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The aim of this article is to get the forms of the solutions of the following nonlinear higher-order difference equations y,, =
(Ksoaiar /T 1 £ Hf‘zlxs_yﬂ),s =0, 1, 2,..., where the initial conditions X-pi=0.1,2,... ,3k—1landk € {1, 2,...} are arbitrary

real numbers. Also, we examine stability, boundedness, oscillation, and the periodic nature of these solutions.

1. Introduction

Difference equations have played a principal role in the
structure and examination of mathematical models of bi-
ology, ecology, and physics. The study of nonlinear rational
difference equations of higher-order is of prime importance.
Lately, there has been a lot of interest in studying the global
attractivity, the boundedness, and the solution form of these
equations. For more results in this field, see [1-13].

In [14, 15], respectively, the authors obtained the so-
lutions of the following equations:

Xs-14

Xs+1 = >
RS Xs—2Xs-5Xs-8Xs-11Xs5-14

s=0,1,2,..., (1)

with initial conditions X-j € Rand j=0,1,2,...,14 and

_ Xs—2k+1
Xse1 = k >

S=0,1,2,..., 2
= R | Y 2

with initial conditions x_; €R,j=0,1,2,...,2k—1 and
kefl,2,...}.
In [16], the authors obtained the solutions of
Xs-11
*1 % ¥ oXs-sXs-sXs-11
where y_; € Rand j=0,1,2,...,1L

In this work, we get the solutions of the next difference
equations

Xsr1 = , s=0,1,2,..., (3)

Xs—3k+1

Xs+1 = k
*1 £ I X 30

, s=0,1,2,..., (4)

where the initial conditions y_; € R,j=0,1,2,...,3k-1
and k € {1, 2,...}. Following that, we investigate the be-
havior of these solutions. All over this paper, we define
mod (j,3) = j—3[j/3] where [y] is the greatest integer
less than or equal to y € R.
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2. The Difference Equation y,, = (x,_31,, /1 +
I Xaie1)

In this portion, we give an express shape of the solutions of
the following equation:
Xs-3k+1

s=0,1,2,...
k bl b bl bl (5)
L+ T Xar

Xs+1 =

wherey_; e R,1=0,1,2,...,3k-1;k € {1, 2,...}. Also, we
discuss the stability and boundedness of these solutions.

Theorem 1. Assume that {y,}e 1., is a solution of equation
(5), then, for s=0,1,2,...,

=1 1+(kl+Mj - I)Pj
Xak-j = 4j , j=0,1,2,...,3k-1,
=0 1+(kl+Mj)Pj

(6)

X3ks—6k+1
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k- )
where P; = Hr=(§amod(j,3)+3r’ M;=k-[j/3], and x_; = a;
with tPj#: —1 such that t € {1, 2, 3,...}.

Proof. For s = 0, the consequence holds. Now, let s >0 and
our hypothesis holds for s — 1. Then,

52 (1 +(kl+M;-1)P;
X3ks—3k—j:ajn< ( . ) ]>~ (7)

1=0 1+(kl+Mj)Pj

From equation (5) and using equation (7), we get

X3ks—(3k-1)

L+ Xaks—3k-2X3ks—3k=5 - - - X3ks—6k+1

3k-1 Hi;g (1+ (Kl + Myy_y = 1)Py /1 + (kI + My, )Py )

Hence, we have

X3ks—(3k-1) = @A3k-1 H
1=0

X3ks—(3k-2)

= — = 8
1+ H];:é(%ﬁz Hl:g(l +(kl + M3j+2 - 1)P3j+2/1 +(kl + M3j+2)P3j+2)) (8)
_ aye g (1 + (K + My — )Py /1 + (kI + My )Py )
1+ayas ... agy [1ig (1+ (K + My, — 1)Py/1 + (Kl + k)P5;._,)
Similarly, we get
S_l(l +(kl+M3k71 - 1)P3kl) (9)
1+ (kl + My )Pyy )
X3ks—6k+2
L+ X3s—3k-1X3ks—3k—4 - - - X3ks—6k+2
A3k HZ& (1+ (Kl + My, = 1)P3y /1 + (kI + My_,) Py ) (10)

) 1+ H]]:é(%ju Hiz_g(l +(kl + M;jp, — 1)P3j+1/1 +(kl + M3j+1)P3j+1))

