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Class noise is a common issue that afects the performance of classifcation techniques on real-world data sets. Class noise appears
when a class variable in data sets has incorrect class labels. In the case of noisy data, the robustness of classifcation techniques
against noise could be more important than the performance results on noise-free data sets.Te decision tree method is one of the
most popular techniques for classifcation tasks.Te C4.5, CART, and random forest (RF) algorithms are considered to be three of
the most used algorithms in decision trees.Te aim of this paper is to reach conclusions on which decision tree algorithm is better
to use for building decision trees in terms of its performance and robustness against class noise. In order to achieve this aim, we
study and compare the performance of themodels when applied to class variables with noise.Te results obtained indicate that the
RF algorithm is more robust to data sets with noisy class variable than other algorithms.

1. Introduction

In the area of data mining and machine learning, classif-
cation is one of the most commonly used techniques. Te
aim of classifcation is to predict classes of instances whose
attribute values are known, but their classes are unknown.
Te variable to be predicted is known as the class variable,
and the other variables are the attribute variables or features.
Many classifcation methods have been introduced in the
literature such as decision trees, naive Bayes, logistic re-
gression, and discriminant analysis. Decision trees (also
called classifcation trees) are one of the most preferable
approaches to use in classifcation because of their in-
terpretational simplicity. Among the diferent algorithms to
build decision trees, the C4.5, CART, and random forest
(RF) algorithms are the most studied and commonly used
for tree construction. In terms of interpretability, single trees
such as the C4.5 and CARTalgorithms are easy to interpret,
whereas ensemble methods such as the RF algorithm are not
easily interpretable.

Real-world data sets, which are used as input for clas-
sifcation algorithms, are never perfect and could be afected

by various factors. One of these factors is the presence of
noise. Data noise is an unavoidable problem, which may
hinder the interpretations, decisions, and performance of
classifcation algorithms built from such noisy data sets. One
of the data noise types is class noise, which occurs when data
sets have incorrect class labels. Several studies have been
published that test the performance of diferent classifers,
including decision trees when applied to class variables with
noisy instances. Tis research focuses only on class noise;
however, handling attribute noise is more difcult as the
impact of attribute noise on the overall performance is
unclear. Tis could be because of the dependence among
attribute variables and with class variables as well [1]. Te
performance of diferent classifcation algorithms depends
crucially on the quality of data sets; hence, the performance
of classifcation algorithms may be negatively afected when
developed using data sets with noisy class variables. How-
ever, some algorithms may be more robust to class noise
than others. As a consequence, studying the performance of
classifcation algorithms in the presence of noisy data is
a signifcant issue in data mining and machine learning.
Many studies discussed class and attribute noise and their
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impact on the performance of classifcation algorithms
[2–4].

In this paper, we investigate the performance of three
machine learning algorithms: C4.5, CART, and RF, on data
sets with varying levels of class noise. In order to evaluate
classifers with noisy data sets, we require a technique to
introduce noise into data sets. One of the most commonly
used and successful methods in the literature is to add
random noise to the class variable. We use this method in
our experimental analysis by adding random noise with
diferent percentages to the class variable. Te performance
of the C4.5, CART, and RF algorithms with noisy class
variable has been evaluated using two common evaluation
measures, which are the overall classifcation accuracy and
F-measure rates.

Te rest of this paper is structured in the following
way. Section 2 provides a brief background on decision
trees and the most common algorithms for building trees.
Section 3 presents an introduction to data noise, discusses
data noise impact on classifcation algorithms, and de-
scribes diferent techniques for introducing noise into
data sets. In Section 4, we discuss the fndings of the
experimental analysis conducted to test and compare the
performance of the C4.5, CART, and RF algorithms on
data sets with varying levels of class noise. Finally, Section
5 concludes the fnal remarks and suggests potential topics
for future research.

2. Decision Trees

Classifcation is a data mining technique that assigns a new
instance to predefned classes based on attribute variables.
Te decision tree method is one of the most commonly used
methods of classifcation. Decision trees are attractive due to
their interpretational simplicity, enabling the prediction of
possible class by simple partitions. A decision tree is a model
that can be used in classifcation and regression tasks. A
classifcation task can be considered when the class variable
is nominal, whereas in the situation that the class variable is
numerical, regression task can be used. In this paper, we
consider a decision tree within the classifcation tasks.

Te decision tree algorithm is used to classify new in-
stances into a set of predefned classes based on their at-
tribute values. A decision tree consists of three types of
nodes: a root node, which is the highest node in the tree and
has no incoming edges; an internal node, which only has one
incoming edge but two or more outgoing edges; and a leaf
node, which has no outgoing edges. In a decision tree, each
nonleaf node expresses an attribute variable, each branch
expresses the outcome of an attribute variable, and each leaf
specifes the predicted label of the class variable based on the
information available in the training set. Once a decision tree
is built, classifying a new instance of the test data set is
a straightforward task. Instances are classifed by following
the path in the tree starting from the root until a leaf node,
based on the attribute values of the variables along the path.

Tere are a number of approaches that have been
published in the literature to construct a decision tree. Tree
of the most commonly used are the C4.5 [5], CART [6], and

RF [7] algorithms. Te C4.5, CART, and RF algorithms are
summarized in Sections 2.1–2.3, respectively.

