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Background. Coal washing is a complicated process and difcult to control, which has many controlling parameters with strong
coupling relationship. It is still a challenge to realize the self-perception, self-adjustment, and self-evaluation of coal washing
machine, improve the quality of coal washing, ensure production safety, and reduce labor cost.Methods. Trough the intelligent
transformation of jig, this paper proposes an intelligent washing method with cooperated deep reinforcement learning and
evolutionary computation. First, it designs a fault warning method based on statistical analysis, helping to recover the normal
running state of jig with manual maintenance. Ten, it constructs a regulation strategy generation method with deep re-
inforcement learning supported by the fusion of artifcial experience and historical data. Last, for the lack of monitoring data
caused by poor communication quality and environment, the regulation strategy prediction method with evolutionary com-
putation and surrogate model is proposed. Results. In practice, this method shows accurate fault warning accuracy and rapid
cleaned coal ash adjustment response ability. Conclusions. Tis shows that the method proposed in this paper is of great sig-
nifcance for intelligent washing and can better cope with the special situation when the washing equipment sensing data are
missing.

1. Introduction

Coal preparation plants use various gravity processes to
process most of the raw coal, which are known for their low
cost and high process efciency. Jig coal washing is the
process of physically separating diferent substances from
raw coal to form coal products of various quality specif-
cations [1]. Intelligent coal washing can reduce the impact of
manual activities on the separation process, shorten the
delay time of process control, and improve efciency. With
the construction of intelligent mines, especially the demand
for safe and high-quality production, it has become par-
ticularly important to quickly identify washing faults and
independently adjust the washing process [2]. In addition to
the basic problems of severe aging of raw coal and low
sorting rate, the process of washing equipment is also af-
fected by many factors, such as frequency, air pressure, air
valve adjustment, hydraulic cylinder, coal gangue valve
opening, and foat weight, all of which have an important

impact on washing quality [3]. How to monitor the working
status of fxtures in real time during the cleaning process,
accurately perceive harsh working conditions, and efec-
tively ensure production quality remains a challenge [4, 5].
Te core of intelligent cleaning is to collect multidimen-
sional operation data of jigs, quickly mine real-time status,
and timely return accurate control strategies [6]. In previous
studies, the coal separation process was regarded as
a physical and mathematical modeling problem, and the
control strategy was usually generated by referring to the
established model [7–10]. With the ability to obtain massive
sensor data and deeply mine available information, Internet
of Tings [11] and big data [12] techniques are potential to
achieve intelligent coal washing. In terms of the jig running
state, diagnosing the faults in time is the key to ensuring the
safe operation of the system. Wang et al. [13] proposed
a fault diagnosis method based on AlexNet convolutional
neural network (CNN) from a data-driven perspective.
When the washing equipment is running normally,
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monitoring the control parameters of the equipment and
adjusting them in a timely manner can help efectively adjust
the washing quality. Wang et al. [1] discovered the ability to
intelligently control the density of heavymedium separation.
Te control process is implemented through the following
program. Based on online scanning of raw coal ash content,
the properties of excess coal are frst calculated to predict
and optimize process parameters including heavy medium
separation density. Te required density for optimizing the
circulating medium will be transmitted to the control sys-
tem. Wang et al. [14] developed an intelligent analysis
system for raw coal foat and sink test data, high-precision
intelligent monitoring instruments and equipment for po-
sition, liquid level, and ash content, and highly reliable
sensor equipment.

However, in the process of intelligent extraction and
analysis of real-time data, the current methods mostly use
statistical analysis, which has large errors and is difcult to
integrate into the existing artifcial experience. In addition,
the rough environment of the coal mine washing site has
seriously afected the stability of network communication,
resulting in a large amount of data missing, which is difcult
to meet the needs of real-time analysis and return the control
strategy. In view of this, this paper embeds the existing
artifcial experience into the machine real-time control
process by adopting deep reinforcement learning. When the
collected data cannot meet the requirements of the analysis,
we build a surrogate model with early accumulated historical
data and use our proposed auto-diferential evolution al-
gorithm to quickly solve the potential operation scheme. At
the time of automatically controlling the washing process of
the jig, the detection of jig fault is also monitored to ensure
the washing efciency.

