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This paper examines the dynamic behavior of a particular category of discrete predator-prey system that feature both fear effect
and refuge, using both analytical and numerical methods. The critical coefficients and properties of bifurcating periodic solutions
for Flip and Hopf bifurcations are computed using the center manifold theorem and bifurcation theory. Additionally, numerical
simulations are employed to illustrate the bifurcation phenomenon and chaos characteristics. The results demonstrate that period-
doubling and Hopf bifurcations are two typical routes to generate chaos, as evidenced by the calculation of the maximum
Lyapunov exponents near the critical bifurcation points. Finally, a feedback control method is suggested, utilizing feedback of
system states and perturbation of feedback parameters, to efficiently manage the bifurcations and chaotic attractors of the discrete

predator-prey model.

1. Introduction

In exploring population dynamics, continuum modelling is
often used to explain population trends in situations where
populations are large or where there are overlapping
generations [1, 2]. However, when there is no overlap
between generations of a population, the growth pattern of
the population will show obvious stages and discontinu-
ities. In this case, a discrete model can more accurately
capture and reflect this discontinuity in population change.
Discrete predator-prey systems can exhibit complex dy-
namical behavior, which has attracted many researchers to
study them [3-6]. Zhang et al. [7] studied the dynamics of
a discrete FitzHugh-Nagumo model by applying central
manifold and normal form analysis and demonstrated that
the system is capable of undergoing Neimark-Sacker and
flip bifurcations even in the absence of diffusion. Li et al. [8]
obtained rich dynamic properties by building a space-time
discrete model with periodic boundary conditions.
Therefore, discrete dynamical systems can have more
complex dynamics, and their dynamic behavior can more
closely approximate the complex dynamics of the phe-
nomena represented by the model.

Since the biological population itself is a complex
nonlinear system, this nonlinearity is the fundamental cause
of the occurrence of chaos [9, 10]. Through the study of
biological groups, we can see that there are many chaotic
behaviors embedded in them [11]. Such chaotic phenomena
are not limited to animal reproduction and evolution, such
as competition and parasitism between the groups [12].
However, chaos in biological groups is not all good, and the
negative chaotic situations that exist in nature can have
a negative effect on human survival and development;
therefore, controlling these chaotic situations is important
for maintaining the stability of the ecosystem [13-17].
Discrete systems have two special bifurcations, flip bi-
furcation and Hopf bifurcation, which in turn are the two
ways for discrete systems to move towards chaos. There are
now many ways of controlling the chaos generated by the
model: Vinoth et al. [18] describe three different approaches
to chaos control: state feedback, pole placement, and hybrid
control. Nowadays, nature, because of prolonged distur-
bances, has destroyed its natural rules of reproduction and
put it on the verge of extinction, so it is important to carry
out the study of chaos control of biological groups with
important theoretical and practical application value.
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Predator-prey interactions play a crucial role in the study
of biological systems and population dynamics. Various
examples have been explored, including populations with
different functional response functions [19-24]. Addition-
ally, the impact of having a refuge on population dynamics
has been examined [25-28]. The reproductive capacity of
prey populations is a vital factor in understanding pop-
ulation dynamics. The size of the prey population is influ-
enced by the number of predators, which, in turn, is affected
by the size of the prey population. Furthermore, the fear of
predators among prey species significantly impacts the re-
productive capacity of prey populations, thereby influencing
the entire predation system. Wang et al. [29] proposed an
expression f (K, y) = (1/1+ Ky) to describe the effect of
fear on prey populations, where the degree of fear is rep-
resented by K. This expression can be utilized to predict the
size of the prey population, which ultimately affects the
stability of the entire ecosystem. Fakhry et al. [30] proposed
a square root prey-predator model with fear

dx
I )—)’\/7,

=rx(1 —x)(1 TKy

(1)

d
d% =-ay+pyVxy,
with initial condition x(t) >0 and y(t) >0, where K in-
dicates the level of fear, o indicates the death rate of the
predator in the absence of prey,  indicates the conversion
rate of prey to predator, and r is the growth rate of the prey.

In 2019, Zhang et al. [31] investigated predator-prey
systems with fear effects and refuge

dx  ax »  B(l-m)xy
E_1+Ky_ 1+a(l-m)x

(2)
d_y= . cf(l1-m)xy

dt Y 1+a(l-m)x

where K indicates the level of fear, a indicates the en-
dowment growth rate of the bait, and r indicates the
predator mortality rate. (f/a) indicates the maximum
amount of predators eaten by each predator per unit of time,
b indicates the coefficient of competition within the prey

+h( “ be_—ﬁ(l—m)y ) - ( +
(1+a(1l-m)x)> (1+Ky)?* l+a(l-m)x

1+Ky
J(x,y) =
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population, ¢ indicates the conversion factor, and (1 —m)x
indicates the amount of prey taken, m € [0, 1). The effects of
fear and the impact of refuges on system stability are dis-
cussed. This model can better describe dynamic behaviors
such as interactions and competition between species in
ecosystems.