2.1.C4.5Algorithm. TeC4.5 algorithm was frst introduced
by Quinlan in 1993 [5] as a revised version of the ID3 al-
gorithm [8]. Te ID3 algorithm uses information gain as the
split criterion, which employs entropy as an impurity
measure. Entropy [9] of a training set D is given by the
following equation:

E(D) � − 􏽘
m

i�1
pi log2 pi( 􏼁, (1)

where pi represents the proportion ofD that belongs to class
i, m represents the number of classes, and the logarithmic
function with base 2 is used because information in com-
puters is encoded in bits [10]. Entropy generally refers to the
degree of uncertainty or impurity in a set of examples. Te
information gain of A relative to D is given by

Gain(D, A) � E(D) − 􏽘
n

j�1

Dj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

|D|
E Dj􏼐 􏼑, (2)

where the training set D is partitioned into n partitions
corresponding to the value of the attribute variable A, Dj

represents the subset ofD for which attribute variable A has
value j, and |D| is the cardinality ofD. Te information gain
handles only nominal attribute variables.Te C4.5 algorithm
is capable of handling both nominal and numerical attribute
variables, which is not the case with the ID3 algorithm. Te
information gain tends to favor attribute variables that have
a larger number of states, which may result in a biased
analysis [8]. To address this issue, Quinlan [5] introduced
the gain ratio split criterion. Tis criterion normalizes the
information gain as follows:

GR(D, A) �
Gain(D, A)

SI(D, A)
, (3)

where Gain(D, A) is given by equation (2), and split in-
formation SI(D, A) is given by

SI(D, A) � − 􏽘
n

j�1

Dj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

|D|
log2

Dj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

|D|
. (4)

SI(D, A) denotes the information gained by splitting the
set D into n subsets based on the values of the attribute A.
Te attribute with the maximum gain ratio split criterion
(formula (3)) is selected by the C4.5 algorithm as the
splitting attribute variable at each node when constructing
the tree.

2.2. CART Algorithm. Te classifcation and regression
trees (CART) algorithm was introduced by Breiman et al.
in 1984 [6]. Te decision tree construction by the CART
algorithm is based on binary splitting of the attribute
variables. Te CART algorithm employs the Gini Index
splitting measure in choosing the best splitting attribute
variable. Te Gini Index measures how impure an
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attribute variable is relative to its classes. It is given by the
following equation:

Gini(D) � 1 − 􏽘
m

i�1
pi( 􏼁

2
, (5)

where pi represents the relative frequency of class i in the set
D, for i � 1, . . . , m. Te Gini Index reaches its minimum
value when all the observations in the sample are of the same
class and reaches its maximum value when all classes have an
equal probability. After dividing the set D into two subsets
D1 andD2 with sizes n1 and n2, respectively, the Gini Index
of the split data is given by

Ginisplit(D) �
n1

n
Gini D1( 􏼁 +

n2

n
Gini D2( 􏼁. (6)

In this way, the best Gini value split is chosen.Te CART
algorithm can handle both nominal and numerical attribute
variables. Since the C4.5 and CART algorithms were pub-
lished, they have been considered as standard models in
classifcation.

2.3. Random Forest. Te random forest (RF) algorithm was
frst introduced by Breiman in 2001 [7]. RF algorithm is
a kind of ensemble approach that consists of multiple de-
cision trees. In classifcation tasks, the RF algorithm makes
a prediction by aggregating the majority vote of multiple
independent decision trees. Each tree in RF contributes its
vote for the classifcation, whereas those votes are used to
make the fnal prediction of the RF classifcation algorithm.

To construct the RF algorithm, we choose a bootstrap
sample of the training data (sample with replacement) and
construct a decision tree on this sample using the following
conditions: at each node, we randomly choose a small
number of variables from the total number of attribute
variables, and then, we pick the best splitting variable among
these selections. Tereafter, another subset of variables is
chosen for the subsequent node. After that, we repeat this
process with another bootstrap sample from the training
data to build many trees. Finally, a new instance is predicted
by combining the prediction of these trees (i.e., majority
vote) [11]. Te RF algorithm reduces the correlation among
the trees because the RF algorithm randomly chooses var-
iables at each node, which helps to achieve an efcient
prediction by this classifer [12]. Te RF algorithm has many
decision trees, which makes it a robust and efcient algo-
rithm [13]. Te C4.5, CART, and RF classifers have been
widely applied as data analysis tools in many felds, such as
banking, medicine, and astronomy.

3. Data Noise

Te presence of noise is a common issue in real-world data
sets that may sufer from corruptions, thereby impacting the
performance of classifcation algorithms constructed using
such noisy data. Terefore, decisions based on models
constructed from these noisy data sets may be negatively
afected by data noise. Data noise refers to situations that
appear when data sets have incorrect values in attribute

variables or class labels. Noise in data sets can occur for
a variety of reasons, including incorrect measurement of the
inputs, experts’ incorrect descriptions of the input values,
the use of faulty measuring instruments, or data loss during
data transmission and sorting [14]. In this paper, we con-
sider only the class noise that occurs when an instance class
is incorrectly labeled. Te performance of models based on
noisy data sets is a crucial issue for machine learning
techniques. Classifcation algorithms based on noisy data
sets are expected to be less accurate than those based on
noise-free data sets [15].