2. Proposed Methods

2.1. Hardware Infrastructure. Te overall architecture of the
hardware foundation relied on by the proposed method is
shown in Figure 1, which includes three parts: intelligent
sensing of state data, intelligent analysis of state data, and
generation and transmission of regulatory strategies. First,
intelligent perception of data requires installing diferent
types of sensors in the critical control of the jig, realizing the
real-time collection of cleaned coal ash content, wind
pressure, water pressure, hydraulic value, medium coal and
gangue gate opening, buoy counterweight, coal gangue
bucket lifting amount, and buoy value. Tese data are
collected by maintaining a synchronized or similar data
acquisition frequency, which is convenient for post-
processing. Ten, the collected data are gathered in the data
server via the OPC protocol, the current jig operational fault
is analyzed, and the on-site personnel are informed to deal
with it in time. Last, regulatory models based on deep re-
inforcement learning and evolutionary computation are
constructed to generate regulatory strategies for the current
jig operation, and the generated regulation strategy is sent
back to the control end via the OPC protocol, realizing the
automatic operation of jig. It is worth noting that the

regulation strategy generated by this method does not
consider the parameter adjustment range of jig in the actual
production, so it is necessary to set the strategy flter at the
PLC end to fne-tune the received regulation strategy, en-
suring the safe operation of the jig. Te technical core of this
framework is the intelligent analysis method of real-time
data for the regulatory model. Te regulatory model of deep
reinforcement learning and evolutionary computation will
be described in detail below.

2.2. RegulationModel. In industrial processes, the safety and
reliability of mechanical systems determine the quality of
products. Timely diagnosis of small faults is the key to
ensuring the safe operation of the system and suppressing
the deterioration of faults. Given that the important pre-
requisite for regulating the jig is to maintain it under normal
operating conditions, it is necessary to monitor the working
status of the jigger in real time. When operating faults occur,
warn the driver to handle them in a timely manner to
improve regulation performance. Te regulation model of
the jigging machine adopts collaborative deep reinforcement
learning and evolutionary computing (hereinafter referred
to as DEIS), as shown in Figure 2. In this model, assuming
that the sampling frequency of all jig sensors is set to f,
a total of f pieces of data were collected within one second,
each containing 32 values, including clean coal ash, air
pressure, water pressure, hydraulic cylinder, medium coal
and gangue door, foat weight, coal gangue bucket volume,
and foat value. When the communication is good and the
aggregated data volume exceeds half of the 32 ∗ f sampling
value, a control strategy is adopted to generate the operation
of the fxture. At the same time, warning messages for gate
overload, scouring, and compaction are determined based
on the height of the bucket, the amplitude of the foat, and
the opening of the gate. When the communication blocking
amount and convergence data amount are less than or equal
to half of the 32 ∗ f sampling value, use diferential evo-
lution algorithm to generate the adjustment strategy for the
operation of the jig, and the warning information of network
communication problems is fed back. Because network
communication is very important for intelligent controlling,
we use the sound and light warning to inform the jig driver
to deal with the network problems in time.

2.2.1. Regulation Strategy with Deep Reinforcement Learning

(1) Basic Defnition of DQN

(1) Defnition of State. Te core elements of deep re-
inforcement learning are state st, action at, and
reward rt [15]. Corresponding to the operation
process of the jig, we record the key control pa-
rameters of the jig as st, including the throughput
frequency TFt, air pressure APt, water pressure WPt,
air valve AVt, the combination of valve opening VOt,
hydraulic cylinder HCt, gangue gate ggt, buoy
counterweight bct, coal gangue bucket amount cgt,
and buoy value bvt at time t. Overall,
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st � TFt,APt,WPt,AVt,VOt,HCt, ggt, bct, cgt, bvt .