) H;;g (1+ (Kl + M3y, = 1)Pyy_»/1 + (kI + My )Py )

1+ a,ay ... 4, Hf;g (1 + (kl + My, — 1)Py /1 + (Kl + k)P3k,2)'
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Hence, we have Once again, from equation (5) and using equation (7),

we get

s (1 + (kI + My, — 1)Py 2)
s(3k-2) = B3k - —= 1. (11)
X3ks—(3k-2) 3k 2[0[( 1+ (k + My _,)Par

X3ks—6k+3
L+ Xaks-3kX3ks—3k=3 - - - X3ks—6k+3

X3ks—(3k-3) =

_ 33 Hi;g (1+ (kI + M5 = 1)Pyy_3/1 + (kl + My _3)P3_3)

1+ [T (ag; TT2(1 + (K + My, — 1)Py /1 + (KL + My, )Py)) (12)

__ ks Hij (1+ (Kl + M35 = 1)P3y_5/1 + (kI + My_3)P3;_3) .
1+ayas ... ay s [11e (1+ (kI + M3 — 1)Py_3/1 + (Kl + k)P3_5)

Hence, we have

s—1

1+ (kI + Myy_; - 1)P3k3)

X s—(3k-3) — 3k ' (13)
3ks—(3k-3) 3k 3H( 1+ (kl + My_3)Py_5

Similarly, one can readily get the other relations for
equation (6). The proof is finished. O

Theorem 2. If X_s,15X_3ke20---2Xo € [0,00) where
k €{l, 2,...}, then every solution of equation (5) is bounded.

Proof. Suppose that {y,}o _s,, is a solution of equation (5).
Then,

Xs—3k+1

forall s>0.
% = (14)
L+ T X341

0<Xs1 = = Xso3k+1

Hence, the sequence {3 ;}opr 1=0,1,...,3k—1 is
decreasing and thus is bounded from above by

M = max{y_s.1> X-3ks2 - - - Xo}- U
Theorem 3. Equation (5) has only equilibrium point y = 0.

Proof. By using equation (5), we have

X k+1

X:1+Xk =xtx =x (15)

Thus,
=0 (16)
The proof is finished. O
Theorem 4. Assume that Y _s;,1>X-sks2>---2Xo € [0,00)

where k € {1, 2,...}, then ¥ = 0 is locally stable.

Proof. Lete>0and {x,}c_s;,, be a solution of equation (5)
such that

3k-1
Z ’X—j'<€' (17)
=0
It suffices to show that [y, | <e. Now,
X=3k+1
O<ti=—""% <Xk <& (18)
L+ Xesin
The proof is finished. O

Theorem 5. Let Y _s3,15X_sks2>--->Xo € [0,00) where
k e{l,2,...}. Then, ¥ =0 is globally asymptotically stable.

Proof. We teach via Theorem 4 that y = 0 is locally stable.
Now, let {x,}o 4., be a positive solution of equation (5). It
is enough to show that
Jim X =x =0 (19)
By Theorem 2, we own Y <Xk VS=0. Thus,
{Xskst}osp and 1=0,1,...,3k—1 are decreasing and
bounded which implies that {ys;,;}c, converge to limit
(say F;>0). Consequently,

Fat = F3k-1
-1 = >
’ L+ FoFs- - Faka
F3k—2 Fo
F3k72 =T - ~7F0 -
L+ FiFy - Fako L+ FoF3 .-+ Fak-3
(20)
which implies that £, = £, = ... = F3,_; = 0, from which the
result follows. a

3. The Difference Equation y,; = (X, 311/
k
1—TI X 3141)

In this portion, we give an express shape of the solutions for
the following equation:

Xs—3k+1

— = s=0,1,2,...
k bl b bl bl (21)
1 =TT Xe3141

Xs+1 =
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where y ;,1=0,1,2,...,3k—1 and k€ {1,2,...} are ar-  Theorem 6. Let {x,}° ,,., be a solution of equation (21).

bitrary real numbers. Then, for s=0, 1, 2,...,

(M- )Py 0,1,2,...,3k-1 (22)
. =a; 5 =U L, 4..., - L
Hoks-j T\ —1+(kl+ M;)P; g
here P, = [T M, =k~ [j/3], and ]‘[( L+(kl+ M - )Pf> (23)
where F; = [1,_00mod(j3)+3r» Mj =K = 1)/3], and x_; =a; X3ks-3k-j = :
with tPj];EI such that]t €{l, 2, ]3,...}. Y ! ]l 0 -1 +(kl +Mj)Pj

