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Bitcoin futures exchange-traded funds (ETFs) are recent innovations in cryptocurrency investment. Tis article studies the price-
volume relationship in this market from an information perspective. We frst propose efective mutual information which has
better estimation accuracy to analyze the contemporaneous relationship. Using half-hourly trading data of the world’s largest
Bitcoin futures ETF, we fnd that trading volume changes and returns contain information about each other and are con-
temporaneously dependent. Ten, we employ efective transfer entropy to examine the intertemporal relationship. Te results
show that there exists information transfer from volume changes to returns in most of our sample period, suggesting the presence
of return predictability and market inefciency. However, information transfer in the opposite direction occurs much less
frequently, and the amount is typically smaller.

1. Introduction

Exchange-traded funds (ETFs) are investment vehicles that
track the performance of underlying assets [1]. Just like
stocks, investors can buy or sell ETFs on stock exchanges
conveniently. ETFs have become an important class of f-
nancial products. According to the Financial Times, assets
invested in global ETFs exceeded $10 trillion in June 2023
[2]. Te frst attempt to launch a Bitcoin ETF in the U.S.
market can be traced back to 10 years ago when Tyler and
CameronWinklevoss submitted their application to the U.S.
Securities and Exchange Commission (SEC). Since then,
multiple applications from other investment frms were also
submitted. However, it was not until October 2021 that the
SEC approved the frst Bitcoin futures ETF, the ProShares
Bitcoin Strategy ETF (BITO). It invests in Bitcoin futures
traded on the Chicago Mercantile Exchange and provides
a convenient and secure way to gain exposure to Bitcoin.
Tis fund amassed $1.2 billion in assets in the frst two days
of trading, ranking as the secondmost-traded ETF launch on
record [3]. Currently, due to security, manipulation, and

investor protection issues, the SEC has only approved Bit-
coin futures ETFs. Applications to establish spot Bitcoin
ETFs in the U.S. market are still pending.

Price-volume relationship in fnancial markets is an
important issue. It provides insights into the market
structure and helps assess market efciency [4, 5]. Previous
studies on this question can be roughly grouped into two
categories. Te frst category consists of studies that analyze
the contemporaneous relationship. For example, Stosic et al.
analyzed daily returns and trading volume changes in 13
stock markets and reported a cross-correlation between the
two variables [6]. Zhang et al. studied the crude oil futures
market and found that volume and returns were correlated
[7]. Alaoui et al. examined the daily Bitcoin trading data and
also detected a correlation between returns and volume
changes [8]. Tey suggested that the two variables interacted
in a nonlinear way. On the other hand, some researchers
found that there was no contemporaneous dependence
between price and volume in some markets [9–11].

Te second category consists of studies that analyze the
intertemporal relationship. For example, Hiemstra and
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Jones studied the returns and volume changes in the U.S.
stock market and found a bidirectional nonlinear causality
between them [12]. Lee and Rui examined three stock in-
dices in New York, Tokyo, and London markets and sug-
gested that volume did not Granger-cause returns [13]. He
et al. analyzed China’s agricultural futures markets and
discovered causality between returns and volume changes in
soybean, soy meal, corn, hard wheat, and strong gluten
wheat futures [14]. However, they found that there was no
causal relation in either direction in sugar futures. Foroutan
and Lahmiri studied cryptocurrency market data and re-
ported a causal relation from returns to volume changes of
Ethereum and Litecoin during the COVID-19 period [15].
However, their results suggested that there was no causal
relation between Bitcoin’s volume changes and returns.

Bitcoin futures ETFs are recent innovations. Tis kind of
product is interesting, which is traded like stocks and in-
volves both Bitcoin spot and futures. So what is the price-
volume relationship in the Bitcoin futures ETF market? To
the best of our knowledge, this question has not been studied
in existing literature.