(1)

(2) Defnition of Action. Action at corresponds to the
single adjustment step size of abovementioned pa-
rameters, including the throughput frequency ∆TFt,
air pressure ∆APt, water pressure ∆WPt, air valve
∆AVt, the combination of valve opening ∆VOt,
hydraulic cylinder ∆HCt, gangue gate ∆ggt, buoy

counterweight ∆bct, coal gangue bucket amount
∆cgt, and buoy value ∆bvt. Overall,

at � ∆TFt,∆APt,∆WPt,∆AVt,∆VOt,∆HCt,

∆ggt,∆bct,∆cgt,∆bvt.
(2)

For the convenience of operation, the adjustment
step size of at elements is set following operating
habit, so the elements of at are all discrete. Diferent
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Figure 1: Te overall architecture of the hardware foundation.
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Figure 2: Te regulatory model of jig adopting the hybrid deep reinforcement learning and evolutionary computation.
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at elements have various step sizes. For example, the
adjustment step sizes of the throughput frequency
TFt, air pressure APt, water pressure WPt, air valve
AVt, the combination of valve opening VOt, hy-
draulic cylinder HCt, gangue gate ggt, buoy coun-
terweight bct, coal gangue bucket amount cgt, and
buoy value bvt are 1Hz, 0.001Mpa, 0.1MPa, 1%, 1o,
0.1MPa, 1o, 50 g, 0.1m, and 1 cm. In engineering
applications, the machines are usually not allowed to
operate frequently or on a large scale. Hence,
a constraint is applied to the performed action as
follows:

at


<ψ, (3)

where |at| means the number of nonzero elements
and ψ is the threshold meeting the practical re-
quirements. Tis operation also can reduce the space
size of the search space and downgrade the pressure
of training the mapping models.

(3) Defnition of Reward. It is worth noting that due to
the inertia of the operation process, the change of
cleaned coal ash content within T0 minutes after
executing strategy at has higher stability and cred-
ibility, that is, more accurate. Te cleaned coal ash
needs to be controlled within a given range
[Ob − ϵ,Ob + ϵ], where Ob is the expected cleaned
coal ash and ϵ is the tolerance. In the evaluation
period, assume that the initial cleaned coal ash is cx
and the adjusted cleaned coal ash after performing at

is nx; the reward rt of performing at is given as
follows:

rt � max 1 −
|Ob − nx|

|Ob − cx|
, 0  

2

. (4)

It is worth noting that if cx is within [Ob − ϵ,Ob + ϵ],
there is no need performing an at, so |Ob − cx| is
ensured to be larger than 0. 1 − |Ob − nx|/|Ob − cx|

means that if the cleaned coal ash is adjusted to Ob,
|Ob − nx| is 0, and 1 − |Ob − nx|/|Ob − cx| equals to
1. If nx is away from the expected Ob, 1 − |Ob −

nx|/|Ob − cx| is negative, and max(1 − |Ob − nx|

/|Ob − cx|, 0) assigns rt to 0. In this way, rt is con-
trolled between [0, 1]. In addition, to motivate the
DQN to quickly adopt efcient actions, rt is further
developed to rt � (max(1 − |Ob − nx|/|Ob − cx|,

0))2, where rt is more clearly divided into two parts
of lower and higher ranges. Tis operation can re-
duce the probability of action selection faults caused
by reward value calculation errors.