The discrete form of (2) can be obtained using Euler’s
method as follows:

1-—
Xy =X, +h T —bx’ - B = m)x, ,
1+Ky, 1+a(l-m)x,

(3)
cf(1- m)xnyn)

Yne1 =)’n+h(—7’)’n+ 1 +a(1 _m)xn

This paper focuses on analyzing the model bifurcation
and chaotic properties. In the first part, the existence and
stability of the equilibrium point are discussed. In the second
and third parts, the conditions for the existence of flip and
Hopf bifurcation at the positive equilibrium point are
considered, and the direction of the flip and Hopf bi-
furcation at the positive equilibrium point is derived by
using the central manifold theorem. In the fourth part, the
maximum Lyapunov exponent is used to discuss the oc-
currence of chaotic situations inside the system and to
control the resulting chaotic situations, and finally, nu-
merical simulations verify the correctness of the theoretical
proofs.

2. Existence and Stability of Equilibrium Points

It is evident that system (3) possesses a trivial equilibrium
point N,(0,0) and a boundary equilibrium point
N, (a/b,0).

Assuming (H;): ¢f—ar>0

If (H,) holds, the only positive equilibrium point of the
system can be obtained as N*(x*,y*), where x* =r/
(cf-ar)(1-m), y* = 12K (VA =1 - Kcbr/ (1 — m)*
(cf- ar)?), A= (1-Kcbx*/(1-m) (cf - ar))* + (4Kca/
(1 —m)(cf —ar)).

The Jacobi matrix J (X, ¥) of system (3) at any equilib-
rium point is given by

Kax

BL-m)x )

(4)
s h<_, +M>

1+a(l-m)x &)
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To investigate the stability analysis of the equilibrium
point of system (3), we present the following lemma. By
utilizing the connections between the coefficients and roots
of a quadratic equation [32], one can readily derive the
following results.

Lemma 1. Assume that F(A) =A* — AL+ B and F(1)>0
with A, A, are roots of F(A) = 0. Then, the following results
hold true:
(i) I\ | <1 and |\, <1 if and only if F(-1)>0, B< 1.
(i) M| < Land |A,] > 1, or [A;| > 1 and |A,| < 1 ifand only
if F(-1)<0.
(iii) |A;1>1 and |A,| > 1 if and only if F(-1) <0, B> 1.
(iv) Ay and A, are complex and |A|| = 1, |A,| = 1 if and
only if A2—4B<0 and B=1.

Theorem 2. For the trivial equilibrium point N (0,0), the
characteristic equation of system (3) at N(0,0) has two
eigenvalues, A\, = 1 +ha and A, =1 - hr

(i) If h<2/r, then [A|>1, [A|<1,
a saddle point.
(ii) If h>2/r, then |A;|> 1, A,] > 1, N, (0,0) is a source.

N, (0,0) is

1+h( 201" >+ (
(1+ VA)* = Kber

J(x%,y") =

heB (1 - m)( (VA - 1)I* - Kber)

h _Zbr_l(cﬂ—‘”)) _h(

Theorem 3. For the boundary equilibrium point N (a/b, 0),
the characteristic equation of system (3) at N, (a/b, 0) has the
eigenvalue A, =1—-ha, A, =1+h(-r+cf(1-m)a/b+a
(1-m)a), let I = (cf—aa)(l —m)

Q) If I<br/a
0<h< min{2/a, —2b — 2aa (1 — m)/ — br + al}’
then [A| <1, [A,| <1, N, (a/b,0) is a sink.
. I<br/a
(i) If 1 (2/a)<h< =2b-2aa(l —m)/ —br +al’ then
A 1>1, A< 1, or if
I<br/a h
—2b—2aa(1-m)/ —br+al<h<2/a’ e
A 1< L, [A]>1, N, (a/b,0) is a saddle point.
I<br/a
(iii) If { h> max{2/a, -2b — 2aa (1 — m)/ — br + ol} or
I>br/a .
{h>2/(x , then |A|>1, [A,|>1, N;(a/b,0) is
a source.

For the point N* (x*, y*), we have

4Karl? ) hr

+7
(1+VA)?—Kber) ¢

c2[3
(5)

2K (I + a(1 — m)r)?

Furthermore, the characteristic polynomial of J(x,%)
when evaluated at the equilibrium point N* (x*, y*) can be
expressed as follows:

W :AZ_(]H(N*)*'1))“']11(N*)_IU(N*)]H(N*)’ (6)

where J,, (N*) = 1 + h(2ad?/ (1 + VA)I? — Kber) + h(-2br/
1—1(cp - ar)ic*B), Ji, (N*) = ~h(4Karl?/ (1 + VA -
Kber) + hrle, ]y (N*) = hef(1 —m) ((VA - 1)I> = Kber)/
2K(I+a(l—=m)r)%, ], (N*) = 1.