Proof. For s =0, the conclusion holds. Now, let s>0 and By equation (21) and using equation (23), we obtain

that our hypothesis is verified for s — 1. Then,

P X3ks—6k+1
S -1) —
DT = X3ks-3k—2X3ks—3k-5 - - - X3ks—6k+1
_ A3k_1 Hfj (=1 + (kI + M3y = 1)Pyy /=1 + (Kl + My, )Py ) ”4
1- H]J:é(%ju H;;g(_l +(kl +Msjp = ) Psin/-1 +(kl + M3]+2)P3j+2)) (24)
__ %k i ( 1+ (kI + My = 1)Pyy /=1 + (Kl + M3_;)Pyy)
1- azas . a3k_1 HI:O (—1 + (kl + M3k—1 — 1)P3k—1/_1 + (kl + k)P3k_1)
Hence, we have Similarly, we get

1+ (Kl + My = )Py
X3ks—(3k-1) = F3k- 11_[( T (Kt My )Py ) (25)

X3ks—6k+2

X3ks—(3k-2) =
1 = X3ks—3k-1X3ks—3k—4 - - - X3ks—6k+2

_ A3k Hiz_g (=1 + (Kl + M = 1)Pyy_»/~1 + (kI + My )Py ) -
1- H?;é(QSjH H;;02<_1 +(kl + M - 1)P3j+1/_1 +(kl +M3j+1)P3j+1)) (26)

_ asp Hf;g (=1 + (Kl + My, - 1)P3k,2/—1 + (kI + M3 )Py 5)
1-ayay...ay . [1e (=1 + (Kl + My, — 1)Py_y/—1 + (Kl + k)Py;_,)
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Hence, we have

1+ (kI + My, — 1)Py
X3ks—(3k-2) = D3k 21_[( 1 (H+ My, )Py, ) (27)

okoohos) = X3ks—6k+3

3ks—(3k-3) =

* L = Xaks-3kX3ks—3k=3 - = - X3ks—6k+3
_ G i ( 1"’(kl’L]\/ch 3

Once again, from equation (21) and using equation (23),
we get

1)P3k73/_1 + (kl + M3k73)P3k73)

- k-1
1-1T5- 0(‘131

A3k-3 Hlig (=1 + (Kl + M35 -

( 1+(kl+M

~1)P3;/~1 +(ki + My;)P5;)) (28)

1)Py_3/=1+ (kl + My;_3)P3;_5)

1-apas...
Hence, we have

1+ (kl+ My 3 = 1)Py 5
X3ks—(3k-3) = A3k- 31—[( U4 (R + My )Py ) (29)

Similarly, one can readily get the other relations for
equation (22). The proof is finished. O

Theorem 7. Equation (21) has only ¥ = 0, which is a non-
hyperbolic fixed point.

Proof. By equation (21), we have

1

O T O e ———
' (1=xita - Xe)

2
X1 K-t

fk(Xl’XZ""’Xk): ,
. (-1 x0)

which implies that

Fru ko o)

Thus, the linearized equation of equation (21) about y =

0 is
Zs+l = Zs-3k+1> (34)
and the characteristic equation is
M-1=0=|=1 I1=1,2,...,3k (35

so  is a nonhyperbolic equilibrium point. O

Open Question 8. Discuss the global behavior of solutions of
equation (21) about y = 0.

5 [, (XX -+ 5 X)) =

=Lf, Gk h) =

A3-3 Hj;%) (=1 +(kj+ M3 — 1)Pys/=1+ (kj+ k)P3k—3).

