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Pulmonary tuberculosis is among the leading infectious diseases causing mortality worldwide. Terefore, scaling up intervention
strategies to reduce the spread of infections in the population is imperative. In this paper, a population-based compartmental
approach has been employed to formulate a mathematical model of pulmonary tuberculosis that incorporates an asymptomatic
infectious population. Te model includes asymptomatic infectious individuals since they spread infections incessantly to
susceptible populations without being noticed, thus contributing to the high rate of infection transmission. Qualitative and
numerical analyses were performed to determine the impact of various intervention strategies on controlling infection trans-
mission in the population. Sensitivity and numerical results indicate that increasing screening of latently infected and
asymptomatic infectious individuals reduces infection transmission to the susceptible population. Numerical results demonstrate
that the combination of vaccination, screening, and treatment of all forms of pulmonary tuberculosis is the most efective
intervention in decreasing infection transmission. Furthermore, a combination of screening and treatment of all forms of
pulmonary tuberculosis proves more efective than a combination of vaccination and treatment of symptomatic infectious
individuals alone. Treating the symptomatic infectious population alone is identifed as the least efective intervention for
curtailing infection transmission in the susceptible population. Tese study fndings will guide healthcare ofcials in making
decisions regarding the screening of latently infected and asymptomatic infectious pulmonary tuberculosis patients, thereby
aiding in the fght against epidemics of this disease.

1. Introduction

Mathematical modeling is one of the valuable tools that
explore the transmission dynamics of infectious diseases
and assess the impact of various control interventions.
Terefore, mathematical modeling of infectious diseases
is used to guide public health policies and inform
decision-making during epidemics [1, 2]. Tis paper
employs a classical SEIR transmission mechanism to
formulate a novel model for pulmonary tuberculosis,
aiming to accurately depict its natural progression. Te
SEIR model, a widely used compartmental model in
epidemiology, is utilized to forecast the spread of

infectious diseases with latent or exposed phases [3].
During the latent phase of a disease, individuals are
neither infectious nor symptomatic [4]. Te evolution of
infectious diseases, taking into consideration the SEIR
model, has been discussed by several authors [5–9].
Research suggests that around one-quarter of the global
population harbors latent pulmonary tuberculosis in-
fections [10]. Consequently, an epidemiological model
for pulmonary tuberculosis must account for this latent
population and hence adopts the classical SEIR frame-
work. Within the SEIR model, the population is cate-
gorized into four compartments: Susceptible (S), Exposed
(E), Infectious (I), and Recovered (R) [2].
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Pulmonary tuberculosis is a contagious disease that
primarily afects the lungs. It is caused by microorganisms
known as Mycobacterium tuberculosis, which spread when
an infectious individual coughs, sneezes, speaks, or sings
[4, 10]. Te disease exerts a heavy toll on the human
population, causing a signifcant number of deaths world-
wide. Every year, approximately 10,000,000 people fall ill
with pulmonary tuberculosis across the globe, with about
15% of them succumbing to the disease. In 2022, approx-
imately 10,600,000 people fell ill with tuberculosis world-
wide, resulting in 1.6 million deaths [11]. In Kenya, data
from Civil Registration Services show that pulmonary tu-
berculosis accounted for about 5.4% of all reported deaths in
2019 [12]. Terefore, it is imperative to scale up preventive
measures aimed at reducing the transmission of infections to
the susceptible population. Te United Nations’ “Agenda
2030 Sustainable Development Goals (SDGs)” has identifed
tuberculosis as one of the communicable diseases that need
to be eradicated worldwide by 2030 for sustainable
development [13].

Various mathematical models for pulmonary tubercu-
losis disease have been formulated, focusing on diverse
strategies to control the transmission of infections, such as
vaccination, early diagnosis, social protection, and treatment
of drug-resistant strains [14–16]. Athithan et al. [17] ana-
lyzed a nonlinear model of pulmonary tuberculosis con-
sidering case detention and treatment, and their results
showed that sustaining treatment and case detention hold
great promise in controlling the spread of infections. Sal-
peter et al. [18] conducted a study on the mathematical
modeling of pulmonary tuberculosis with estimates of re-
production number and infection delay function. Teir
outcome revealed that the risk of infection reactivation
decreases rapidly and then gradually, for the frst ten years
after infection. Houben et al. [19] formulated a mathematical
model to estimate the global burden of latent tuberculosis
infection, and their results estimated that approximately
a quarter of the world’s population was infected with latent
tuberculosis in 2014. Vaccination and efective contact rates
on the spread of pulmonary tuberculosis were assessed using
a mathematical model in [20, 21]. Teir results showed that
vaccination coverage is not sufcient to control pulmonary
tuberculosis, and the efective contact rate has a higher
impact on the spread of infections. Aparicio et al. [22]
explored the strengths and limitations of homogeneous and
heterogeneous mixing in tuberculosis epidemics through
mathematical modeling, and their results indicated that
a decrease in pulmonary tuberculosis incidence was due to
a reduction in progression rates. Kasereka et al. [23] sim-
ulated a mathematical model of pulmonary tuberculosis
transmission in the Democratic Republic of Congo, re-
vealing that monitoring contacts, detection of latent in-
fection, and treatment are the optimal strategies to reduce
the transmission of infections in the population.

Te main purpose of this study is to investigate the
impact of various intervention strategies on controlling the
transmission of infections in the population. We formulated
and analyzed a deterministic pulmonary tuberculosis model
incorporating an asymptomatic infectious population. Te

justifcation for incorporating an asymptomatic infectious
population stems from a report by the National TB Prev-
alence Survey of 2016 in Kenya, which showed that 26% of
prevalent cases diagnosed during their survey were
asymptomatic infectious [24]. We investigated the efects of
screening asymptomatic and latently infected populations
on controlling the transmission of infections to the sus-
ceptible population. Tis paper is organized as follows:
Section 2 presents the model formulation, while in Section 3
mathematical analyses have been performed. Section 4
provides the numerical simulations of the model to illustrate
the impact of various intervention strategies on controlling
the transmission of infections. Finally, Section 5 presents the
conclusion.