Theorem 4. For the point N* (x*, y*)

~J12(N")]5 (N*) >0
G) If 2+2];1(N") = ], (N")]5 (N*)>0, then
1= T (NT) =T, (NT)5 (N7) >0
A 1<1, [A,] <1, N*(x*, y*) is a sink.
. T (N5 (NF)>0
T 25 270 (N - 1 () (N <0
A l<1 and |A|>1, or [A|>1 and A<,
N*(x*, y*) is a saddle point.

then

2+2]11(N*)—]12(N*)]21 (N*)>0, then
1_]11(N*)_]12(N*)]21(N*)<0
[A;1>1 and |A,|>1, N* (x*, y*) is a source.

{ T2 (N*) (N*) >0
(iii) If

; ]11(N*)_]12(N*)]21(N*)=1
I * * * > th
Wy { U (N7 = 1 44, (N, (NT) <0 €7
AL A, is a pair of conjugate complex roots.
To wvalidate the accuracy of the theoretical

proof, numerical simulations are conducted in the fol-
lowing sections. When the parameters are taken as h =
0.1,c=09,r=0.1, b=0.01,d =0.82146,e = 0.9,a = 0.5,
K =34.555,m = 0.89, Theorem 4 of (i) is satisfied, see
Figure 1.

With other parameters are kept constant, let K = 15,
through the image can be obtained when the degree of fear is
different, the final stability of the system is different, see
Figure 2.
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FiGgure 1: Equilibrium solution at N* (x*, y*) = (1.19617,0.4247) when the parameters are taken as h = 0.1, ¢ = 0.9, r = 0.1, b = 0.01,
d =0.82146, ¢ = 0.9, a = 0.5, K = 34.555, and m = 0.89.
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FIGURE 2: Equilibrium solution at N* (x*, y*) = (1.19617,0.3497) when the parameters are taken as 4 = 0.1, ¢ = 0.9, r = 0.1, b = 0.01,
d =0.82146, e =0.9, a = 0.5, K = 12, and m = 0.89.

3. Flip Bifurcation at Positive Equilibrium Point

3.1. Conditions for the Existence of Flip Bifurcation. To obtain
the bifurcation parameters, consider the transformations

Xl = Xyt = X" Vet = Yot — ¥"> system (3) can be ap-
proximated as

. a (%, +x) — 2 BA-m (& +x) (Tt )
xn+1—xn+h<m—b(xn+x) - 1+a(l—m)(x_n+x*) ))

(7)

I e BU-m) (F+xT) (Fat )
yn+1_yn+h<_r(yn+y )+ 1+a(1_m)(x—n+x*) )

Using the Taylor expansion at the point x*, y* yields the
following expression:
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(20) ) (15),
Vel (x)\ Vn v, (%, 7,)

W T) = aF +nR Tt a T v aw v aw T 25+ 25, +O((1m]+ 7)),

®)
Va(n 72) = 0%, + %5, 4wk, +usw, 7, + O (jm] + (7)) ),

-1)=2+2],;(N")-J,(N* N*)=0. 9
where zl:—b+((1—m)zaﬁy*/(1+ax*(1—m))3), z, = FED F 2N = ()] (V) ©)

—(Ka/(1 +Ky*)2)3— B -m)/(1+x*a(l —m))sz), Zy = Since the step size h >0, it is possible to obtain the
(K*ax*/ (1 + Ky*)*), z,=—(y*a*B(1-m)’/(1 + x*a . . _ 2 _
d—m), 2= (a1~ m;Z[S/(l rxta(l—m)), 2z = branching value h* = (d, + \/d, 126611 /2d,). Here, d,
(K2l (1+ Ky ), 2, = (Kax'] (1+Ky ), w, = —(cy*  KarPB(-m2K L+ a(l=myr) + (r((1+ VB -
aB(1-m)*/(1+x*a(l-m))), uy= (cB(1-m)/(l+x* Kber)eB(1 —m)/2cK (1 +a (1 —m)r)®),d, = (4%a/ (1+ VA)
a(l-m)?),  uy=(c(1-ma®By*/(1+ax*(1-m))*), I>—Kbcr)— (4br/l) - (21*/c*B(1 - m))

u, =0, us = —(cap(l —m)*/ (1 + x*a(1 - m))*). Let h=h* + 8. We consider § as a small bifurcation
According to the characteristic polynomial (6), we can ~ parameter, and the perturbation of system (7) can be de-
get scribed by the following system, where [§] < 1.
4Karl’ 7

1+ (W +6)L —(h"+8)——+-

X L ¢ x, ¥ ('x_n’ )’n)
< >: < >+(h*+8) , (10)
Zm (h* +8)cB(1 - m)i, Vn ¥ao(%0 7)

13

where L= ((2al?/iy) — (2br/l) — (B(1 — m)i,/i3)), In this case the characteristic polynomial (7) can be
iy = (VA -1 =Kbcr, iy=(1++VA)?—-Kbcr, and  rewritten as
iy = 2K (I +a(l - m)r)*.