Our study aims to explore this question from an in-
formation perspective. It contributes to the literature in four
ways. First, we extend the idea ofMarschinski and Kantz [16]
to the calculation of mutual information (MI) and propose
efective mutual information (EMI). Simulation results
demonstrate that EMI ofers higher accuracy. Second, we use
efective transfer entropy (ETE) to quantify information
transfer [16, 17]. Compared with traditional Granger cau-
sality, which is only appropriate for linear relations, ETE can
be used in both linear and nonlinear systems. Lungarella
et al. suggested that ETE may be the frst choice for complex
systems with prior unknown dynamics [18]. Tird, in order
to avoid data discretization, which causes the loss of data
information, kernel density estimation (KDE) is employed
to estimate ETE and EMI. Fourth, using half-hourly trading
data of the world’s largest Bitcoin futures ETF, we fnd that
returns and volume changes contain information about each
other and are contemporaneously dependent. Information
predominantly fows from volume changes to returns in
most of the sample period, indicating the existence of return
forecastability and market inefciency.

Te rest of the paper is organized as follows. Section 2
introduces the methodology. Section 3 describes the data.
Section 4 displays and discusses the empirical results. Sec-
tion 5 concludes this article.

2. Methodology

2.1. Mutual Information. Let X � xt, t � 1, 2, ...􏼈 􏼉 be a real-
valued stationary stochastic process, its uncertainty can be
assessed by diferential entropy (DE) as

H(X) � − 􏽚 f xt( 􏼁logf xt( 􏼁dxt, (1)

where f(xt) is the probability density function [19].
Suppose there is another real-valued stationary process

Y � yt, t � 1, 2, ...􏼈 􏼉, the conditional DE of X given Y is

H(X | Y) � − 􏽚 f xt, yt( 􏼁logf xt | yt( 􏼁dxtdyt, (2)

where f(xt | yt) is the conditional probability density. It
assesses the uncertainty about X given that Y is known.

MI between X and Y can be expressed through DEs [20]
as

MI(X, Y) � H(X) − H(X | Y) � H(X) + H(Y) − H(X, Y).

(3)

MI(X, Y) can be interpreted as the reduction of un-
certainty about X which results from knowing Y, indicating
that it quantifes the information that the two processes
share [21]. Since H(X) is larger than or equal to H(X | Y)

and MI(X, Y) � MI(Y, X), MI is a nonnegative and sym-
metric measure. Compared with the Pearson correlation
coefcient which only measures linear dependence, MI can
quantify both linear and nonlinear dependence. Te
stronger the dependence is, the larger the value of MI [22] is.

2.2. Transfer Entropy. Let xk
t � (xt, xt−1, ..., xt−k+1) denote

the k-lag history of xt, the entropy of xt+1 conditioned on xk
t

is

H xt+1 | xk
t􏼐 􏼑 � − 􏽚 f xt+1, x

k
t􏼐 􏼑logf xt+1 | xk

t􏼐 􏼑dxt+1dx
k
t .

(4)

Tus, the transfer entropy (TE) from Y to X is
[17, 19, 20]

TEY⟶X � H xt+1 | xk
t􏼐 􏼑 − H xt+1 | xk

t , yl
t􏼐 􏼑

� H xt+1, x
k
t􏼐 􏼑 − H xk

t􏼐 􏼑 − H xt+1, x
k
t , yl

t􏼐 􏼑 + H xk
t , yl

t􏼐 􏼑.

(5)

TEY⟶X can be understood as the reduction of the
uncertainty of xt+1 which is derived from yl

t that does not
exist in xk

t . In this way, TE measures the predictive in-
formation transfer between two systems [23]. According to
equation (5), it can be known that TE is nonnegative and
nonsymmetric.

2.3. Kernel Density Estimation. Equations (3) and (5) show
that MI and TE can be calculated through the sum of DEs.
Due to the good performance of the KDE method, we
employ it to estimate the DEs in the two equations.

For a dataset Z � z1, z2, ..., zn􏼈 􏼉 where zi ∈ Rd, the
probability function estimated by KDE with the Gaussian
kernel which is widely used is

f
∧

zi( 􏼁 �
1

nh
d

􏽘

n

j�1

1
��������

(2π)
d
|C|

􏽱 exp −
zi − zj􏼐 􏼑

T
S

−1 zi − zj􏼐 􏼑

2h
2

⎛⎝ ⎞⎠,

(6)

where C is the covariance matrix and h is the bandwidth
which is determined by Silverman’s rule in this paper [24].
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h �
4

dn + 2n
􏼒 􏼓

1/(d+4)

. (7)

Tus, H(Z) is estimated by the following equation [25]:

H(Z) � −
1
n

􏽘

n

i�1
logf
∧

zi( 􏼁. (8)

After obtaining the DEs, MI and TE are calculated
through equations (3) and (5), respectively. In addition, we
utilize binary logarithms. Terefore, MI and TE are mea-
sured in bits.