2. Pulmonary Tuberculosis Model Formulation
Incorporating Asymptomatic
Infectious Population

Tis study adopts a classical SEIR transmission mechanism
to formulate a new epidemiological model describing the
transmission of pulmonary tuberculosis disease. Te model
incorporates an asymptomatic infectious population, as they
spread infections incessantly to the susceptible population
without being noticed, thus contributing to the high rate of
transmission. Te total human population size at a time t,
denoted as N(t), is subdivided into susceptible S(t), vac-
cinated V(t), latent infected E(t), asymptomatic infectious
Ia(t), symptomatic infectious Is(t), latent infected un-
dergoing treatment TE(t), asymptomatic infectious un-
dergoing treatment Ta(t), symptomatic infectious
undergoing treatment Ts(t), and recovered R(t). Hence, for
total human population, we have N(t) � S(t) + V(t) + E(t)

+ Ia(t) + Is(t) + TE(t) + Ta(t) + Ts(t) + R(t).
Individuals are recruited into the population at a con-

stant rate of π. A fraction of the recruits is vaccinated at
a constant rate of P and enters the vaccinated class, whereas
the rest become susceptible. Te susceptible individuals
become latently infected after efective contact with any of
the following populations: symptomatic infectious, asymp-
tomatic infectious, symptomatic infectious undergoing
treatment, and asymptomatic infectious undergoing treat-
ment. Te force of infection is represented by
λ � β(Is + η1Ia + η2Ts + η3Ta), where β represents the
transmission rate of pulmonary tuberculosis infections,
while η1, η2, and η3 are the dimensionless transmission
coefcients accounting for the relative infectiousness of
asymptomatic infectious individuals, symptomatic in-
fectious individuals undergoing treatment, and asymp-
tomatic infectious individuals undergoing treatment,
respectively, with η3 < η2 < η1. Tis hierarchy assumes that
asymptomatic infectious individuals (Ia) are more in-
fectious than symptomatic individuals undergoing treat-
ment (Ts), who are, in turn, more infectious than
asymptomatic infectious individuals undergoing treatment
(Ta). Te dimensionless transmission coefcients, η1, η2,
and η3 are considered to be less than 1. Te model assumes
that vaccination is not 100% efective, and thus the
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vaccinated class has a chance of being latently infected at
a force of infection given by λv � (1 − ρ)λ � (1 − ρ)β
(Is + η1Ia + η2Ts + η3Ta), where ρ is the vaccine efcacy,
such that 0≤ ρ≤ 1. Te latent infected individuals, denoted
by E(t), are either screened at a constant rate of θ1 and
moved to the latent infected undergoing treatment class
TE(t) or progress to the asymptomatic infectious class
Ia(t), at a rate of χ1. Alternatively, they may develop severe
disease and transition to the symptomatic infectious class
Is(t), at a constant rate of χ2. Asymptomatic infectious
individuals are either screened at a rate of θ2 and moved to
the asymptomatic infectious undergoing treatment class
Ta(t), or they progress to severe disease and join the
symptomatic infectious class Is(t) at a rate of ω. Symp-
tomatic infectious individuals are identifed for treatment at
a rate of θ3 and moved to the symptomatic infectious un-
dergoing treatment class Ts(t). Te rate of disease-induced
deaths due to pulmonary tuberculosis for individuals in the
symptomatic infectious class is given by δ1, whereas the rate
of death due to the disease for symptomatic infectious in-
dividuals undergoing treatment is given by δ2. Treatment for
diferent forms of pulmonary tuberculosis is assumed to be
successful, and thus latent infected individuals undergoing
treatment, asymptomatic infectious individuals undergoing
treatment, and symptomatic infectious individuals un-
dergoing treatment recover at rates of ξ1, ξ2, and ξ3, re-
spectively, and move to the recovered class R. Te model
assumes that recovered individuals become susceptible again
after their immunity wanes at a rate of σ. Te rate at which
individuals die from causes other than pulmonary tuber-
culosis is denoted by μ. It is worth noting that all parameters
are positive constants.

Te compartmental model illustrating the interaction of
the human population in various classes is depicted in
Figure 1.

Te transmission model culminates in a nine-
dimensional system of ordinary diferential equations as
follows:

dS

dt
� (1 − P)π + σR − (λ + μ)S,

dV

dt
� Pπ − ((1 − ρ)λ + μ)V,

dE

dt
� λS +(1 − ρ)λV − χ1 + χ2 + θ1 + μ( 􏼁E,

dIa

dt
� χ1E − θ2 + ω + μ( 􏼁Ia,

dIs

dt
� χ2E + ωIa − θ3 + δ1 + μ( 􏼁Is,

dTE

dt
� θ1E − ξ1 + μ( 􏼁TE,

dTa

dt
� θ2Ia − ξ2 + μ( 􏼁Ta,

dTs

dt
� θ3Is − δ2 + ξ3 + μ( 􏼁Ts,

dR

dt
� ξ1TE + ξ2Ta + ξ3Ts − (σ + μ)R.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

We assume that the model parameters are positive, and
the initial conditions of system (1) are given as follows:
S(0)≥ 0, V(0)≥ 0, E(0)≥ 0, Ia(0)≥ 0, Is(0)≥ 0, TE(0)≥ 0,
Ta(0)≥ 0, Ts(0)≥ 0, and R (0)≥ 0.

3. Model Analysis

3.1. Invariant Region. Te model system (1) deals with the
human population, and thus we need to demonstrate that its
solutions are bounded for all time t> 0.

Theorem 1. Given the positive initial conditions, the feasible
region is defned as follows:

Ω � S(t), V(t), E(t), Ia(t), Is(t), TE(t), Ta(t), Ts(t), R(t)( 􏼁 ∈ R
9
+ : N≤

π
μ

􏼨 􏼩 (2)

Proof. Te sum of all equations in system (1) represents the
total human population in the model and satisfes the fol-
lowing equation:

dN

dt
� π − μN − δ1Is − δ2Ts ≤ π − μN

⟹
dN

dt
≤ π − μN.