(2) Training of DQN. With the generalization ability of deep
neural network, the mapping model between (st, at) and rt

can be established. Te mapping model has ability to rec-
ommend the best at to maximize rt, that is, to realize the
regulation of cleaned coal ash fastest. As shown in Figure 3,
this paper uses the typical deep reinforcement learning

model (Deep Q-learning Network, DQN) to build the
mapping relationship with (st, at) and rt. Te frst half of
Figure 3 is the training of DQN, and the second half is the
application of DQN. Te training data come from the au-
tomatically collected data during the operation of jig and
drivers’ experience. To transfer the drivers’ experience to the
formatted training data, at is determined by drivers with
experience, and during the period of collecting the training
data, the machine state st and the action at are recorded, and
the reward rt is also archived. Te jig operation data are
continually collected before the application of DQN. In this
way, once an operation is conducted by the jig driver, a piece
of operation data dt � (st, at, rt), namely, training data, is
collected. When a certain amount of training data is col-
lected, the DQN is trained and a simulator is used to il-
lustrate the performance of the trained DQN. Te
efectiveness of initially trained DQN is tested with two
aspects: (1) whether an efective action can be recommended;
(2) whether the actual reward is near to the expected reward.
Considering that the recommended action is not safe to be
directly performed on the jig, the efectiveness of DQN is
manually judged. When the trained DQN is not sufcient as
a controller, the training data are still recorded and the DQN
is constantly updated. Once the trained DQN can recom-
mend efective action and predict relatively correct reward,
the trained DQN is employed. To reduce the error of ver-
ifying the efectiveness of DQN, overall τ tests are con-
ducted. If the success rate meets the requirements, the DQN
is applied. Although DQN is applied as a controller, we still
set an emergency measurement. After repeated regulation
and control, if the jig does not meet the expected re-
quirements, jig will exit the automatic control with alarming
and will be controlled manually.

Considering that fully connected neural networks are
capable of learning complex patterns and relationships in
data, the neural network implementing DQN is a fully
connected neural network. In the training data, a number of
pieces of data are same, due to the same initial machine
states. So, b samples with the biggest diference are selected
in the specifc training process and normalized from the
recorded operation dataset M. Although equation (2) shows
that st just contains 10 elements, parts of elements, like
∆APt, contain 4 members from diferent operating rooms.
So, actually 32 elements are contained in st as mentioned in
Section 2.2. Also, at also contains 32 elements, and the input
of trained neural network, i.e., (st, at), is with 64 dimensions.
Tat means the neural network should have deep layers and
big number of neurons. In this paper, the number of neurons
in all the hidden layers is [64, 32, 16, 8, 4], respectively. For
the learning rate, when the learning rate is too high, the
model may experience oscillations or divergence during the
training process, resulting in the inability to converge to the
optimal solution. In this case, the model may skip the op-
timal solution or wander around the optimal solution,
unable to achieve good training results. When the learning
rate is too low, the training speed of the model will become
very slow, and it may require more iterations to converge to
the optimal solution. So, in our training process, we set two
training stages with higher and lower learning rates,
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respectively. In the frst stage, the learning rate is 0.01, while
in the second stage, the learning rate is 0.001.

When the input of the sigmoid function approaches
positive or negative infnity, the output approaches 0 or 1,
which helps to improve the stability and convergence of the
neural network. So, the hidden layers are connected by the
sigmoid function, and the activation function of the output
layer is a linear function. Ten, predictive values of the
training samples are obtained by forward propagation
z(l) � W(l)c(l− 1) + b(l), where c(l) � fl(z(l)), c(0) � (at, st).
c(l− 1) is the input of lth layer from (l − 1)th layer, and W(l)

and b(l) are the weights and bias of lth layer. Calculate the
prediction error L(W, b) � 

N
t�1(rt − Q(st, at; θ))2, and

adjust the weights W and bias b of the network along the
negative gradient direction of the prediction error, where θ is
the union of weights W and bias b, Q(st, at; θ) is the output
of the DQN, and N is the number of trained samples. When
the error requirements are met, stop the training on
the DQN.