Tis paper focuses on the efect of applying classifcation
algorithms to noisy class variables. To test how well clas-
sifcation algorithms can handle noisy data, we compare
their performance on a noise-free data set to their perfor-
mance on the same data set with added noise. By doing this,
we can assess the robustness of the algorithms. If the
classifcation accuracy results for the noisy data are close to
those for the clean data, the algorithm is considered robust.
Te robustness of classifcation algorithms depends on their
ability to generate decision trees that are not afected by
corrupt data sets. Tis method of assessing the robustness of
classifcation algorithms in the presence of noise has also
been utilized by Sáez et al. [16].

3.1. Impact of Data Noise on Classifcation Algorithms.
Tis section reviews some studies which have explored the
impact of class or attribute noise on classifcation algo-
rithms are discussed. We provide a brief description of
some of these studies and the concluded fndings. At-
tribute noise has received less attention than class noise in
the literature. Handling attribute noise is more compli-
cated than class noise for several reasons. For example, the
relationship between attribute noise and the classifcation
accuracy is not clear, as the impact of noisy attribute
variables depends on the dependence between attribute
variables and the class variable [1]. Attribute variables
could also have some correlations between each other;
hence, this correlation may vary from one attribute to
another, where the infuences of adding noise to attribute
variables can impact classifcation algorithm performance
diferently [17].

Numerous studies have been conducted to evaluate the
efcacy of classifcation algorithms in the presence of a noisy
class variable [18–24]. Recent studies indicate that class noise
has a more signifcant impact on the performance of clas-
sifcation algorithms than attribute noise [1, 21]. Te study
by Zhu and Wu [24] analyzed the impact of class noise on
cost-sensitive classifcation models. Cost-sensitive classif-
cation aims to minimize the cost of misclassifcation instead
of solely maximizing classifcation accuracy. Te results of
this study indicate that class noise signifcantly impacts the
performance of cost-sensitive classifcation models, partic-
ularly when incorrectly predicting classes is extremely
expensive.

Several experimental studies have been conducted by
Mantas and Abellán [22] to compare the performance of
imprecise probability-based credal-C4.5 classifcation
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algorithm with classical classifcation algorithms such as the
ID3 and C4.5 algorithms.Teir results found that the credal-
C4.5 algorithm outperforms other algorithms with noisy
class variable, while without noisy class variable, similar
performance has been given by all classifcation algorithms.

Zhu and Wu [1] present a systematic evaluation of the
impact of noise on machine learning. Tey investigated
the impact of class and attribute noise on the accuracy rate
for diferent classifcation models, including the C4.5
algorithm. Mantas and Abellán [25] also tested the per-
formance of decision tree algorithms with various levels of
noise. Various studies have examined how attribute or
class noise afects classifcation accuracy across diferent
classifcation algorithms [15, 16, 26]. However, more at-
tention has been given to noise in the class variable in the
literature.

An application of bagging credal decision trees has been
presented by Abellán and Masegosa [19, 20]. A bagging
classifer generates multiple versions of classifcation algo-
rithms and then uses these algorithms to produce an ag-
gregated algorithm [27]. Te results of this study suggested
that bagging credal decision trees perform better than other
Bagging approaches on data sets with class noise. It will be
interesting to generalize our work in this paper to include
bagging methods, but such work is left as a possible topic for
future research.

3.2. Adding Noise Methods. We need a method to add noise
to a data set to test classifcation algorithm performance and
robustness with noisy data. Numerous methodologies have
been proposed in the literature for introducing noise into
data sets. By adding noise to our data sets, we can evaluate
how it afects the performance of classifcation models. Tis
helps us identify which models are robust enough to handle
noisy data and enables us to explore ways to improve the
performance of classifcation models when working with
noisy data. In this section, we review some techniques used
in the literature to add noise to data sets, not only to in-
troduce them but also to justify our choice of noise in-
troduction method.

Zhu and Wu [24] used two techniques to add noise to
a class variable, namely, total random corruption and pro-
portional random corruption. For the frst method, they add
noise to all classes randomly, with a previously chosen noise
level. Terefore, classes of instances are mislabeled based on
this noise level. For the second method, when noise is added,
the distribution of the class remains unchanged. In this
method, if there are K classes, where the classes distribution
is denoted by P1, P2, . . . , PK, where P1 is the percentage of
the most common class and PK is the percentage of the least
common class, and Pi ≥Pi+1. To corrupt a noise level of
x.100%, random noise is added proportionally to the dif-
ferent classes, where an instance labeled as i has
P1/Pi.x.100% chance of being changed. It is possible that the
actual noise level is lower than the intended corruption level
with this method. Zhu and Wu [24] provide additional
information and explanations regarding these strategies for
introducing noise to data sets.

Zhu and Wu [1] proposed another approach to adding
noise to class and attribute variables. To add a particular
noise level to the class variable, given a pair of classes and
a noise percentage x%, an instance belonging to the frst
class has a probability of x% of being changed to the
second class, and the same applies to an instance of the
second class. When adding noise to attribute variables,
given a noise percentage x%, an attribute’s value is
changed at random (approximately x% of the time) to
other possible values, where each potential value has an
equal chance of being selected. For continuous variables,
a value is chosen at random from within the range of
possible values, bounded by the minimum and maximum
values. We refer to Zhu and Wu [1] for additional details
regarding this technique.