(3)

By integrating inequality (3) and applying the initial
conditions, we obtain

N(t)≤
π
μ

+ N(0) −
π
μ

􏼠 􏼡e
− μt

. (4)

As t⟶∞ in inequality (3), the population
N(t)⟶ π/μ, implying that 0≤N(t)≤ π/μ. Tus, the fea-
sible solution of the system enters and remains in the region:
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Ω � S(t), V(t), E(t), Ia(t), Is(t), TE(t), Ta(t), Ts(t), R(t)( 􏼁 ∈ R
9
+ : N≤

π
μ

􏼨 􏼩. (5)

Terefore, the basic model is well-posed epidemiologi-
cally and mathematically, and hence it is sufcient to study
its dynamics in Ω. □

3.2. Te Basic Reproduction Number and the Control Re-
production Number. Te basic reproduction number is
a threshold parameter that governs the spread of disease. It is
defned as the average number of secondary infections
caused by a single infectious individual during his entire
infectious period in a population that is entirely
susceptible [25].

Te control reproduction number is defned as the ex-
pected number of secondary infections produced by an
index-infected individual in a population that is not entirely
susceptible due to the presence of control measures [26].

In the absence of pulmonary tuberculosis, E � Ia � Is �

TE � Ta � Ts � R � 0. Terefore, system (1) has a disease-
free equilibrium given by

B
0

� S
0
, V

0
, E

0
, I

0
a, I

0
s , T

0
E, T

0
a, T

0
s , R

0
􏼐 􏼑

�
(1 − P)π

μ
,
Pπ
μ

, 0, 0, 0, 0, 0, 0, 0􏼠 􏼡.

(6)

We use the next-generation matrix to obtain the control
reproduction number as given by [27].

Let X � (E, Ia, IS, Ta, Ts)
T, then it follows from system

(1) that

dX

dt
� f − v, (7)

where f and v are matrices representing the new infections
and transition terms, respectively, given as follows:

f �

λS +(1 − ρ)λV

0

0

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

v �

χ1 + χ2 + θ1 + μ( 􏼁E

θ2 + ω + μ( 􏼁Ia − χ1E

θ3 + δ1 + μ( 􏼁IS − χ2E − ωIa

ξ2 + μ( 􏼁Ta − θ2Ia

ξ3 + δ2 + μ( 􏼁TS − θ3IS

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(8)

Te Jacobian matrices of the new infections and tran-
sition terms at the disease-free equilibrium are given, re-
spectively, as follows:

Ρπ

TE

Ia
Ta

TS

R

IS

μΤΕ

ξ1ΤΕ

ξ2Τa

ξ3ΤS

μIa μTa

ωIa

V

θ1ΕμV

μE
μR

σR

(1-ρ) λV

λS

χ1E
θ2Ia

θ3IS

χ2E

E

(1 – Ρ) π

(μ + δ1)Is (μ + δ2)Ts

μS

S

π

Figure 1: Schematic model diagram for the propagation and control of pulmonary tuberculosis disease in Kenya.
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F �

0 βη1 S
0

+(1 − ρ)V
0

􏽨 􏽩 β S
0

+(1 − ρ)V
0

􏽨 􏽩 βη3 S
0

+(1 − ρ)V
0

􏽨 􏽩 βη2 S
0

+(1 − ρ)V
0

􏽨 􏽩

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V �

χ1 + χ2 + θ1 + μ 0 0 0 0

− χ1 θ2 + ω + μ 0 0 0

− χ2 − ω θ3 + δ1 + μ 0 0

0 − θ2 0 ξ2 + μ 0

0 0 − θ3 0 δ2 + ξ3 + μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(9)

Te dominant eigenvalue corresponding to the spectral
radius ρ(FV− 1) of the matrix FV− 1 is the control re-
production number (RcVST) with vaccination, screening,

and treatment of all forms of pulmonary tuberculosis as the
intervention strategies. RcVST is given as follows:

RcVST �
β η1χ1x3 + χ1ω + χ2x2( 􏼁x5x6 + η3θ2χ1x3x6 + η2θ3x5 χ1ω + χ2x2( 􏼁􏼂 􏼃[(1 − P)π/μ +(1 − ρ)Pπ/μ]

x1x2x3x5x6
, (10)

where

x1 � χ1 + χ2 + θ1 + μ( 􏼁,

x2 � θ2 + ω + μ( 􏼁,

x3 � θ3 + δ1 + μ( 􏼁,

x5 � ξ2 + μ( 􏼁,

x6 � δ2 + ξ3 + μ( 􏼁.

(11)

Without vaccination intervention, the fraction of re-
cruits vaccinated, P, equals zero, and consequently, the
parameter, ρ, for vaccine efcacy becomes zero since there
will be no vaccinated population. Substituting P � ρ � 0 in
(10) gives the control reproduction number (RcST) with
screening and treatment as the only intervention strategies.
RcST is thus given as follows:

RcST �
β η1χ1x3 + χ1ω + χ2x2( 􏼁x5x6 + η3θ2χ1x3x6 + η2θ3x5 χ1ω + χ2x2( 􏼁􏼂 􏼃π/μ

x1x2x3x5x6
. (12)

Considering the presence of latent infected and
asymptomatic infectious individuals in the population
without their screening, the parameters θ1, θ2, and ξ2 be-
come zero. Substituting θ1 � θ2 � ξ2 � 0 in (10) gives the

control reproduction number (RcVTs
) with vaccination and

treatment of the symptomatic infectious population as the
only intervention strategies. RcVTs

is thus given as follows:

RcVTs
�
β η1χ1 θ3 + δ1 + μ( 􏼁 + χ1ω + χ2(μ + ω)􏼂 􏼃 ξ3 + δ2 + μ( 􏼁 + η2θ3 χ1ω + χ2(μ + ω)􏼂 􏼃􏼂 􏼃[(1 − P)π/μ +(1 − ρ)Pπ/μ]

χ1 + χ2 + μ( 􏼁(ω + μ) θ3 + δ1 + μ( 􏼁 δ2 + ξ3 + μ( 􏼁
. (13)
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When there is no vaccination of recruits and screening of
both latent infected and asymptomatic infectious pop-
ulations, the parameters θ1, θ2, ξ2, P, and ρ become zero.
Substituting θ1 � θ2 � ξ2 � P � ρ � 0 in (10) gives the

control reproduction number (RcTs
) with the treatment of

the symptomatic infectious population as the only in-
tervention strategy. RcTs

is thus given as follows:

RcTs
�
β η1χ1 θ3 + δ1 + μ( 􏼁 + χ1ω + χ2(μ + ω)􏼂 􏼃 ξ3 + δ2 + μ( 􏼁 + η2θ3 χ1ω + χ2(μ + ω)􏼂 􏼃􏼂 􏼃π/μ