(3) Application of DQN. After the training of DQN, the
running state of jig st at the time t is taken as the input of
DQN to obtain the predicted performance value of diferent
regulated actions. For all at, the control action with the
largest predicted value is amax

t � argmax rt
′ . Ten, amax

t is
the subsequent regulation strategy for jig. In order to balance
exploration and exploitation, the Epsilon greedy strategy is
employed, which strikes a balance between exploring new
options (with a probability of ϵ ) and exploiting the best-
known option (with a probability of 1 − ϵ). Te Epsilon
greedy strategy is given as follows:

at �
rand strategy, if rand< ϵ,

a
max
t , otherwise,

 (5)

where rand strategy means selecting a random regulatory
strategy, which needs to consider the parameter constraints
in terms of the safe use of the jig. Furthermore, to avoid the
signifcant adjustment of the jig parameters, the parameter
nearest to the current setting is frst adjusted as selected at.
Only one parameter is adjusted at a time, and the other
parameters are temporarily not adjusted. If the previous
adjustment is not efective, the other parameters will be
adjusted in turn.

2.2.2. Regulatory Strategies with Auto-Diferential Evolution.
Te generation of jig regulation strategy is essentially a so-
lution of a high-dimensional optimization problem. Unlike
the deep reinforcement learning generating regulatory
strategies, evolutionary computation does not require
known jig states, i.e., st, but only a surrogate model eval-
uating candidate solutions and parameter boundaries is
needed. Evolutionary algorithms, such as diferential evo-
lution (DE) [16–19], are efective in solving the high-
dimensional optimization problems. However, to avoid
large adjustment of equipment parameters, DE can only
locally fne-tune the control parameters. Moreover, con-
sidering the timeliness requirement of online processes, DE
needs to have the ability of rapid convergence. In view of
this, this paper proposes auto-diferential evolution (Au-DE)
to improve the autonomous learning ability of the control
parameters and accelerate the search convergence. Te basic
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Figure 3: Te training and application of DQN mapping (st, at) and rt.
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operation of Au-DE is to randomly generate NP individuals,
and in each generation, the mutation operator, cross over
operator, and selection operator are constantly performed to
the population until the last generation Gmax, until the
evolutionary process is over. Assuming that the optimization
problem is a constrained minimization problem with D

dimensions, the optimization objective is minf(x), where
f(x) is the objective function. A solution is shown as

x � x1, · · · , xj, · · · , xD . (6)

Ten, the population individual (candidate solution) can
be further expressed as

xi,G � x1,i,G, · · · , xj,i,G, · · · , xD,i,G , (7)

where i � 1, 2, · · · ,NP, G � 1, 2, · · · , Gmax. G is the current
generation number, and Gmax is the maximum generation
number.

For the individual xi,G in generation G, the corre-
sponding mutation operator is

vi,G � xr1,G + F × xr2,G − xr3,G , (8)

where r1, r2, r3 are integers, r1, r2, r3 ∈ [1,NP], r1 ≠ r2 ≠ r3 ≠
i, F ∈ (0, 1]; F is a scaling factor controlling the diference
vector xr2,G − xr3,G.

If vi,G exceeds the boundary, it is repaired by

vj,i,G � max Lj, min vi,G, Uj  , (9)

where Lj and Uj are the lower and higher boundaries on the
jth dimension, respectively.

Te goal of the crossover operator is to produce in-
termediate solutions:

ui,G � u1,i,G, · · · , uj,i,G, · · · , uD,i,G , (10)

and

uj,i,G �
uj,i,G, if rand(0, 1)<CR or j � rand(1, D),

xj,i,G, otherwise,
⎧⎨

⎩ (11)

where CR is the crossover probability.
Te selection operator is used to select individuals with

better ftness among parent and child individuals by

xi,G �
ui,G, if f ui,G <f xi,G ,

xi,G, otherwise.