_ X _k+1
X7 %=X X =X (30)
1-x
Thus,
Xk+1 zoﬁ)_(:o_ (31)
Now, define the function f(y;x2--->xc) = (Xi/
1= X.Xa - - - Xx) on I* where I is a subset of R such that 0 € T

and f (I*) € I. Clearly, f is continuously differentiable on I¥,
and we have

XiXs - X
2
(I=x1X2 - Xe)

LICICIRIE)

(32)

= fo Bk nX) = 0. (33)

4. The Difference Equation y,, =
—1+ T, X 501)

In this portion, we give an express shape of the solutions for
the following equation:

= (Xs—3ks1/

X _ Xs—3k+1
s+1 = k >
=1+ T X310

where y_;,1=0,1,2,...,3k—1 and k € {1, 2,...} are ar-
bitrary real numbers. In addition to this, we examine the
oscillation and periodicity of these solutions.

s=0,1,2,..., (36)
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Theorem 9. If k is odd and P;#2, then equation (36) has k-1 k-1
a periodic solution with period 6k. -1+ HXs+3k+3l =-1+ HX$+3k_6+3l. (41)
1=0 1=0
Proof. Using equation (36), we get Also, since
X 3k
Xstok = H - (37) k-1 k-1
1=0 X5+3k+3l -1+ HXs+3k—6+3l =-1+ HX5+3k—12+3l’
. 1=0 1=0
Since (42)
k-1 k=2 k-1 |
X 3k 3 - =
-1+ HXs+3k+3z =-1+ HXs+3k+3l = » 1+ HXS+3k712+31 e >
1=0 1=0 Hl =0 Xs+3k-3+431 =0 1=0 Xs+3k-15+31
(38)  then
k-1
then B (Xs/_l +]1is Xs+3k—15+3l) _ _
k-1 Xsrok = 1 =x, $=0,1,2,....
1 (1/_1 + 1% Xs+3k—15+31)
-1+ HX5+3k+3l . (39)
1=0 + T Xerahoaent (43)
Similarly, since O
k-1 1
-1+ H Norskozeal = , (40)  Theorem 10. Assume that k is odd, then the periodic 6k
1=0 Hl 0 Xs+3k-6+31 solution of equation (36) has the form
then
a; qj
j—q; (3k)1
X6ks_j=1—%; j=0, 1,...,6k—1,Pj:#2ands=1,2,..., (44)
(—1 +P; 3k)
where  x_, =a,P, =], oamod 33 With P #1, Also,
t=0,1,2,...,3k-1; ke{l,2,...}, P,=0, I=1,2
> . ’ > > o, =-1,«a =1; 1=0,1,2andr=0,1,2,...,k-1.
., 3k, q; = 1/2((_1)[1/3k]+1 " 1)’ and a; = (_1)[]/3]+1. l+6r 1+3+67
(46)
Proof. From the definition of q;, we can see that So,
=g =...=qy, =0,
9 =N Q31 (45)
Dk = D31 = - - = Goi—1 = L.
_ X-3k+1 A3k-1
=3 =3 >
T X2X-5 -+ - X-3ke1 T ayas .. - Asry
_ X-3k+2 A3k-2
X2 =7 = >
TX-1Xg e X3ke2 Taay ... A,
_ X-3k+3 A3k-3
X3 =T = >
T XoX-3 -+ - X-3k+3 T ayas ... Az
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X3k = o = % >
=1+ XoXs- - Xakes —Ll+agas...as_;
X3k+1 = ] +X1)?il' e = A3p-1>
X3ks2 = i) +X2)?(52' e = 3k
X3k+3 = m = Q33> (47)
Aok = 21y Xék—j(;:k76 - X3k I
and the result follows by induction. O  where P; = le:éamod(j,3)+3r’ q; = (-1 and X-j=aj

Theorem 11. Assume that k is odd, then equation (36) has
¥, =0 and ¥, = 2, which are nonhyperbolic equilibrium
points.

Proof. The evidence is identical to the proof of Theorem 7
and shall be neglected. O

Theorem 12. Let k be even and {y}. ;,, be a solution of
equation (36). Then, for s =0, 1, 2,...,

a; '
X3ks—j=( =0,1,2,...,3k-1,

Crep)™

(48)

X3ks—6k+1

with Pi#1

Proof. Fors = 0, the conclusion holds. Now, let s > 0 and our
hypothesis is verified for s — 1. Then,

9j

(—1 +Pj

X3ks—3k-j = )(s, g, (49)

From equation (36) and using equation (49), we get

X3ks—(3k-1) =

=1+ X3ks-3k—2X3ks—3k=5 - - - X3ks—6k+1

(a3k,1/(—1 +Py1)” 1)

-1+ (a2 (-1+ Pz)s_l)(as/(—l + PS)H) ... (a3k_1/(—1 + P3k_1)5_1)