χ1 + χ2 + μ( 􏼁(ω + μ) θ3 + δ1 + μ( 􏼁 δ2 + ξ3 + μ( 􏼁
. (14)

Considering no intervention measures in place, that is,
when there is no vaccination of the recruits, screening of
both latent and asymptomatic infectious populations, and
treatment of all forms of pulmonary tuberculosis, the pa-
rameters P, ρ, θ1, θ2, θ3, ξ2, ξ3, and δ2 become zero.
Substituting P � ρ � θ1 � θ2 � θ3 � ξ2 � ξ3 � δ2 � 0 in (10)
gives the basic reproduction number (Ro) given as follows:

Ro �
β η1χ1 δ1 + μ( 􏼁 + χ1ω + χ2(μ + ω)􏼂 􏼃π/μ

χ1 + χ3 + μ( 􏼁(ω + μ) δ1 + μ( 􏼁
. (15)

3.3. Local Stability of Disease-Free Equilibrium

Theorem  . Te disease-free equilibrium point is locally
asymptotically stable if RcVST < 1 and unstable if RcVST > 1.

Proof. To prove the local stability of the disease-free equi-
librium, we obtain the Jacobian matrix of the system at the
disease-free equilibrium as follows:

J B
0

􏼐 􏼑 �

− μ 0 0 − βη1S
0

− βS
0 0 − βη3S

0
− βη2S

0 σ

0 − μ 0 − H1 − H2 0 − H3 − H4 0

0 0 − x1 H5 H6 0 H7 H8 0

0 0 χ1 − x2 0 0 0 0 0

0 0 χ2 ω − x3 0 0 0 0

0 0 θ1 0 0 − x4 0 0 0

0 0 0 θ2 0 0 − x5 0 0

0 0 0 0 θ3 0 0 − x6 0

0 0 0 0 0 ξ1 ξ2 ξ3 − x7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

where

6 Discrete Dynamics in Nature and Society



x1 � χ1 + χ2 + θ1 + μ( 􏼁,

x2 � θ2 + ω + μ( 􏼁,

x3 � θ3 + δ1 + μ( 􏼁,

x4 � ξ1 + μ( 􏼁,

x5 � ξ2 + μ( 􏼁,

x6 � δ2 + ξ3 + μ( 􏼁,

x7 � (σ + μ),

H1 � (1 − ρ)βη1V
0
,

H2 � (1 − ρ)βV
0
,

H3 � (1 − ρ)βη3V
0
,

H4 � (1 − ρ)βη2V
0
,

H5 � βη1 S
0

+(1 − ρ)V
0

􏽨 􏽩,

H6 � β S
0

+(1 − ρ)V
0

􏽨 􏽩,

H7 � βη3 S
0

+(1 − ρ)V
0

􏽨 􏽩,

H8 � βη2 S
0

+(1 − ρ)V
0

􏽨 􏽩.

(17)

Evaluating the eigenvalues of (16), we obtain

− (μ + λ)􏼈 􏼉 − (μ + λ)􏼈 􏼉 − x7 + λ( 􏼁􏼈 􏼉

− x1 − λ H5 H6 0 H7 H8

χ1 − x2 − λ 0 0 0 0

χ2 ω − x3 − λ 0 0 0

θ1 0 0 − x4 − λ 0 0

0 θ2 0 0 − x5 − λ 0

0 0 θ3 0 0 − x6 − λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0. (18)

Either

− (μ + λ)􏼈 􏼉 − (μ + λ)􏼈 􏼉 − x7 + λ( 􏼁􏼈 􏼉 � 0, (19)

or

− x1 − λ H5 H6 0 H7 H8

χ1 − x2 − λ 0 0 0 0

χ2 ω − x3 − λ 0 0 0

θ1 0 0 − x4 − λ 0 0

0 θ2 0 0 − x5 − λ 0

0 0 θ3 0 0 − x6 − λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 0. (20)
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Simplifying (19), we have

(μ + λ)(μ + λ) x7 + λ( 􏼁 � 0. (21)

By the Routh–Hurwitz criteria, (21) has strictly negative
roots given as follows:

λ1 � λ2
� − μ< 0,

λ3 � − x7 < 0.

(22)

Te characteristic polynomial of (20) is obtained as
follows:

M1λ
6

+ M2λ
5

+ M3λ
4

+ M4λ
3

+ M5λ
2

+ M6λ + M7 � 0,

(23)

where M1, M2, M3, M4, M5, M6, and M7 are determined
using Mathematica software as follows:

M1 � 1> 0,

M2 � x1 + x2 + x3 + x4 + x5 + x6,

M3 � x6 x1 + x2 + x3 + x4 + x5( 􏼁 + x5 x1 + x2 + x4( 􏼁 + x4 x1 + x2 + x3( 􏼁 + x3 x1 + x2( 􏼁 + x1x2 + H5χ1 − H6χ2,

M4 � x6 x5 x1 + x2 + x3 + x4( 􏼁 + x4 x1 + x2 + x3( 􏼁 + x3 x1 + x2( 􏼁 + x1x2 − H5χ1 + H6χ2( 􏼁􏼂 􏼃

+ x5 x4 x1 + x2 + x3( 􏼁 + x3 x1 + x2( 􏼁 + x1x2 − H5χ1 + H6χ2( 􏼁􏼂 􏼃 + x4 x3 x1 + x2( 􏼁 + x1x2 − H5χ1 + H5χ2( 􏼁􏼂 􏼃

+ x3 x1x2 − H5χ1( 􏼁 − x2H6χ2 − ωH6χ1 − θ2H7χ1 − θ3H8χ2,

M5 � x6 x4x5 x1 + x2 + x3( 􏼁 + x3x5 x1 + x2( 􏼁 + x2x5x1 + x3x4 x1 + x2( 􏼁 + x1x2 x3 + x4( 􏼁 − H5χ1 x3 + x4 + x5( 􏼁􏼂

− H6ωχ1 − H6χ2 x2 + x4 + x5( 􏼁 − H7θ2χ1􏼃 + x5 x1x2 x3 + x4( 􏼁 + x3x4 x1 + x2( 􏼁 − H5χ1 x3 + x4( 􏼁 − H6ωχ1􏼂