Sáez et al. [16] have introduced four approaches to add
x% noise level to data sets. For class noise, they introduce
a uniform class noise scheme, which replaces instances’
classes by randomly changing a class with another one from
the available classes, and a pairwise class noise scheme, which
changes instances of the largest class to the second largest
class. Tey employ a uniform attribute noise scheme and the
Gaussian attribute noise scheme for attribute noise. For the
frst method, to add a specifc noise level x%, x% of the
instances are selected, and their values are changed by other
possible values from the domain of the attribute. In this
scheme, a uniform distribution is employed for choosing the
replacement value. Te second method is similar to the frst
one, but it employs a Gaussian distribution. Sáez et al. [16]
provide more details and explanations about these methods.
Another recent comprehensive review of diferent methods
of adding noise to class variable, attribute variables, or both
in combination is given by Sáez [28]. Sáez has also presented
an R package which is called noisemodel [29].Tis R package
contains diferent ways for adding noise to class variable,
attribute variables, and both in combination.

A widely used technique for adding noise to data sets is
introduced by Abellán et al. [18], Abellán and Masegosa
[19, 20], Alharbi [17], Gray and Fan [30], Mantas and
Abellán [22, 25], and Mantas et al. [23]. In this technique,
they add a particular percentage of random noise to the class
variable in the training data only; hence, the test data are left
unchanged. To introduce noise into the class variable, follow
these steps: frst, they randomly select a particular per-
centage of instances in the training data; then, the class labels
for the chosen instances are randomly switched to other
possible classes. In this paper, we employ this technique for
adding noise to the class variable. Section 4 contains ad-
ditional information about applying this technique in
our work.

4. Experimental Analysis

In this section, we study and compare the performance of the
C4.5, CART, and RF algorithms when they are applied to
noisy data sets. We frst describe how the experiments have
been conducted and provide a brief overview of the used
data sets. Next, we explain the process of adding noise to the
class variable. Following that, we present and discuss the
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results of the performance of the C4.5, CART, and RF
classifers with noisy class variables.

4.1. Experimental Setup. In our experiments, we have used
broad and diferent sets of 20 data sets from the UCI Ma-
chine Learning Repository database [31]. Te characteristics
of these data sets are summarized in Table 1, where column
“N” represents the total number of instances in the data sets,
column “Att.” represents the number of attribute variables,
“Num.” represents the number of numerical attribute var-
iables, column “Nom.” represents the number of nominal
attribute variables, and column “Classes” represents the
number of labels or states of the class variable. Diferent
levels of random noise have been added to the class variable
in each data set, and then, the C4.5, CART, and RF algo-
rithms have been applied to the data sets. We use the sta-
tistical software R for our experimentations [32]. To
implement the RF algorithm in R, we set the default value for
the parameter mtry, which is the square root of the attribute
variables. Note that mtry is the number of attribute variables
randomly chosen as candidates at each split when building
the tree. Te parameter ntree (the number of built trees) is
set to 500. Tis parameter should not be set to too small
numbers to ensure that every instance can be predicted
a few times.

For these data sets, as in most of the real-world data sets,
we do not know how much noise they contain, if any, or
which instances may be noisy. Tus, we do not assume any
particular level of noise in these data sets; hence, we consider
these data sets as noise-free. Terefore, we implement
a random corruption method in order to introduce some
noise into these data sets. We add the following random
noise levels to the class variable: 0%, 10%, 20%, and 30%.
Tese random levels are selected following several re-
searchers in the literature. It is reasonable to add noise up to
30% as in most cases data sets may not contain more noise.
Many researchers in the literature have also added noise
levels in their experiments up to 30% to either class or at-
tribute variables [17–20, 22, 23, 25, 33].

Te performance of the classifcation algorithms built on
the original training set (0% noise) acts as a reference that
could be directly compared with the performance of the
classifcation algorithms obtained with diferent noisy levels
of training data. In other words, in order to check the degree
of robustness of the classifcation algorithms with noisy data
sets, we compare the accuracy results of the classifcation
algorithms from the original data sets with the performance
of classifcation algorithms from data sets with diferent
levels of noise.Tus, the most robust classifcation algorithm
is the one that obtained the most similar results with noisy
data sets, compared to its results with noise-free data sets.
Tis method of comparing and analysing the degree of
robustness has also been used by Sáez et al. [16].

To corrupt a class variable, i.e., adding noise into it, x%of
the instances are selected, where x refers to the noise level we
want to add. For adding noise to the class variable, x% of the
instances in the training set are randomly selected, then their
class labels are replaced by another class from the available

classes, excluding the original class label. Te noise levels are
added to the training sets only, while the test sets are left
unchanged. Adding noise to only training sets enables us to
check the efects of diferent noise levels of the training set on
the performance of the classifcation algorithms which are
based on the data with the noise level, but which are tested
on a test data set without noise. Tis way of adding noise
allows direct comparison between the performances of the
classifcation algorithms on equivalent test sets, for increased
levels of noise in the training sets. Moreover, the robustness
of the classifcation algorithms can be better studied since
the efects of noise are isolated in the training process. Unlike
[1, 15], we exclude the original label from the random as-
signments for the class variable in order to ensure that x% of
the training set will be changed.

In this experimental analysis, a 10-fold cross-validation
scheme has been applied for each data set, and then, the
average results have been reported. In order to study and
compare the performance of the C4.5, CART, and RF al-
gorithms when dealing with noisy data, we use two evalu-
ation measures. First, we used classifcation accuracy rate
which is the most commonly used method to measure the
performance of classifcation algorithms. It is calculated as
the ratio of the total number of correctly classifed instances
on the testing set to the total number of instances. However,
in the case of imbalanced classes, we may use another
measure to have more insight into the performance of
classifcation algorithms. F-measure is one of the best
metrics to consider in such a case. F-measure is defned as
the harmonic mean of the algorithm’s precision and recall.
Te precision is the total number of true positive instances
divided by the total number of all positive instances, and the
recall is the total number of true positive instances divided
by the number of all instances that should have been
identifed as positive. Using this method, the F-measure can
be calculated for binary class variables, but for multiclass

Table 1: Data set description.