⎧⎨

⎩ (12)

In original DE, F and CR are randomly generated within
[0, 1].Tough this operation has strong global search ability,
it is not suitable for quickly fnding optimal solutions and
returning the regulatory strategies in time. In our proposed
Au-DE, the successful F and CR helping a population in-
dividual in generation G to fnd the better child solution are
recorded and reused. In this mode, F is generated by

Fi � randci MF,ri, 0.1 , (13)

where MF,ri is the memory of successful F, ri ∈ [1, H], H is
the total number of memory entries, and randci(∗) is the

Cauchy distribution function. If Fi > 1, Fi⟵ 1; if Fi ≤ 0, Fi

is generated by repeatedly executing equation (9), until it
meets requirements. MF,k(k � 1, · · · , H) is initialized to 0.5.
From the second generation, MF,k is updated by

MF,k,G+1 �
meanWL SF( , if SF ≠ϕ,

MF,k,G, otherwise,

⎧⎨

⎩ (14)

where k is the memory site, initialized by 1. meanWL(SF)

means the weighted sum of SF which is the successful F.
meanWL(SF) is computed by

meanWL SF(  �


SF| |
k�1 wk × S

2
F,k


SF| |

k�1 wk × SF,k

,

wk �
∆fk


SF| |

k�1 ∆fk

,

∆fk � f xk,G  − f xk,G+1 .

(15)

In general, once new memories are updated, k � k + 1. If
k>H, k � 1. If no new memories are provided, the memory
of the current entry is not updated. Similarly, CR is gen-
erated by

CRi � randni MCR,ri, 0.1 , (16)

where MCR,ri is the memory of successful CR, ri ∈ [1, H], H

is the total number of memory entries, and randni(∗) is the
normal distribution function. MCR,k(k � 1, · · · , H) is ini-
tialized to 0.5. From the second generation, MCR,k is updated
by

MF,k,G+1 �
meanWA SCR( , if SCR ≠ϕ,

MCR,k,G, otherwise,

⎧⎨

⎩

meanWA SCR(  � 

SCR| |

k�1
wk × SCR,k.

(17)

Since Au-DE can only solve the problem of minimiza-
tion or maximization and the cleaned coal ash needs to be
controlled within a given range [Ob − 1,Ob + 1], the opti-
mization objective needs to be modifed to minf′(x), where
f′(x)� |f(x) + μt − Ob|. μt is the cleaned coal ash at the
time t. Tis paper constructs the operation data of jig and
each piece of manual experience as a (D + 1) × Y matrix,
where D + 1 corresponds to a group of jig operation pa-
rameter (input) and a cleaned coal ash parameter (output),
respectively, and Y is the number of entries in the data. Te
mapping model with a BP neural network is shown in
Figure 4, where the hidden layer is connected by a sigmoid
function, and the activation function of the output layer is
linear function. Te lth1 hidden layer is denoted as h(l1).
During the training process, the weights W1 and bias b1, the
maximum number of training times g1, the hidden layer and
its number of neurons, and the network learning rate lr are
frst initialized. Ten, for the training samples, predicted
values of the training samples are obtained by forward
propagation z1

(l1) � W1
(l1)c1

(l1− 1) + b1
(l1). Calculate the
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prediction error L1(W1, b1) � 
N1
t�1(rt − f(x))2, and adjust

the weights W1 and bias b1 along the negative gradient
direction of the prediction error, where c1

(l1) � fl1
(z(l1)),

c1
(0) � (at, st). f(x) is the output of the BP neural network,

c1
(l1− 1) is the input of lth1 layer from the (l1 − 1)th layer, and

W1
(l1) and b1

(l1) represent the weights and bias values of the
lth1 layer. N1 is the total number of samples participating in
the training, and rt is the actual performance value of the
strategy. Finally, the training of the BP neural network is
stopped when the error requirements L1 are met or the
training time g1 is reached. Assuming that the parameter
adjustment step size is λ, according to the current parameter
set ht, set the parameter search range to [ht − kλ, ht + kλ],
where k is the control parameter for search accuracy.