− H6χ2 x2 + x4( 􏼁 − H8θ3χ2􏼃 + x4 x3x2x1 − H5χ1x3 − H6ωχ1 − H6χ2x2 − H7θ2χ1 − H8θ3χ2􏼂 􏼃

− H7θ2χ1x3 − H8θ3χ2x2 − H8θ3ωχ1,

M6 � x6 x1x2 x3x4 + x3x5 + x4x5( 􏼁 + x3x4 x1x5 + x2x5( 􏼁 − H5χ1 x3x4 + x3x5 + x4x5( 􏼁 − H6ωχ1 x4 + x5( 􏼁􏼂

− H6χ2 x2x4 + x2x5 + x4x5( 􏼁 − H7θ2χ1 x3 + x4( 􏼁􏼃 + x5 x1x2x3x4 − H5χ1x3x4 − H6χ2x4x5􏼂

− H6ωχ1x4 − H8θ3χ2 x2 + x4( 􏼁 − H8ωθ3χ1􏼃 + x4 − H7θ2χ1x3 − H8θ3 x2χ2 + χ1ω( 􏼁􏼂 􏼃

M7 � x1x2x3x4x5x6 − x4 x5x6 x3H5χ1 + H6 χ2x2 + χ1ω( 􏼁􏼂 􏼃 + H7χ1θ2x3x6 + H8θ3x5 χ2x2 + χ1ω( 􏼁􏼂 􏼃.

(24)

By the Routh–Hurwitz criteria,

M1 > 0, M3 > 0, M5 > 0 andM7 > 0. (25)

From M7 > 0, we have

x1x2x3x4x5x6 − x4 x5x6 x3H5χ1 + H6 χ2x2 + χ1ω( 􏼁􏼂 􏼃 + H7χ1θ2x3x6 + H8θ3x5 χ2x2 + χ1ω( 􏼁􏼂 􏼃> 0

⟹ x5x6 x3H5χ1 + H6 χ2x2 + χ1ω( 􏼁􏼂 􏼃 + H7χ1θ2x3x6 + H8θ3x5 χ2x2 + χ1ω( 􏼁􏼂 􏼃<x1x2x3x5x6

⟹
x5x6 x3H5χ1 + H6 χ2x2 + χ1ω( 􏼁􏼂 􏼃 + H7χ1θ2x3x6 + H8θ3x5 χ2x2 + χ1ω( 􏼁􏼂 􏼃

x1x2x3x5x6
< 1.

(26)
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Substituting H5 � βη1[S0 + (1 − ρ)V0], H6 � β[S0 + (1 −

ρ)V0], H7 � βη3[S0 + (1 − ρ)V0], H8 � βη2[S0 + (1 − ρ)V0],
S0 � (1 − P)π/μ, and V0 � Pπ/μ in inequality (26) and rear-
ranging yield

β η1χ1x3 + χ1ω + χ2x2( 􏼁x5x6 + η3θ2χ1x3x6 + η2θ3x5 χ1ω + χ2x2( 􏼁􏼂 􏼃[(1 − P)π/μ +(1 − ρ)Pπ/μ]

x1x2x3x5x6
< 1. (27)

However,

β η1χ1x3 + χ1ω + χ2x2( 􏼁x5x6 + η3θ2χ1x3x6 + η2θ3x5 χ1ω + χ2x2( 􏼁􏼂 􏼃[(1 − P)π/μ +(1 − ρ)Pπ/μ]

x1x2x3x5x6
� RcVST. (28)

Terefore, (27) can be expressed as follows:

RcVST < 1. (29)

From (29), the disease-free equilibrium is locally as-
ymptotically stable if RcVST < 1. Tis implies that each in-
fectious individual infects, on average, less than one
susceptible person during the infectious period, resulting in
the disease dying out [27]. □

3.4. Te Endemic Equilibrium. Te endemic equilibrium
B∗ � (S∗, V∗, E∗, I∗a , I∗s , T∗E, T∗a , T∗s R∗) is evaluated by
equating the model system of (1) to zero. Te steady-state
solution for the model equations is as follows:

S
∗

�
(1 − P)π + σR

∗

λ∗∗ + μ
,

V
∗

�
Pπ

(1 − ρ)λ∗∗ + μ
,

E
∗

�
λ∗∗(1 − P)π + λ∗∗σR

∗
+(1 − ρ)λ∗∗Pπ

λ∗∗ + μ( 􏼁 χ1 + χ2 + θ1 + μ( 􏼁 (1 − ρ)λ∗∗ + μ( 􏼁
,

I
∗
a �

χ1 λ∗∗(1 − P)π + λ∗∗σR
∗

+(1 − ρ)λ∗∗Pπ􏼂 􏼃

λ∗∗ + μ( 􏼁 χ1 + χ2 + θ1 + μ( 􏼁 (1 − ρ)λ∗∗ + μ( 􏼁 θ2 + ω + μ( 􏼁
,

I
∗
s �

χ2 θ2 + ω + μ( 􏼁 + ωχ1􏼂 􏼃 λ∗∗(1 − P)π + λ∗∗σR
∗

+(1 − ρ)λ∗∗Pπ􏼂 􏼃

θ3 + δ1 + μ( 􏼁 λ∗∗ + μ( 􏼁 χ1 + χ2 + θ1 + μ( 􏼁 (1 − ρ)λ∗∗ + μ( 􏼁 θ2 + ω + μ( 􏼁
,

T
∗
E �

θ1 λ∗∗(1 − P)π + λ∗∗σR
∗

+(1 − ρ)λ∗∗Pπ􏼂 􏼃

ξ1 + μ( 􏼁 λ∗∗ + μ( 􏼁 χ1 + χ2 + θ1 + μ( 􏼁 (1 − ρ)λ∗∗ + μ( 􏼁
,

T
∗
a �

θ2χ1 λ∗∗(1 − P)π + λ∗∗σR
∗

+(1 − ρ)λ∗∗Pπ􏼂 􏼃

λ∗∗ + μ( 􏼁 χ1 + χ2 + θ1 + μ( 􏼁 (1 − ρ)λ∗∗ + μ( 􏼁 θ2 + ω + μ( 􏼁 ξ2 + μ( 􏼁
,

T
∗
s �

χ2 θ2 + ω + μ( 􏼁 + ωχ1􏼂 􏼃θ3 λ∗∗(1 − P)π + λ∗∗σR
∗

+(1 − ρ)λ∗∗Pπ􏼂 􏼃

θ3 + δ1 + μ( 􏼁 λ∗∗ + μ( 􏼁 χ1 + χ2 + θ1 + μ( 􏼁 (1 − ρ)λ∗∗ + μ( 􏼁 θ2 + ω + μ( 􏼁 δ2 + ξ3 + μ( 􏼁
,