Data set N Att. Num. Nom. Classes
Adult 48842 14 8 6 2
Banknote Authentication 1372 4 4 0 2
Blood Transfusion 748 4 4 0 2
Breast Cancer 699 9 9 0 2
Car 1728 6 0 6 4
CMC 1473 9 2 7 3
Congressional Voting 435 16 0 16 2
Dry Bean 13611 16 16 0 7
Ionosphere 351 34 34 0 2
Iris 150 4 4 0 3
Optical Digits 3823 64 64 0 10
Pen-Based Recognition 10992 16 16 0 10
Qualitative Bankruptcy 250 6 0 6 2
Raisin 900 7 7 0 2
Seeds 210 7 7 0 3
Sonar 208 60 60 0 2
Tic-Tac-Toe Endgame 958 9 0 9 2
Vertebral Column 310 6 6 0 4
Wine 178 13 13 0 3
Wireless Indoor 2000 7 7 0 4
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class variables, we use macroaverage F-measure (the average
of the F-measures calculated for each class) as given in [34].
For simplicity, we use the term “F-measure” for both cases
throughout the paper.

4.2. Experimental Results. Tis section presents the per-
formance results of the C4.5, CART, and RF algorithms with
noisy data sets. We compare their performances using the
classifcation accuracy and F-measure rates. First, we discuss
the classifcation accuracy for both algorithms, and then, we
discuss their performances in terms of the F-measure. Fi-
nally, we depict the average results using both measures and
give comments based on our results.

Table 2 shows the classifcation accuracy results for the
C4.5, CART, and RF classifers based on noisy data sets with
percentages of added random noise equal to 0%, 10%, 20%,
and 30%. Te classifcation accuracy results for original data
sets (0% noise level) indicate that the RF algorithm performs
better than the other algorithms, where the C4.5 algorithm
outperforms the CARTalgorithm in 14 out of 20 data sets. It
is also clear that the RF algorithm outperforms the other
algorithms with all noise levels. With 10% and 20% noise
levels, the accuracy results are quite similar between the C4.5
and CART algorithms. However, the CART algorithm
outperforms the C4.5 algorithm with 30% noise level. It is
noticed that the CART algorithm tends to outperform the
C4.5 algorithm as the noise levels increase. For example, for
the Wine data set, the C4.5 achieved 92.15% accuracy rate
while the CART algorithm gives only 87.06% accuracy rate.
However, with 30% noise level, the CART algorithm is
superior to the C4.5 algorithm with 80.35% accuracy rate
compared to 68.61% accuracy rate for the C4.5 algorithm.
Overall, the RF algorithm acts as the best performing
classifer in all cases. By creating trees from multiple subsets
of the training set, the RF algorithm decreases the correlation
among diferent classifcation trees, which could be one of
the reasons behind its robustness to noisy instances.

In order to examine the impacts of introducing noise
into the class variable more comprehensively, we present F-
measure results for the C4.5, CART, and RF algorithms in
Table 3. Again, the RF algorithm is superior to the other
algorithms with and without added noise based on F-
measure results. When constructing a decision tree, the
RF algorithm selects the best-splitting attribute variables
from a randomly chosen subset of available attributes [7],
this mechanism could enhance the RF algorithm’s perfor-
mance, including its performance on noisy data. For the
C4.5 and CART algorithms, the C4.5 algorithm performs
better than the CART algorithm on noise-free data sets.
However, with added noise into the class variable, the CART
algorithm outperforms the C4.5 algorithm. Te CART al-
gorithm slightly outperforms the C4.5 algorithm with 10%
and 20% noise levels but performs clearly better than the
C4.5 algorithm with 30% noise level. For some data sets,
such as the Iris, Seeds, Wine, and Wireless Indoor data sets,
the C4.5 algorithm outperforms the CART algorithm in
terms of F-measure when no noise is added, but the CART
algorithm performs better with added noise (10%, 20%, and

30% noise levels) to the class variable.Tis behavior has been
also noticed with regard to the classifcation accuracy rate.
Te negative impact of class noise on the C4.5 algorithm was
the highest. As the level of noise in the data set increased, the
performance of the C4.5 algorithm clearly decreased.
Generally speaking, the RF algorithm is the best performing
with this measure followed by the CART algorithm.

Looking at the average results over all data sets is also
interesting. In Figure 1, we can notice the comparative
results for the average accuracy and F-measure of the C4.5,
CART, and RF algorithms when they are applied to data sets
with random class noise percentages equal to 0%, 10%, 20%,
and 30%. Te average results are graphically represented in
solid lines for the C4.5 algorithm, in dashed lines for the
CART algorithm, and in dotted lines for the RF algorithm.
From an average perspective, the RF algorithm outperforms
the C4.5 and CARTalgorithms based on both measures. Te
C4.5 algorithm performs better than the CART algorithm
with an overall classifcation accuracy rate of 88.42% while
the CART algorithm has an overall classifcation accuracy
rate of 86.66%when they are applied to the original data sets.
For 10% and 20% noise levels, both algorithms have similar
classifcation accuracy rates. However, for 30% noise level,
the CART algorithm has a better classifcation accuracy rate
of 81.00% compared to an accuracy rate of 80.06% for the
C4.5 algorithm.