3. Results

In this paper, taking a washing workshop as an example, we
set the test running time of one month to verify the efec-
tiveness of the proposed method. In Section 3.1, the pa-
rameter setting of DEIS system including the initial
parameters, warning threshold parameters, and the feasible
interval are given. In Section 3.2, the accuracy of jig fault
warning in DEIS system is given. In Section 3.3, the average
response time of cleaned coal ash from unsatisfying to
satisfying production demand is given via the automatic
control of DEIS system.Te qualifed rate of cleaned coal ash
in the DEIS system is given in Section 3.4.

3.1. System Parameter Setting. In this paper, the empirical
threshold parameters for the key module warning are set as
follows. Te height of the coal in bucket is less than 0.39m,
water tank liquid level is above 4.2meters, the throughput
frequency is controlled between 23 and 30Hz, the optimal bed
looseness is controlled between 0.4 and 0.45, the buoy height
is set between 7 and 9, hydraulic cylinder pressure is greater
than 1.6MPA, wind pressure is set between 0.036 and
0.042MPa, air valve intake period ratio is 23%–32%, air valve
exhaust period ratio is 17%–25%, air valve expansion period
ratio is 50%–60%, the critical value of gangue valve opening is
22, the critical value of medium coal valve opening is 18, and
the critical value of the valve opening amplitude is 3. Due to
the randomness in the working process of jig and the error of
sensor data, judging whether a module is abnormal also needs
to judge the duration of the jig fault. Te default duration
thresholds of all module parameters are set as follows: the
lowest point of buoy is higher than the set value for
0.8 seconds, buoy stops beating for 16 seconds, bucket load
exceeds limit for 18 seconds, gate keeps opening for
0.8 seconds, wind pressure is lower than the preset value for
16 seconds, hydraulic value is lower than the dedfault set for
18 seconds, water tank pressure value is lower than the default
set for 0.8minutes. Te duration of the abnormal looseness is
18minutes, the upper limit of the buoy height is 0.8 seconds,
and the upper limit of the cleaned coal ash exceeds the limit of
10minutes. In addition, considering that the coal height in
bucket is obtained by machine vision and the coal shape is
usually irregular, the accuracy of the computation result on

coal height in bucket is signifcantly infuenced. So, it is only
considered as the abnormal bucket amount when the pro-
portion of abnormal bucket is higher than 0.8 in multiple
bucket lifting.

In addition, the intake period ratio of the 6 air chambers
is initialized at 24%, 19%, 19%, 18%, 16%, 16%, and 21%,
respectively; the throughput frequency is initialized at 27Hz.
All parameters are passed to the background data analysis
model through the software interface. Adjustment step
length of throughput frequency, buoy, intake (exhaust)
period and expansion period, and valve opening is set to
λ � 1; search accuracy control parameter k is set to 3; ϵ � 0.1.

3.2. Te Warning Accuracy of DEIS. At present, the DEIS
system mainly considers the overlimit warning, bed over-
turning warning, stuck buoy warning, stuck gate warning, and
stockpile warning. During the specifc test, according to the
warning information displayed by the DEIS system, the
warning information is verifed manually. According to the
proportion of warning types in the test duration given in
Figure 5, it can be seen that the system warning in this period
mainly includes overlimit warning, bed overturning warning,
stuck buoy warning, and stuck gate warning. Stuck buoy and
stuck gate are two main types of warning information, which
exceed 50% of all warning information. Error warning refers
to the warning issued by the DEIS system, but no abnormality
is found in actual verifcation. Among all the warning results,
the false warning accounted for 0.82%. Te error warning is
mainly caused by two reasons: (1) the data returned by the
sensor have obvious error, which afects the accuracy of data
analysis; (2) after the warning was issued, the jig returned to
normal, resulting in inconsistent verifcation results.