R
∗

�
λ∗∗S∗ +(1 − ρ)λ∗∗Pπ􏼂 􏼃 D1 + D2 + D3􏼂 􏼃

λ∗∗ + μ( 􏼁 (1 − ρ)λ∗∗ + μ( 􏼁 χ1 + χ2 + θ1 + μ( 􏼁 θ2 + ω + μ( 􏼁 θ3 + δ1 + μ( 􏼁A1A2A3A4
,

(30)
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where

D1 � ξ1θ1 θ3 + δ1 + μ( 􏼁 θ2 + ω + μ( 􏼁 δ2 + ξ3 + μ( 􏼁 ξ2 + μ( 􏼁,

D2 � ξ2θ2χ1 θ3 + δ1 + μ( 􏼁 δ2 + ξ3 + μ( 􏼁 ξ1 + μ( 􏼁,

D3 � ξ3θ3 χ2 θ2 + ω + μ( 􏼁 + ωχ1􏼂 􏼃 ξ1 + μ( 􏼁 ξ2 + μ( 􏼁,

A1 � ξ1 + μ( 􏼁,

A2 � ξ2 + μ( 􏼁,

A3 � δ2 + ξ3 + μ( 􏼁,

A4 � (σ + μ).

(31)

3.4.1. Global Stability of Endemic Equilibrium Point. We
consider the method of the Lyapunov function to prove the
global stability of the endemic equilibrium point. We pro-
pose a logarithmic Lyapunov function L defned by

L S
∗
, V
∗
, E
∗
, I
∗
a , I
∗
s , T
∗
E, T
∗
a , T
∗
s , R
∗

( 􏼁 � S − S
∗

+ S
∗ ln

S
∗

S
􏼠 􏼡 + V − V

∗
+ V
∗ ln

V
∗

V
􏼠 􏼡 + E − E

∗
+ E
∗ ln

E
∗

E
􏼠 􏼡

+ Ia − I
∗
a + I
∗
a ln

I
∗
a

Ia

􏼠 􏼡 + Is − I
∗
s + I
∗
s ln

I
∗
s

Is

􏼠 􏼡 + TE − T
∗
E + T
∗
E ln

T
∗
E

TE

􏼠 􏼡

+ Ta − T
∗
a + T
∗
a ln

T
∗
a

Ta

􏼠 􏼡 + Ts − T
∗
s + T
∗
s ln

T
∗
s

Ts

􏼠 􏼡 + R − R
∗

+ R
∗ ln

R
∗

R
􏼠 􏼡.

(32)

Te derivatives of L along the solution of the model
system (1) give

dL

dt
�

S − S
∗

S
􏼠 􏼡

dS

dt
+

V − V
∗

V
􏼠 􏼡

dV

dt
+

E − E
∗

E
􏼠 􏼡

dE

dt
+

Ia − I
∗
a

Ia

􏼠 􏼡
dIa

dt
+

Is − I
∗
s

Is

􏼠 􏼡
dIs

dt

+
TE − T

∗
E

TE

􏼠 􏼡
dTE

dt
+

Ta − T
∗
a

Ta

􏼠 􏼡
dTa

dt
+

Ts − T
∗
s

Ts

􏼠 􏼡
dTs

dt
+

R − R
∗

R
􏼠 􏼡

dR
dt

.

(33)

Substituting the expressions dS/dt, dV/dt, dE/dt, dIa/dt,
dIS/dt, dTE/dt, dTa/dt, dTS/dt, and dR/dt from the model
system (1) into (33) and simplifying give

dL
dt

� Q − W, (34)

where

Q � π + σR +
σR
∗
S
∗

S
+
λS
∗
E
∗

E
(1 − ρ)λV +

(1 − ρ)λV
∗
E
∗

E
+ χ1E +

χ1I
∗
aE
∗

Ia

+ χ2E

+
χ2I
∗
s E
∗

Is

+ ωIa +
ωI
∗
s I
∗
a

Is

+ θ1E +
θ1T
∗
EE
∗

TE

+ θ2Ia +
θ2I
∗
aT
∗
a

Ta

+ θ3Ts +
θ3I
∗
s T
∗
s

Ts

+ ξ1TE +
ξ1T
∗
ER
∗

R
+ ξ2Ta +

ξ2T
∗
aR
∗

R
+ ξ3Ts +

ξ3T
∗
s R
∗

R
+
πPV
∗

V
+ λS,

W �
πS
∗

S
+
πPS
∗

S
+
σRS
∗

S
+
λSE
∗

E
+
πPV
∗

V
+(1 − ρ)λV

∗
+

(1 − ρ)λE
∗

E
∗ + χ1E

∗
+
χ1EI
∗
a

Ia

+ χ2E
∗
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+ χ2EI
∗
s + ωI

∗
a +

ωIaI
∗
s

Is

+ θ1E
∗

+
θ1ET
∗
E

TE

+ θ2I
∗
a +

θ2IaT
∗
a

Ta

+ θ3I
∗
s +

θ3IsT
∗
s

Ts

+ ξ1T
∗
E

+
ξ1TER

∗

R
+ ξ2T

∗
a +

ξ2TaR
∗

R
+ ξ3T

∗
s +

ξ2TsR
∗

R
+ λS
∗

+
S − S
∗

( 􏼁
2

S
[λ + μ] +

V − V
∗

( 􏼁
2

V
[(1 − ρ)λ + μ] +

E − E
∗

( 􏼁
2

E
χ1 + χ2 + θ1 + μ􏼂 􏼃

+
Ia − I

∗
a( 􏼁

2

Ia

θ2 + ω + μ􏼂 􏼃 +
Is − I
∗
s( 􏼁

2

Is

θ3 + δ1 + μ􏼂 􏼃

+
TE − T

∗
E( 􏼁

2

TE

ξ1 + μ􏼂 􏼃 +
Ta − T

∗
a( 􏼁

Ta

ξ2 + μ􏼂 􏼃 +
Ts − T

∗
s( 􏼁

2

Ts

δ2 + ξ3 + μ􏼂 􏼃 +
R − R

∗
( 􏼁

2

R
[σ + μ].