Te results of the F-measure also indicate a similar
behavior for the performances of the C4.5, CART, and RF
algorithms. First, it is clear that the RF algorithm is superior
to the other algorithms with/without added noise to the class
variable. Te RF algorithm is a combination of nonrelated
decision trees [35], which might enhance its performance on
data sets with noisy instances. Second, the CART algorithm
outperforms the C4.5 algorithm with all noise levels, while
the C4.5 performs better than the CART algorithm only on
the original data sets (0% noise level). It is noticed that the
impact of adding noise to the class variable negatively afects
the C4.5 algorithm more than its efects on the CART al-
gorithm. For the C4.5 algorithm, the diference between its
F-measure rate on the original data sets and with 30% added
noise equals 9.96%, while the diference for the CART al-
gorithm equals 6.3%.Tis indicates that the CARTalgorithm
is more robust to the presence of noise than the C4.5
algorithm.

Table 4 shows the average time complexity (in seconds)
for the C4.5, CART, and RF algorithms on all data sets at
varying levels of class noise. Te C4.5 and CARTalgorithms
have similar execution time, with slightly less time taken by
the CART algorithm. Tis is not surprising as the CART
algorithm produces only binary splitting trees while the C4.5
algorithm might return multisplit trees. Te RF algorithm is
an ensemble method of trees; hence, it clearly takes more
time to execute the algorithm. Te time complexity for each
data set is given in Table 5. Overall, the CART algorithm
achieves comprehensive time efciency in comparison with
the C4.5 and RF algorithms over almost all data sets.

To compare all classifcation algorithms, we have used
a Friedman test [36, 37], with a level of signifcance of
α � 0.05. Friedman test is a nonparametric test that is used to
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compare multiple classifcation algorithms on multiple data
sets. For each data set, the algorithms are ranked by the test,
and then, their average ranks are compared. Te best per-
forming algorithm received a rank of 1, the second best
received a rank of 2, and so on. Te null hypothesis stated
that all algorithms perform equally. If the null hypothesis is
rejected, we may use the post hoc Nemenyi test to compare
all the algorithms. For more details and further explanation
about the Friedman test, see Demšar [38].

Te Friedman ranks of the classifcation algorithms with
diferent noise levels are shown in Table 6. Te RF algorithm
achieved the best Friedman rank for 0%, 10%, and 20% noise
levels, while for 30% noise levels, the RF and CART

algorithms have equal Friedman ranks. Te null hypothesis,
which assumes that the Friedman ranks of all the classifers
are similar, has been rejected with 0% and 10% noise levels.
It has been found that the Friedman ranks of the RF classifer
are signifcantly higher than the ranks of the other classifers
at a signifcance level of 5%. However, we fail to reject the
null hypothesis with 20% and 30% noise levels.

In summary, the robustness of a classifcation algorithm
to noisy data sets is measured by how close its results with
added noise to data sets compared to its results with the
original data sets. For both evaluation measures, the RF
algorithm has the best performance with slightly lower re-
sults with added noise to class variable. For the classifcation

Table 3: F-Measure for the C4.5/CART/RF algorithms on the data sets at varying noise levels.

Data set 0% noise 10% noise 20% noise 30% noise
Adult 91.13/90.26/91.40 90.90/90.27/90.95 90.63/90.10/90.03 89.32/89.19/87.36
Banknote Authentication 98.78/97.46/99.42 97.70/95.47/98.01 95.49/95.10/93.66 91.82/92.58/84.52
Blood Transfusion 86.25/86.90/84.13 85.78/85.49/84.59 86.33/85.77/81.06 85.43/84.17/77.87
Breast Cancer 96.36/95.72/97.64 94.40/95.85/96.86 94.67/95.55/95.17 94.10/93.83/91.83
Car 82.14/86.03/91.35 78.39/82.37/89.56 68.99/78.50/84.50 65.18/74.38/82.04
CMC 48.27/51.61/52.27 46.65/52.02/50.85 47.58/49.17/47.98 44.07/48.88/46.89
Congressional Voting 97.08/95.86/96.98 95.57/96.14/96.35 95.74/95.50/94.79 91.61/92.95/89.57
Dry Bean 92.27/88.06/93.57 91.18/88.14/93.26 88.59/88.01/92.64 82.44/87.16/91.65
Ionosphere 85.85/81.53/90.21 81.73/78.14/89.75 72.68/74.19/87.14 59.35/69.16/79.74
Iris 94.38/91.20/93.48 91.57/94.67/92.86 89.16/91.35/88.40 82.50/87.66/77.86
Optical Digits 89.88/76.54/98.07 87.74/74.84/97.99 83.86/74.12/98.09 75.04/71.90/97.83
Pen-Based Recognition 95.91/82.77/99.18 94.75/81.09/99.19 93.21/79.14/98.89 87.86/78.80/98.06
Qualitative Bankruptcy 96.99/97.32/100 97.89/97.13/98.70 96.40/97.51/92.87 94.01/90.95/82.52
Raisin 85.79/85.14/85.45 85.03/85.20/84.44 84.13/84.60/80.69 82.03/82.08/73.25
Seeds 91.88/91.86/92.79 86.96/90.17/91.49 84.04/90.08/90.02 80.01/87.04/82.81
Sonar 79.35/73.18/87.79 68.30/71.53/80.98 66.34/70.92/82.53 63.19/57.87/74.55
Tic-Tac-Toe Endgame 77.85/88.29/98.50 73.45/85.87/95.48 65.47/71.51/83.87 60.48/63.41/71.61
Vertebral Column 75.45/80.01/80.76 73.42/75.11/81.11 72.15/70.52/77.96 72.86/70.56/73.79
Wine 91.86/86.65/97.41 79.87/88.69/96.97 78.37/82.33/98.26 66.13/78.88/91.33
Wireless Indoor 97.28/96.48/98.36 96.20/96.29/98.34 95.64/95.94/97.73 88.17/95.39/97.01

Table 2: Accuracies for the C4.5/CART/RF algorithms on the data sets at varying noise levels.