A3k-1

(50)

(-1+ayas...a5 ) (-1 +ayas...a5,)

Hence, we have
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31 Similarly, we get
X3ks~(3k-1) = m (51) Y 8
Vst = X3ks—6k+2
3ks—(3k-2) =
DT 1 kst K aks 3kt - - - Kako—ske2
-1
3 <a3k_2/(—1 + Pyjs) ) (52)
= = = -1
“1+a,(-1+P) (a/(-1+Py)" ") .. (ag /(-1 + Py5)" ")
_ )
= - :
(-1+ayay...a5_,) (-l+aya,...ay,)
Hence, we have Once again, from equation (36) and using equation (49),
sy we get
X3ks~(3k-2) = m (53)
Vstesis) = X3ks—6k+3
3ks—(3k-3) =
T 1t gk stske—3ts - - Kako—okes
-1
B (a3k_3/(—1 + Pyje_3) ) (54)
= = = =
~1+ag(-1+Py) ' (ag/(-1+P3)" ") .. (ag /(-1 + Py_3)" ")
_ A3k-3
= . .
(-1+agas...as_3)" (-l+ayas...asy_;)
Hence, we have X1 =0, with positive semicycles of length 3k and negative
s = Ay s (55) semicycles of length 3k.
sk (14 Py_3)
Proof. By Theorems 10 or 12, we have 1, x,, - - -» X3x <0 and
Similar] dily get the other relations f vl e
imilarly, one can readily get the other relations for " " 4 50, and the result follows by
equation (48). The proof is finished. O Snduction. 0

Theorem 13. Assume that k is even, then equation (36) has
three equilibrium points ¥, =0, ¥, = V2, and x; =42,
which are nonhyperbolic fixed points.

Proof. The evidence is identical to the proof of Theorem 7
and shall be neglected. O

Theorem 14. Equation (36) is periodic of period 3k iff P; = 2

and j=0,1,...,3k -1 and will be take the form

j=0,1,...,3k—1lands=0,1,2,....
(56)

X3ks—j = 4j

Proof. The proof follows immediately from Theorems 10
or 12. O

Theorem 15. Assume that ay,a,,...,as;_, € (0, 1), then
the solution {y.}o s, oscillates about the equilibrium point

5. The Difference Equation y,, = (x,_s31.1/
~1 =TI Xoate1)
In this portion, we give an express shape of the solutions for
the following equation:
Xs—3k+1
-1- H?=1X5—3l+1
where y_; €R,j=0,1,2,...,3k-1 ke{l,2,..} In ad-

dition to this, we examine the oscillation and periodicity of
these solutions.

Xst1 = 5 s=0,1,2,..., (57)

Theorem 16. Ifk is odd and P; #+ -2, then equation (57) has
a periodic solution with period 6k.

Proof. The evidence is identical to the proof of Theorem 9
and shall be neglected. O
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Theorem 17. Assume that k is odd, the periodic 6k solution
of equation (57) has the form
a; qj
j-q; (3k)Y .
Xoks—j = X ! s ]=0,1,...,6k—1,Pj¢—2ands=1,2,..., (58)
(_ _Pj—Sk)
X3
- ) X3ke3 = 7 o T Q33
where X-t = 9 Pt = H];f:éamod(t,3)+3r with Pt -1 1 X3Xe - - - X3k
t=0,1,2,...,3k-1; ke{l,2,...}, P,=01=1,2,...,
3k, q; = 1/2((-1)V* 1+ 1), and a; = (-1)7P1*
(61)
Proof. From the definition of q;, we can see that
= =...= = 0)
9o =D 93k-1 1 (59) ) o )
D3k = D3k+1 = -+ - = Gok-1 = 1- k= =4y,
’ el o 1= XokaKokos - - Xak
Also, . .
and the result follows by induction. O
Aer =L 036 =1 1=0,1,2andr=0,1,2,...,k—-1
(60) Theorem 18. Assume that k is odd, then equation (57) has
X1 = 0 and x, = —*/2, which are nonhyperbolic fixed points.
So,
P Az Proof. The proof is similar to the proof of Theorem 7 and
= X Xos Kok —l—ayas...ay | will be omitted. O
_ X-3k+2 _ A3k Theorem 19. Assume that k is even, let {y,}_5;,, be a so-
X2 “l =X Xt~ Xozpra —l—ayay... a3k72’ lution of equation (57). Then, for s =0, 1, 2,...,
a.
X5 = X=3k+3 _ A3k-3 ) Xks—j = (_1_4]}))5%’ j=0,1,2,...,3k-1, (62)
L XoXos - Xoskes ~l—G0as. - a3 j
k-1 %
where Pj = Hr:Oamod(j,3)+3r’ q; = (_1)[] 3]“: and X—j =aj
with P;# — 1.
Proof. For s = 0, the result holds. Now, suppose that s>0
and our assumption is verified for s — 1. Then,
a
X a, X3ks-3k-j = ! G-Dq,’ (63)
0 — .
X k = = > —1 - P /
F L xoXs - Xakes —1 = als -Gy ( J)
X1 Now, it follows from equation (57) and using equation
G s s = 31> (63) that
X2
X k = = a3k—2’
T2 = ks - Kk
X3ks—6k
X3ks-(3k-1) = Sesoe