2.4. Efective Mutual Information and Efective Transfer
Entropy. Due to the fnite sample size, two independent
variables can generate spurious nonzero MI and TE during
calculation. Also, the parametric distribution of errors is
unknown for MI and TE [26, 27]. To address this problem,
Marschinski and Kantz introduced ETE [16]. In this paper,
we take the following steps to calculate ETE [27–29]:

Step 1: Generate the surrogate series Yshuffled by ran-
domly shufing the whole source series Y and calculate
TEYshuffled⟶X.
Step 2: Repeat Step 1 for M times. Te one-sided p-
value is estimated by counting the proportion of
TEYshuffled⟶X that are greater than or equal to TEY⟶X.
Step 3: If the p-value is less than the chosen signifcance
level, we reject the null hypothesis that no information
is transferred from Y to X and apply equation (9) to
calculate ETEY⟶X.

ETEY⟶X � TEY⟶X −
1

M
􏽘TEYshuffled⟶X. (9)

Otherwise, ETEY⟶X equals zero. In our previous paper
[30], we compared ETEwith theoretical TE values and found
that ETE had good accuracy.

In order to correct the bias in MI calculation, we extend
the idea of Marschinski and Kantz [16] to MI and propose
EMI, which is computed through similar steps. First, we
generate a surrogate series Xshuffled by randomly shufing X

and calculate MI(Xshuffled, Y). Second, we repeat the pre-
vious step M times.Tird, we estimate the one-sided p value
through counting the proportion of MI(Xshuffled, Y) that are
greater than or equal to MI(X, Y). If the p value is smaller
than the chosen signifcance level, we reject the null hy-
pothesis that MI(X, Y) � 0 and use equation (10) to cal-
culate EMI.

EMI(X, Y) � MI(X, Y) −
1

M
􏽘MI Xshuffled, Y( 􏼁. (10)

Otherwise, the EMI is zero. Following the literature
[27, 29], we set M � 500.

To validate the efectiveness of our algorithm, we cal-
culate the EMI and MIoriginal (estimated by equation (3))
from samples generated by a normal bivariate distribution.
Te theoretical MI of the samples is −0.5 log(1 − ρ2) where ρ
is the correlation coefcient [31]. In our simulation, ρ is set

in the range from −0.95 to 0.95 with the increment of 0.1. For
each ρ, we generate 50 samples. Te length of each sample is
200. Also, the results of average EMI, MIoriginal, and theo-
retical MI are plotted in Figure 1. We can observe that
MIoriginal is always overestimated and larger than the the-
oretical MI. So it is necessary to correct the bias in MIoriginal.
On the other hand, EMI is more accurate and very close to
the theoretical MI value, indicating that the bias is well
corrected by the procedures of our algorithm. Te absolute
mean error of EMI is only 0.006.

3. Data

Te data used in this study are the half-hourly price and
trading volume of BITO, which is currently the world’s
largest Bitcoin futures ETF. According to https://Forbes.
com, assets under management (AUM) of BITO are much
higher than the sum of other U.S. Bitcoin futures ETFs’
AUM [32]. Te period of the data is from October 19, 2021,
to July 14, 2023. Te data are collected from the Choice
database of Eastmoney Co., Ltd. which is a commercial f-
nancial information provider in China. Figures 2 and 3
display the data. It can be seen that, although similar to spot
Bitcoin, the price of BITO has experienced a sharp plunge,
and trading is still active. Te average half-hourly trading
volume of our sample is 661330.7.

In order to stationarize the data, we follow literature
[12, 14, 15, 33] to calculate the logarithmic returns and
volume changes:

Ri,t � lnPi,t − lnPi−1,t, (11)

VCi,t � lnVi,t − lnVi−1,t, (12)

where Pi,t and Vi,t(i≥ 1) are the price and trading volume of
the i-th half hour of day t. P0,t and V0,t are the data of the last
half hour of the previous trading day [34–36].

Augmented Dickey–Fuller test is employed to examine
the stationarity of Ri,t and VCi,t series. Schwarz information
criterion is adopted to determine the lag length. Te results
reject the unit root null at a 1% signifcance level for both
series, suggesting that they can be deemed stationary.

