383</td>
<td>1.90085</td>
</tr>
<tr>
<td>32</td>
<td>0.000131275</td>
<td>3.11413</td>
<td>0.00151224</td>
<td>2.90759</td>
<td>0.0048211</td>
<td>2.2382</td>
<td>0.00217781</td>
<td>1.95843</td>
</tr>
<tr>
<td>64</td>
<td>1.25936e-05</td>
<td>3.16651</td>
<td>0.000204634</td>
<td>3.05983</td>
<td>0.00104638</td>
<td>2.20426</td>
<td>0.000549488</td>
<td>1.98672</td>
</tr>
<tr>
<td>128</td>
<td>1.29559e-06</td>
<td>3.28102</td>
<td>3.69974e-05</td>
<td>3.22939</td>
<td>0.000769529</td>
<td>2.09831</td>
<td>0.000495154</td>
<td>1.9921</td>
</tr>
</tbody>
</table>

Table 3: Errors and convergence rates by using the Subgrid-Sparse-Div-Grad stabilization method with $T = 1, H = 2h, \Delta t = (1/20)h, Re = 10000$.

<table>
<thead>
<tr>
<th>$1/h$</th>
<th>$|u - u_h|_{\infty,0}$</th>
<th>Rate</th>
<th>$|p - P_h|_{L_2,0}$</th>
<th>Rate</th>
<th>$|u - u_h|_{L_2,1}$</th>
<th>Rate</th>
<th>$|\nabla \cdot u_h|_{L_2,0}$</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.0573318</td>
<td>0.223624</td>
<td>0.388846</td>
<td>0.110302</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.00820862</td>
<td>2.80412</td>
<td>0.0725741</td>
<td>1.62408</td>
<td>0.101548</td>
<td>1.93704</td>
<td>0.0318856</td>
<td>1.79048</td>
</tr>
<tr>
<td>16</td>
<td>0.000109348</td>
<td>2.90821</td>
<td>0.0118066</td>
<td>2.61932</td>
<td>0.0253046</td>
<td>2.00469</td>
<td>0.00855174</td>
<td>1.89862</td>
</tr>
<tr>
<td>32</td>
<td>0.000130748</td>
<td>3.06407</td>
<td>0.0016351</td>
<td>2.85214</td>
<td>0.00567973</td>
<td>2.15551</td>
<td>0.0022066</td>
<td>1.95439</td>
</tr>
<tr>
<td>64</td>
<td>1.56252e-05</td>
<td>3.06484</td>
<td>0.00233484</td>
<td>2.80799</td>
<td>0.00123601</td>
<td>2.20013</td>
<td>0.000559333</td>
<td>1.98004</td>
</tr>
<tr>
<td>128</td>
<td>1.88945e-06</td>
<td>3.04783</td>
<td>4.27739e-05</td>
<td>2.44852</td>
<td>0.00027947</td>
<td>2.14492</td>
<td>0.000140592</td>
<td>1.99219</td>
</tr>
</tbody>
</table>

Figure 1: Computational domain for the two-dimensional flow past a cylinder.

(a) (b)

Figure 2: The mesh used for computing flow around a cylinder. (a) The coarse mesh T_H. (b) The fine mesh $T_{h'}$.

Table 4: The results of maximal drag/lift coefficients and pressure difference by using the Subgrid-Sparse-Div-Grad stabilization method.

<table>
<thead>
<tr>
<th>Δt</th>
<th>Δt_{max}</th>
<th>$c_{d,\text{max}}$</th>
<th>Δt_{max}</th>
<th>$c_{l,\text{max}}$</th>
<th>$\Delta p\ (8\ s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>3.95</td>
<td>2.94834</td>
<td>5.69</td>
<td>0.613275</td>
<td>-0.11232</td>
</tr>
<tr>
<td>0.005</td>
<td>3.94</td>
<td>2.94721</td>
<td>5.695</td>
<td>0.49686</td>
<td>-0.112593</td>
</tr>
<tr>
<td>0.001</td>
<td>3.937</td>
<td>2.94673</td>
<td>5.694</td>
<td>0.486905</td>
<td>-0.112503</td>
</tr>
</tbody>
</table>
Figure 3: The development of $c_d(t)$, $c_l(t)$ and $\Delta p(t)$ by the Subgrid-Sparse-Div-Grad stabilization method with $\Delta t = 0.005$, $\alpha(h) = h$, and $\gamma = 1$.