(35)

If Q≤W, then dL/dt≤ 0 and dL/dt � 0 if and only if S �

S∗, V � V∗, E � E∗, Ia � I∗a , Is � I∗s , TE � T∗E, Ta � T∗a , Ts �

T∗s , R � R∗.
Terefore, the largest compact invariant set in

(S∗, V∗, E∗, I∗a , I∗s , T∗E, T∗a , T∗s R∗) ∈ Ω : dL/dt � 0􏼈 􏼉 is the
singleton endemic equilibrium point B∗. Tus, from
LaSalle’s invariance principle [28], we conclude that as
t⟶∞, the solution of the model system (1) approaches
the endemic equilibrium B∗ when the control reproduction
number R∗cVST > 1. Terefore, the endemic equilibrium point
B∗ is globally asymptotically stable in the invariant set Ω if
Q<W.

3.5. Sensitivity Analysis on Control Reproduction Numbers.
In this section, we present a sensitivity analysis of the re-
production numbers to determine the relative importance of
the various parameters responsible for pulmonary tuber-
culosis transmission and prevalence in the population. We
employed the normalized forward sensitivity index for this
model as used by [29]. Te normalized sensitivity index
which measures the relative change in a parameter K with
respect to the reproduction number Rc is given by

ΛRc

K �
zRc

zK
×

K

Rc

. (36)

Te parameter values in Table 1 are used to calculate the
sensitivity indices of the reproduction numbers for the
parameters β, P, χ1, χ2, θ1, θ2, and θ3.

Te calculated sensitivity indices of reproduction
numbers are given in Table 2. A positive sensitivity index
shows that the reproduction number is an increasing
function of the corresponding parameter whereas a negative
sensitivity index shows that the reproduction number is
a decreasing function of the corresponding parameter. Tus,
increasing a parameter with a positive sensitivity index
holding other parameters constant increases the re-
production number whereas increasing a parameter with
a negative sensitivity index while other factors are held
constant decreases the reproduction number [37].

From Table 2, it is observed that β, χ1, and χ2 have
positive sensitivity index values, and thus an increase in
these parameters results in a corresponding increase in the

number of the infected population. On the other hand, θ1,
θ2, θ3, and P have negative sensitivity index values, and thus
an increase in these parameters results in a decrease in the
number of infected populations. For instance, if the trans-
mission rate, β, is increased by 10%, the reproduction
numbers increase by 10%. On the other hand, increasing
screening rate of latent infected, θ1, by 10% decreases RcVST
by 6.673668% while increasing screening rate of asymp-
tomatic infectious, θ2, by 10% decreases RcVST by 0.751639%.

4. Numerical Simulations of the Model

Numerical simulations of the model system (1) have been
done to explore pulmonary tuberculosis epidemic behavior.
Te simulations were carried out in MATLAB ordinary
diferential equations inbuilt solver, ode45 function. Nu-
merical simulations have been performed using data from
the Kenyan population. Te baseline parameters used for
numerical simulations are given in Table 1. Te initial values
states are gives as S(0) � 1182969, V(0) � 30920683,
E(0) � 17923767, Ia(0) � 127595, Is(0) � 200000, TE(0) �

500000, Ta(0) � 50000, and Ts(0) � 113155, R(0) �

2753131 as obtained from published Kenyan data [30–34].
Te simulation results are presented graphically as shown in
Figures 2–7.

4.1. Efects of Various Intervention Strategies on the Control
Reproduction Number. Equations (10), (12)–(14) represent
the control reproduction numbers with various intervention
strategies: RcVST for vaccination, screening, and treatment of
all infected cases; RcST for screening and treatment of all
infected cases; RcVTS

for vaccination and treatment of
symptomatic infectious population; and RcTS

for treatment
of symptomatic infectious population alone. Figure 2 il-
lustrates the efects of varying reproduction numbers with
respect to transmission rate, β. It is observed that
RcVST < RcST < RcVTS

< RcTS
. Tis indicates that a combina-

tion of vaccination, screening, and treatment of all infected
cases is the most efective control measure in reducing in-
fection transmission in the population. Following this,
a combination of screening and treatment of all infected
cases proves efective, while the combination of vaccination
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and treatment of symptomatic infectious ranks as the third
appropriate strategy. Furthermore, it is noted that treating
symptomatic cases alone is the least efective strategy in
reducing infection transmission in the population.

4.2. Efects of Varying Screening and Treatment Rates on the
Control Reproduction Number. In the model fowchart
depicted in Figure 1, θ1 represents the rate of screening latent
infected individuals, with Figure 3 illustrating the efects of
screening the latent infected population on the control re-
production number. Similarly, according to the model
fowchart shown in Figure 1, θ2 represents the rate of
screening the asymptomatic infectious population, with
Figure 4 displaying the efects of screening this population
on the control reproduction number. It is observed that
increasing screening rates for both latent infected and
asymptomatic infectious populations reduce the control
reproduction number, consequently decreasing the rate of
infection transmission. Screening and treating latent in-
fections reduce reactivation, subsequently decreasing in-
fection transmission in the population. Te asymptomatic
infectious population, experiencing no symptoms, continues
their daily routines without seeking medical intervention.
Tis behavior leads to more interactions with susceptible
individuals, contributing to a high rate of infection trans-
mission in the population. Terefore, it is prudent to screen
and treat asymptomatic infectious individuals since they
spread infections incessantly without being noticed.

In the model fowchart depicted in Figure 1, θ3 repre-
sents the rate of treating the symptomatic infectious pop-
ulation, while Figure 5 shows the efects of varying treatment
on the control reproduction number for this population. It is
observed that increasing the treatment rate of the symp-
tomatic infectious population reduces the control re-
production number. Tis reduction is attributed to the
decrease in the population that is infectious, consequently
reducing the rate of infection transmission in the
population.

Table 1: Baseline parameters used in simulation.