Data set 0% noise 10% noise 20% noise 30% noise
Adult 86.19/84.45/86.64 85.82/84.46/85.98 85.39/84.34/84.68 83.47/83.17/81.00
Banknote Authentication 98.61/97.15/99.34 97.45/94.89/97.74 94.96/94.60/92.92 91.02/91.75/82.85
Blood Transfusion 78.19/78.78/74.73 77.26/76.47/75.67 77.00/76.99/70.72 75.26/75.00/67.23
Breast Cancer 95.14/94.35/96.81 92.56/94.57/95.85 93.00/94.14/93.71 92.13/91.99/89.27
Car 92.36/94.13/96.80 91.09/92.59/95.95 88.71/90.80/94.50 86.46/88.77/93.92
CMC 50.88/55.37/55.03 49.32/54.76/53.27 50.20/52.18/50.41 46.46/51.16/49.25
Congressional Voting 96.36/95.12/96.51 94.55/95.45/95.65 94.77/94.55/93.55 89.91/91.99/87.44
Dry Bean 91.13/87.06/92.44 90.18/87.13/92.15 88.41/87.03/91.65 83.37/86.41/90.90
Ionosphere 90.29/87.43/93.14 87.43/84.57/92.86 83.14/80.57/90.57 75.71/75.43/85.71
Iris 94.67/92.86/95.00 92.00/95.33/94.00 89.33/92.00/89.33 84.00/88.67/80.00
Optical Digits 89.87/76.91/98.09 87.83/75.13/98.04 84.16/74.11/98.12 75.42/72.51/97.83
Pen-Based Recognition 95.91/83.02/99.17 94.79/81.36/99.20 93.26/79.69/98.89 87.94/79.41/98.05
Qualitative Bankruptcy 98.00/98.33/100 98.40/98.00/99.20 97.60/98.40/94.40 95.20/92.40/84.00
Raisin 85.78/85.56/86.00 85.56/85.56/84.89 84.78/85.33/81.00 83.11/82.11/74.00
Seeds 91.90/91.50/93.50 87.62/90.00/91.43 84.76/90.48/90.00 80.48/87.62/83.33
Sonar 76.89/71.00/86.00 66.84/68.22/78.85 64.64/69.22/80.33 62.51/56.69/72.56
Tic-Tac-Toe Endgame 85.58/92.21/99.05 82.15/90.70/97.07 77.15/82.44/89.35 73.08/76.21/80.59
Vertebral Column 81.29/84.33/85.33 79.03/80.65/85.16 78.71/77.74/83.23 78.71/79.03/79.68
Wine 92.15/87.06/97.65 81.88/89.93/96.67 79.24/83.68/98.33 68.61/80.35/91.46
Wireless Indoor 97.30/96.55/98.40 96.20/96.35/98.35 95.70/96.00/97.75 88.40/95.45/97.00
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accuracy rate, the variance of accuracy rates with added
noise levels does not decrease so quickly in the CART al-
gorithm, while this is not the case for the C4.5 algorithm.

Tis also corresponds to the F-measure rates, where we
noticed that the C4.5 algorithm’s performance sharply de-
clines when adding noise levels to the class variable. In

RF
C4.5
CART

10 20 300
Noise Level (%)

75

80

85

90

95
Cl

as
sif

ca
tio

n 
Ac

cu
ra

cy
 (%

)

(a)

RF
C4.5
CART

10 20 300
Noise Level (%)

75

80

85

90

95

F−
M

ea
su

re
 (%

)

(b)

Figure 1: Average accuracy (a) and F-measure (b) for the C4.5, CART, and RF algorithms.

Table 4: Average execution time (seconds) for the C4.5/CART/RF algorithms on the data sets at varying noise levels.

Algorithm 0% noise 10% noise 20% noise 30% noise
C4.5 0.134 0.179 0.21 0.223
CART 0.093 0.164 0.17 0.195
RF 2.797 3.803 4.302 4.355

Table 5: Time complexity for the C4.5/CART/RF algorithms on the data sets at varying noise levels.