3.3. Response Duration of the DEIS. To test the regulation
ability of the system, we set the ideal interval of cleaned coal
ash as [16, 18]. After implementating the regulation strategy,
the time duration from the cleaned coal ash meeting re-
quirements to being stable in the ideal interval, i.e., [16, 18] is
the response time. Within each test day, three response
durations of regulatory strategies were randomly recorded
and the mean was calculated. It is worth noting that the

x1

x2

x3

xD

xD

Figure 4: Surrogate model for mapping jig operating parameters
and adjustment efectiveness of clean coal ash content.
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recorded response time only considers the jig regulation
under normal working conditions, and other special cases,
such as insufcient coal quantity and jig faults, are not within
the statistical range. As can be seen from the response
duration given in Figure 6, the average response duration
after the implementation of the regulatory strategies is not
more than 40minutes, and the specifc response time is
afected by the following main factors:

(1) Under the infuence of actual working conditions,
the change trend of cleaned coal ash obtained by jig
washing has diferent inertia. When the inertia is
large, the control strategy adopted needs a long time
to control the ash content of cleaned coal to the ideal
range. Te inertia here means that under the joint
infuence of multiple parameters of the jig, the
cleaned coal ash has the property of continuously
increasing, decreasing, or not easily changing.

(2) Te randomness of deep reinforcement learning and
evolutionary computation makes the regulation
strategy not unique. Although diferent control
strategies have the efect of adjusting the ash content
of cleaned coal, the control speed is obviously dif-
ferent, that is, the response time is diferent.

(3) Te quality of communication will afect the speed of
receiving and transmitting real-time data, especially
afect the system to perceive the trend change of
cleaned coal ash in time. When the communication
quality is good, the system can quickly sense the
change of cleaned coal ash and make timely regu-
latory response; otherwise, it needs to adopt a long-
term multistage regulatory strategy.

3.4.QualifedRateofCleanedCoalAsh. During the test cycle,
the measured value of cleaned coal ash was recorded every
day, the duration of cleaned coal ash at [16, 18] and the
working duration of the jig were counted, and the qualifed
rate (percentage) of cleaned coal ash was characterized by
the proportion of cleaned coal ash at [16, 18] and the

working duration of the jig, as shown in Figure 7. In the test
period, the qualifed rate of cleaned coal ash is between 32%
and 64%, and the average qualifed rate of cleaned coal ash is
about 47%. On the whole, the qualifed rate of cleaned coal
ash has a large uncertainty and a large range of changes,
mainly due to the following:

(1) After the implementation of the control strategy, the
cleaned coal ash cannot reach the expected range
within the expected time, which is related to the
operation inertia of the jig and has a high randomness.
Tis leads to a long time of equipment control still can
not make the cleaned coal ash to meet the re-
quirements, even if it has a good trend.

(2) Te jig has been used for a long time, leading to wear
or misalignment of some components, so that the
control efect in the actual control process is lower
than expected, and continuous regulation is needed
to achieve the expected regulation efect, afecting the
qualifed rate of cleaned coal ash.

(3) Te failure of the jig installed in the sample collection
will afect the normal operation of the jig. For ex-
ample, the coal sampler may be stuck by the coal,
resulting in the jig having to shut down the cleaning
equipment, which afects the washing efect.

4. Discussion

Aiming at the problem of fault monitoring and intelligent
adjustment of production state of jig in coal washing process,
an intelligent washing method guided by deep reinforcement
learning and evolutionary computing is proposed in this paper.
In the test period, the proposed method has a shorter strategy
response time and a higher washing quality adjustment ability.
At the same time, in order to reduce the infuence of jig faults
on the washing efciency, the equipment fault warning con-
sidered in the proposed method can accurately identify the
fault of the key module and notify the worker to deal with it in
time, which improves the washing efciency to a certain extent.
Although the response time of the strategy and the qualifed
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Figure 5: Statistics on the proportion of alarm types during the testing period.
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rate of cleaned coal ash need to be further improved, it has
certain reference signifcance for the construction of intelligent
washing, especially the construction of expert system. Due to
many uncertain factors in the actual production process, it is
necessary to adopt advanced data interpolation technology to
deal with the incomplete data received when the communi-
cation environment is poor and further explore the potential
application value of the data.
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