=1 = X3ks—3k—2X3ks—3k5 - - - X3ks—6k+1

(a3k71/(‘1 ~Py1)” 1)

-1 _(az (-1- Pz)&l)(as/(_l - Ps)yl) e (“3k71/(_1 - P3k71)571)

A3j-1

(64)

(-1-a,a; .. .a3k_1)571 (-1-aya; .. .a3k_1)'
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Also, it follows from equation (57) and using equation

(66)

Also, it follows from equation (57) and using equation

(68)

Theorem 22. Assume that ay,a,,...,a5,_; € (0,00), then
the solution {x,}e s, oscillates about ¥ = 0, with positive

semicycles of length 3k and negative semicycles of length 3k.

Proof. From Theorems 17 and 19, we have y;, x5, - - > X3, <0

10
Hence, we have
Ay, (63) that
Xaks-(3k=1) = 7T 1 s 65
3ks—(3k-1) (C1-Py ) (65)
P X3ks—6k+2
3ks—(3k-2) =
SO T = X3ks-3k-1X3ks-3k—4 * - - X3ks—6k+2
-1
_ (a3k_2/(—1 - Py,) )
= -1 ) )
-1 _(al (-1-Py) )(“4/(_1 - P, ) . .(a3k,2/(—1 - Pyy) )
_ )
,1 .
(-l1-aay...a5 )" (-1-aa,...az )
Hence, we have
Ay, (63) that
X3ks-(3k-2) = 7 17 _p & 67
3ks—(3k-2) (_1 _ P3k72)s ( )
Vstesis) = X3ks—6k+3
3ks—(3k-3) —
SO T = X3ks-3kA3ks—3k-3 * + - X3ks—6k+3
-1
_ (a3k_3/(—1 - P3k—3)s )
= -1 -1 -1
-1 _(ao (-1-Pp)’ )(‘13/(_1 - Py) ) = -(“3k—3/(_1 ~Py_5) )
_ a3k—3
= - .
(-1-aas...az 3)" (-1-apas...as 3)
Hence, we have
A3k-3
X3ks<3k-3) = 77 _p & 69
o3k = (] _p.F (69)
Similarly, one can easily obtain the other relations for
equation (62). Hence, the proof is completed. O ad XX

Theorem 20. Assume that k is even, then equation (57) has
a unique equilibrium point ¥ = 0, which is a nonhyperbolic
equilibrium point.

Proof. The evidence is identical to the proof of Theorem 7
and shall be neglected. O

Theorem 21. Equation (57) is periodic of period 3k iff P; =
—2and j=0,1,...,3k—1 and will be take the form

j=0,1,...,3k—1lands=0,1,2,....
(70)

X3ks—j = 4js

Proof. The proof follows immediately from Theorems 17
or 19. O

s Xer >0 and the result follows by
induction. O

6. Conclusion

In this work, we get the solutions of the following difference
equations:

Xs—3k+1

Xs+1 = k
L ) ST

520,1,2,..., (71)

where the initial conditions y_; € R,j=0,1,2,...,3k—-1
and k € {1, 2,...}. We investigated the behavior of these
solutions. Also, we used the mod function to write the
solutions in a compact form for easy reading. Finally, we
suggested the following future research.

Open Question 23. Discuss the global behavior of solutions
of equation (21) about y = 0.
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