Parameter Description Value Reference
η3 Transmission coefcient for asymptomatic individuals undergoing treatment 0.00000126 Estimated
η2 Transmission coefcient for symptomatic individuals undergoing treatment 0.00002 Estimated
η1 Transmission coefcient for the asymptomatic infectious individuals 0.0003 Estimated
σ Te rate at which the immunity of recovered wanes 0.003 year− 1 [30]
μ Natural death rate 0.0147 year− 1 [31]
π Recruitment rate 0.021 year− 1 [32]
χ1 Progression rate of latent infected to asymptomatic individuals 0.05 year− 1 [33]
δ2 Rate of tuberculosis disease-induced deaths during treatment 0.065 year− 1 [30]
χ2 Progression rate of latent infected to infectious individuals with disease symptoms 0.1 year− 1 [33]
β Transmission rate of pulmonary tuberculosis 0.15 year− 1 [30]
θ1 Rate of screening latently infected individuals 0.34 year− 1 [34]
ρ Vaccine efcacy 0.5 [11]
δ1 Rate of tuberculosis disease-induced deaths 0.5 year− 1 [34]
θ2 Rate of screening asymptomatic infectious individuals 0.5 year− 1 [35]

ω Te rate at which asymptomatic infectious individuals exhibit symptoms of the
disease 0.6 year− 1 [35]

θ3 Te rate at which symptomatic individuals are treated 0.68 year− 1 [30]
ξ3 Te recovery rate of treated symptomatic individuals 0.75 year− 1 [32]
P Vaccination rate 0.8 year− 1 [31]
ξ2 Te recovery rate of treated asymptomatic infectious individuals 0.8 year− 1 [30]
ξ1 Te recovery rate of latent treated 0.85 year− 1 [36]

Table 2: Sensitivity indices of reproduction numbers with respect
to some model parameters.

Parameter Sensitivity index
Sensitivity indices of RcVST
θ2 − 0.751639
θ1 − 0.673668
P − 0.666667
θ3 − 0.5690921
χ1 +0.11309
χ2 +0.589703
β +1

Sensitivity indices of RcST
θ2 − 0.751362
θ1 − 0.673668
θ3 − 0.0519066
χ1 +0.113028
χ2 +0.589756
β +1

Sensitivity indices of RcVTs

P − 0.6666667
θ3 − 0.0519052
χ1 +0.024444
χ2 +0.0648092
β +1

Sensitivity indices of RcTs

θ3 − 0.569053
χ1 +0.0245257
χ2 +0.0647274
β +1
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4.3. Efects of Asymptomatic Infectious Screening on the
Symptomatic Population. Figure 6 illustrates the efects of
varying the screening rate for asymptomatic infectious in-
dividuals on the symptomatic population. It is observed that
an increase in screening for asymptomatic infectious in-
dividuals signifcantly reduces the symptomatic population.
Tis reduction is attributed to the decreased progression of
the asymptomatic infectious population to severe pulmo-
nary tuberculosis disease. Asymptomatic infectious in-
dividuals often delay seeking healthcare and are not

promptly identifed for pulmonary tuberculosis testing.
However, their detection is crucial for diagnosing the less
advanced form of pulmonary tuberculosis and facilitating
early treatment. Ultimately, this contributes to the reduction
of disease transmission, decreased case fatality, and pre-
vention of adverse consequences of the disease.

4.4. Efects of Screening Latent Infected on the Asymptomatic
Infectious Population. Figure 7 illustrates the efects of
screening latent infected individuals on the asymptomatic

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Co
nt

ro
l r

ep
ro

du
ct

io
n 

nu
m

be
r

0.20 0.4
Infection rate (β)

0.6 0.8 1

RcVST
RcST
RcVTs
RcTs

Figure 2: Efects of various intervention strategies on the control reproduction number.
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infectious population. It is observed that an increase in
screening of latent infected individuals results in a decrease
in the asymptomatic infectious population. Tis reduction
is due to decreased reactivation of latent infections as
a result of treatment. Te decrease in the asymptomatic

infectious population reduces the incessant spread of in-
fections to susceptible populations. Terefore, screening
the latent infected population proves to be an efective
strategy for reducing the transmission of infections in the
population.
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Figure 4: Efects of varying the screening rate for asymptomatic infectious individuals on the control reproduction number.
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5. Conclusion

In this paper, a mathematical model of pulmonary tuber-
culosis incorporating an asymptomatic infectious pop-
ulation has been formulated. Te asymptomatic infectious

population was targeted since they spread infections in-
cessantly to susceptible populations without being noticed,
thus contributing to a high rate of infection transmission.
Tis was based on research fndings from a survey conducted
in Kenya in 2016, which showed that 26% of active
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pulmonary tuberculosis cases were asymptomatic infectious
and did not seek medical care. Te model considered in-
tervention strategies that include vaccination, screening of
both latent infected and asymptomatic infectious pop-
ulations, and treatment of all forms of pulmonary tuber-
culosis disease. Qualitative as well as numerical analyses
have been performed to determine efective intervention
strategies that reduce the transmission of pulmonary tu-
berculosis infections in the population. However, the lim-
itations of this model, which will be considered in our next
research paper, include the impact of natural immunity on
the progression of individuals from latent infection to
pulmonary tuberculosis disease and the waning of vaccine
efcacy.

Qualitative and numerical results demonstrate that
increasing the screening of asymptomatic and latently
infected individuals reduces the transmission of infections
to the susceptible population. Te numerical analysis in-
dicates that the combination of vaccination, screening, and
treatment of all forms of pulmonary tuberculosis disease is
the most efective intervention in decreasing disease
transmission. Furthermore, the results suggest that
a combination of screening and treatment of all forms of
pulmonary tuberculosis disease is more efective than
a combination of vaccination and treatment of symp-
tomatic infectious individuals alone. Treating the symp-
tomatic population alone is identifed as the least efective
intervention for curtailing infection transmission in the
susceptible population.

Terefore, this study recommends that more attention
should be directed toward screening and treatment of latent
infected and the asymptomatic infectious populations.
Screening and treating latent infections reduce the devel-
opment of pulmonary tuberculosis disease and consequently
decreases the rate of infection transmission in the pop-
ulation. Additionally, screening and treating the asymp-
tomatic infectious population reduce the incessant spread of
infections to susceptible individuals and, consequently,
decreases the rate of infection transmission.

Te limitations of this study, which could be considered
in future studies, include the optimal control theory in the
presence of vaccination, screening, and treatment, as well as
the stochastic- and fractional-order approaches of
the model.
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