Figure 4: The velocity field at times $t = 2, 4, 5, 6, 7, 8$ for the NS equation solved by the Subgrid-Sparse-Div-Grad stabilization method with $\alpha(h) = h$ and $\gamma = 1$.
Taking the initial condition \(u(x, y, 0) = 0 \), the viscosity \(\nu = 10^{-3} \), and the external force \(f = 0 \). Computations are implemented with final time \(T = 8 \). A fine mesh \(\tau_h \) with 14508 triangulations and a coarse mesh \(\tau_H \) with 3609 triangulations are given in Figure 2. And these meshes are used in this test.

The difference of pressure is defined by
\[
\Delta p(t) = p(t; 0.15, 0.2) - p(t; 0.25, 0.2)
\]
and the drag and lift coefficients are defined as follows [34]:

\[
c_d(t) = -20 \int_{\Omega} [\nabla u(t) : \nabla v_d + (u(t) \cdot \nabla)u(t) \cdot v_d - p(t)(\nabla \cdot v_d)] dxdy,
\]
\[
c_l(t) = -20 \int_{\Omega} [\nabla u(t) : \nabla v_l + (u(t) \cdot \nabla)u(t) \cdot v_l - p(t)(\nabla \cdot v_l)] dxdy,
\]
where \(v_d = (1, 0)^T \) on the nodes around the cylinder and vanishes everywhere else and \(v_l = (0, 1)^T \) on the nodes around the cylinder and vanishes everywhere else.

The following reference intervals for the benchmark drag and lift coefficients are given in [34, 35] as:

\[
c_{d,\text{ref}} \in [2.93, 2.97], c_{l,\text{ref}} \in [0.47, 0.49], \Delta p_{\text{ref}} \in [-0.115, -0.105].
\]

Table 4 shows \(c_{d,\text{max}} \) and \(\Delta p(8s) \) are exactly in the interval of reference values, \(c_{l,\text{max}} \) is exactly in the benchmark interval when the time step size not too large. The evolutions of \(c_d(t), c_l(t) \) and \(\Delta p(t) \) with \(\Delta t = 0.005, \ a(h) = h, \ y = 1 \) by the Subgrid-Sparse-Div-Grad stabilization method are shown in Figure 3, which is in perfect agreement with the results provided in [34]. The velocity field at times \(t = 2, 4, 5, 6, 7, 8 \) with \(a(h) = h, \ y = 1 \) are shown in Figure 4, we can see the vortex street forms successfully. Finally, a plot of \(\|\nabla \cdot u^n_t\| \) vs. time for different methods is given in Figure 5, we can see that our method can keep mass conservation with time evolve.

6. Conclusions

In this article, we considered the synthesis of subgrid stabilization method with sparse div-grad stabilization method, derived the subgrid-sparse-grad-div stabilization method,
which is particularly efficient and maintains the best algorithmic features of each. The stability and convergence of this method were given. Numerical test verified the theoretical preconditions and demonstrated the effectiveness of the method. The application of the method to other coupled equations [39, 40] will be considered in the future.

Data Availability

All data that support the findings of this study can be obtained from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Natural Science Foundation of China (NSFC) under grant no. 12161095, the Project of Yunnan Basic Research Program (Grant nos. 202001AU070068, 202201AT070032, and 202001AU070066), and the Yunnan Key Laboratory of Modern Analytical Mathematics and Applications (no. 202302AN360007).

References