Te parameters k and l in equation (5) can be de-
termined by the lags which are required by the autocorre-
lation function to fall below 1/e of its original value [37].
Both Ri,t and VCi,t series satisfy this requirement when the
lag equals 1. Terefore, we set k � l � 1, the same as the
setting in the literature [38–40].

4. Empirical Results

Since the price-volume relationship is likely to be time-
varying as the market evolves, a rolling window technique is
employed. Tis technique is widely used in fnance research
[39, 41, 42]. Figure 4 shows its procedure [42]. Suppose there
is a time series X� x1, x2, · · · , xn􏼈 􏼉. We use w to represent the
window size which is the number of data points contained in
each window. s represents the rolling step which is the
number of data points that the window slides forward each
time. So the k-th window starts at x1+(k−1)s and ends at
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xw+(k−1)s. Also, the (k+ 1)-th window starts at x1+ks and ends
at xw+ks. EMI and ETE between BITO’s trading volume
changes and returns are calculated over each window. EMI
quantifes the contemporaneous dependence through in-
formation sharing [22]. ETE measures the intertemporal
causal relationship through information transfer [43]. BITO
is listed on NYSE Arca whose regular trading hours are from
9:30 to 16:00 Eastern Time. According to equation (11), for
each trading day, there are 13 half-hourly returns. So we set
the rolling step equal to 13, making the window slide for-
ward by one day each time. Following Lehrer et al., we set the
window size to 600 [44]. Since there are about 22 trading
days per month, thus the time span of each window is
approximately 2months. Te results of other window sizes
are also reported in the latter part of this paper.

Figure 5 displays the result of EMI. We can observe that
although the value of EMI is time-varying, it is positive in all
windows, indicating that BITO’s returns and volume
changes contain some information about each other. It also
implies that the two variables are contemporaneously de-
pendent. Tis result is consistent with the prediction of the
mixture distribution hypothesis, which argues that trading
volume and returns jointly depend on a common underlying
variable that is usually considered as the random fow of
information to the market [45–47]. Te two variables re-
spond to the new information at the same time. Terefore,
they contain common information and have contempora-
neous dependence [14, 47].

According to the previous introduction, BITO invests in
Bitcoin futures to track the performance of spot Bitcoin.
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Karpof et al. argued that there was an absence of con-
temporaneous dependence between volume and returns in
futures markets due to the symmetric cost of taking long and
short positions [4, 10]. However, Kao et al. detected
a contemporaneous return-volume relationship in the Bit-
coin futures market [48]. In the Bitcoin spot market, the
contemporaneous correlation between volume and return is
also found [8, 49].

Te results of ETE are presented in Figure 6. We can
observe that the ETE from BITO’s volume changes to its
returns are positive in most of the windows. It can be
inferred that there exists information transfer in this di-
rection, indicating that past volume changes can help
forecast future returns. Tis phenomenon is consistent with
the prediction of the sequential information arrival hy-
pothesis. Tis theory assumes that individuals in the market
receive information sequentially and randomly. As each
individual receives the new information, he takes positions
and adjusts his portfolios accordingly. Tis causes shifts in
the demand and supply and a series of momentary equi-
libriums before the fnal information equilibrium occurs.
Terefore, past volume is conductive for making new de-
cisions and contains information about future returns
[14, 47, 50–52]. Besides, Blume et al. theoretical model
suggests that volume can provide information on in-
formation quality that cannot be derived from the price
statistic [53]. Suominen’s model also shows that past trading
volume can help assess the availability of private information
which can be used by traders to adjust their trading strategies
[54]. Te two models also indicate the return predictability
from volume. On the other hand, according to the efcient
market hypothesis, if a market is efcient, the price should
fully refect all available information.Terefore, there should
be no return predictability [55]. So we can infer that the

market is not efcient in these periods. Tis fnding also
suggests that the role of trading volume should be consid-
ered when we design return forecasting algorithms.