Data set 0% noise 10% noise 20% noise 30% noise
Adult 0.92/0.96/27.99 1.41/1.2/38.98 1.85/1.25/47.01 1.71/1.45/46.85
Banknote Authentication 0.03/0.01/0.25 0.03/0.02/0.38 0.02/0.02/0.44 0.02/0.02/0.45
Blood Transfusion 0.03/0.01/0.19 0.02/0.01/0.21 0.02/0.01/0.23 0.02/0.01/0.22
Breast Cancer 0.03/0.01/0.16 0.03/0.01/0.26 0.03/0.02/0.29 0.03/0.02/0.29
Car 0.04/0.01/0.29 0.03/0.02/0.5 0.03/0.02/0.49 0.04/0.02/0.54
CMC 0.05/0.04/0.6 0.05/0.03/0.66 0.04/0.03/0.64 0.05/0.03/0.65
Congressional Voting 0.06/0.01/0.11 0.04/0.01/0.13 0.09/0.02/0.13 0.04/0.01/0.13
Dry Bean 0.62/0.8/10.62 0.76/1.01/13.71 0.97/1.22/15.36 1.32/1.42/15.77
Ionosphere 0.09/0.03/0.29 0.04/0.03/0.31 0.04/0.03/0.34 0.04/0.06/0.39
Iris 0.02/0.01/0.04 0.02/0.01/0.05 0.02/0.01/0.04 0.02/0.01/0.05
Optical Digits 0.29/0.36/8.62 0.48/0.58/11.34 0.41/0.39/10.81 0.46/0.41/11.18
Pen-Based Recognition 0.22/0.19/5.27 0.35/0.22/7.51 0.41/0.24/8.04 0.44/0.27/8.3
Qualitative Bankruptcy 0.03/0.01/0.04 0.03/0.01/0.06 0.03/0.01/0.07 0.03/0.01/0.07
Raisin 0.03/0.02/0.28 0.06/0.02/0.31 0.02/0.02/0.35 0.02/0.03/0.35
Seeds 0.03/0.01/0.06 0.02/0.01/0.07 0.02/0.01/0.08 0.02/0.01/0.08
Sonar 0.06/0.03/0.25 0.05/0.03/0.26 0.05/0.03/0.29 0.06/0.04/0.28
Tic-Tac-Toe Endgame 0.04/0.02/0.22 0.04/0.02/0.27 0.04/0.02/0.3 0.04/0.02/0.33
Vertebral Column 0.03/0.01/0.11 0.03/0.01/0.12 0.02/0.01/0.16 0.02/0.01/0.13
Wine 0.03/0.01/0.07 0.03/0.01/0.08 0.03/0.01/0.09 0.02/0.01/0.11
Wireless Indoor 0.03/0.02/0.47 0.05/0.03/0.85 0.06/0.03/0.88 0.06/0.03/0.92

Table 6: Friedman’s average rankings of the algorithms on the data sets with diferent noise levels, for a level of signifcance of 0.05.

Algorithm 0% noise 10% noise 20% noise 30% noise
C4.5 2.25 2.45 2.15 2.1
CART 2.65 2.2 2.05 1.95
RF 1.1 1.3 1.75 1.95
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consequence, this is the reason why the CART algorithm
possesses more robustness to noisy class variable because it
has a lower variance in these situations. Hence, we can say
that the CART algorithm is more robust to noisy class
variable than the C4.5 algorithm. Te binary splitting
technique performed by CART algorithm might be one of
the reasons for its superiority over the C4.5 algorithm.
Overall, the evaluation results prove that it is better to
consider the RF algorithm in applications where noisy data
could be present. Te robustness of the RF algorithm to data
noise compared to other traditional classifcation tree al-
gorithms relies on that the RF algorithm only uses a subset of
the available instances in the classifcation made by each of
the single trees. Consequently, the probability that the trees
could be afected by noise is lower than that of the algorithms
using the entire data set [39]. By taking only the C4.5 and
CART algorithms into account, it is better to use the C4.5
algorithm when constructing decision trees on data sets
where it is expected that noise is not present. However, when
data sets might contain some noise the CART algorithm is
preferable to use for constructing decision trees.

5. Conclusions

In this paper, we have studied the performance of the C4.5,
CART, and RF classifcation algorithms when diferent noise
levels are added to the class variable. In order to do this, two
evaluation measures have been used to evaluate and com-
pare both algorithms which are the classifcation accuracy
and F-measure rates. As real-world data sets often contain
noise that negatively afects the classifcation performance, it
is important to identify classifcation algorithms that can
handle noise efectively. Te results obtained have shown
that the RF algorithm is the most robust algorithm with
regard to class noise in the data sets followed by the CART
algorithm. However, the results have shown that the C4.5
algorithm performs better than the CART algorithm with
clean data sets. Overall, based on the averaged results of the
accuracy and F-measure for the testing sets, the RF algo-
rithm was shown to provide excellent results for predicting
unknown instances with and without noisy class variables.
Terefore, we strongly suggest using the RF algorithm for
classifying instances that may contain some noise in the class
variable.

In future work, it would be valuable to delve deeper into
attribute noise’s impact on these algorithms’ performance.Tis
is because there has been comparatively less focus and study on
attribute noise in the literature than on class noise. It will be also
of interest to extend this work by studying the classifcation
performance when both attribute and class noise are in-
troduced simultaneously. Another idea for future research is to
consider other classifcation methods such as Naive Bayes and
support vector machines by comparing their performances
with the decision tree method with noisy data sets.
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[38] J. Demšar, “Statistical comparisons of classifers over multiple
data sets,” Journal of Machine Learning Research, vol. 7,
pp. 1–30, 2006.

[39] V. F. Rodriguez-Galiano, B. Ghimire, J. Rogan, M. Chica-
Olmo, and J. P. Rigol-Sanchez, “An assessment of the ef-
fectiveness of a random forest classifer for land-cover clas-
sifcation,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 67, pp. 93–104, 2012.

10 Discrete Dynamics in Nature and Society