In Figure 6, we can also observe that the ETE from
BITO’s returns to its volume changes is usually smaller and
zero in many windows, indicating that information transfer
occurs less frequently in this direction, and the magnitude is
weaker. Tese fndings imply that the dominant direction of
the information fow is from volume changes to returns.Tis
result difers from the dominant direction found in the
Bitcoin spot market by Sahoo and Sethi [5, 56]. Sahoo found
that returns Granger caused volumes but not vice versa [5].
Fousekis and Tzaferi found that spillover from returns to
volumes was stronger than that in the opposite
direction [56].

In order to check the robustness of our fndings, we have
also examined the results at the signifcance level of 0.01 and
presented them in Figure 7. Te results in Figure 7(a) are
similar to Figure 5. Except for several windows, EMI is still
positive. In Figure 7(b), we can see that the results are similar
to Figure 6. Te ETE from volume changes to returns is still
positive in most of the windows. Also, the ETE in the op-
posite direction is usually smaller. Information still pre-
dominantly fows from volume changes to returns. Our
results suggest that the contemporaneous and intertemporal
dependence between returns and volume changes can both
exist in a market, indicating that it may be not enough to
describe the price-volume dynamics in a complex market
with the mixture distribution hypothesis or the sequential
information arrival hypothesis alone. Literature
[14, 15, 57, 58] also found this phenomenon in other
markets.

Referring to the literature [59, 60], we have also ex-
amined the results of diferent window sizes. Figure 8 shows

2021/10/19 2021/12/29 2022/3/11 2022/5/23 2022/8/4 2022/10/14 2022/12/28 2023/3/13 2023/5/23
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window size=900
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Figure 8: Evolution of the EMI between BITO’s trading volume changes and returns at the signifcant level of 0.05 (a) and 0.01 (b) for
diferent window sizes. Te horizontal axis is the start date of each window.
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the evolution of EMI when the window sizes are equal to
300, 900, and 1200. As there are 13 half-hourly data points
per trading day, the time spans of these windows are ap-
proximately 1month, 3months, and 4months, respectively.
In the fgure, we can observe that when the window sizes are
900 and 1200, EMI is positive at all times, even with a sig-
nifcance level of 0.01. When the window size is 300, al-
though EMI fuctuates more and is zero in some windows, it
is still positive for most windows. Tus, it can be concluded
that even in short term, returns and trading volume changes
are generally contemporaneously dependent, and this re-
lationship is more stable in long term.

Figure 9 displays the evolution of ETE when the window
sizes are equal to 300, 900, and 1200.We can observe that the
ETE from volume changes to returns is still often above zero.
Also, the ETE from returns to volume changes is usually
smaller and even equal to zero in many windows. Tus, we
can still conclude that information predominantly fows
from volume changes to returns. So Figures 8 and 9 also
support the conclusions that we obtained before when the
window size was set to 600. Besides, we can see that when the
window sizes are 900 and 1200, ETE in both directions
evolves more smoothly, indicating that the information fow
is more stable in long term.
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Figure 9: Evolution of the ETE between BITO’s trading volume changes and returns for diferent window sizes. (a), (c), and (e) display the
ETE at the signifcant level of 0.05 when the window sizes are 300, 900, and 1200, respectively. (b), (d), and (f) show the ETE at the signifcant
level of 0.01 when the windows are 300, 900, and 1200, respectively. Te horizontal axis is the start date of each rolling window.
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5. Conclusion

Te price-volume relationship has received considerable
attention in the felds of fnance and economy. From an
information perspective, this paper investigates whether
there are contemporaneous and intertemporal linkages
between returns and volume changes of Bitcoin futures
ETFs. To address the fnite sample size efect, we extend the
idea of Marschinski and Kantz [16] to MI estimation and
propose an improved estimator called EMI, which is then
adopted to examine the contemporaneous dependence.
Using the trading data of BITO, it is found that returns and
volume changes contain information about each other and
are contemporaneously dependent. Furthermore, we apply
the ETE method to analyze the intertemporal dependence.
Te results show that, in most of our sample period, there is
an information fow from BITO’s volume changes to
returns, indicating that past volume changes can help predict
future returns. On the other hand, the predictability of
returns also implies that the price does not incorporate all
information, suggesting the presence of market inefciency.
It is also observed that information transfer from returns to
volume changes occurs less frequently and the magnitude is
usually weaker. Tese fndings can provide referable evi-
dence for investors or academic researchers who are in-
terested in Bitcoin-linked ETFs.
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