3 .
g =2 =2+ (K + LA+ 1+ (k" + 8L+ (h" + 5)2(ﬂ+£)(M>, (11)

i i3

solve for

V(8 + 1) (~16cKPrai (1~ m) + iy(L’iy - driy f(1 - m) ) )

)L1 :;<2+L5+Lh*—

(12)

A =

o1 e VO CI6KPrai 50— 4L —ari 0~ m)

0| =

The transversal condition at N* (x*, y*) is
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i, I \h? (~16cKPrai, (1= m) +iy(Liy — 4riy f(1 - m) ) )
—> ==-|L=zx - .
dd |sog 2 \iyizh

If (dA,,/dd)lsgls—o #0, flip bifurcation occurs at the
positive equilibrium point N* (x*, y*).

3.2. The Normal Form of Flip Bifurcation Solutions. Define

3
1+h'L —h*4K,Ml +L
iy c
A= . (14)
h*cBf(1 - m)i; )
I3

If the eigenvalue of A is A = —1, then the corresponding
eigenvector is

4Karl®
+

*

T, = CEEE (15)

-2-h'L

()G G
= +
Pn+1 0 /12 Pn fz (x_n) )Tn) 8)

_ _ _ _2 _ _2 _3 2 __2 _
fl(xn’yn’ 5) =a;X,0 +a,y,0 + by X, +buX, Y, + b3y, +buX, +bi5%, ¥, +bi6X,y, +by,

If the eigenvalue of A is A = A,, then the corresponding
eigenvector is

_h*4K.ocrl3 . r
T, = CHE (16)
A,-1-h"L
Then the following invertible matrix can be obtained:
_h*4Kf)crl3 . r _h*4Kf)crl3 N r
r-(r, 1)-| ° ¢ B
-2-h'L A —-1-h"L

(17)

Using the transformation (I;I” > = Tl( *n ), system
(7) is transformed into n In

)

3

(18)

) . _2 _3 2 ) _3
+¢11%, 0+ ¢13%, 7,0+ cp3¥, 0+ cX, 6 +ci5X, ¥,0 +¢16X, ¥, 0+ci7¥, 0,

/2 (x_n’ Yo 5) = a5 %,0 +a5y,0 + b21x_n2 + by XY+ b23E2 + b24x_n3 + bzsx_nzﬁ + bzexn)’nz

_ 3 _2 . _2 _3 2 2 _3
+by Y, +61%, 0+ %, Y,0+ €3, 0+ €%, 0+ 35X, 7,0+ C36X, Y, 0+ cy7 ), 0,

where
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ciy(-1+2, - Lh") . (-1+m)By" o cy"B(-1+m)
a,, =— e —2bx™ + —+ = |- >
r(12—4cKl ah )(1+A2) (-1+a(-1+m)x")" 1+Ky (1+1)(1+a(-1+m)x")
o= cx"iy(-1+ A, — Lh") (-1+m)p Ka ~ cx"B(=1+m)
2 r(iy - 4cKPah®) (14 ,) \ 1+ (@a—am)x™  (14+Ky*)’ ) (1+4)(1+a(-1+m)x")
ciy(1=A, + Lh") 4cKPrah* - ri,
by, = 3 1t 3 3 YD
r(1 +/\2)(12 4cKIah” ) r(1 +/12)(12 — 4cKl’ah )
ciy(1=A, + Lh") 4cKPrah* - ri,
by, = 3 2t ] 3 W
r(1+4,)(i, - 4cKPah’ ) r(1+1,)(i, - 4cKPah”)
b ciy(-1+ A, - Lh")
? r(1 +/12)(z2 — 4cKPah® )
by, = ciy(1-A, + Lh") o+ 4cKPrah* - ri,
r(1+4,)(i, - 4cKPah’ ) r(1+4,)(i, - 4cKPah’ )
ciy(1-A, + L") 4cKPrah® - ri,
bis = 3 st 3 U
r(1+M,)(i, - 4cKPah™) 7 r(1+,)(i, - 4cKPah”)
ciy(-1+ 4, — Lh")
bis = ; 3 )26
r(1 +/\Z)(12 — 4cKl’ah )
b - ciy(-1+2,— Lh")
T (A - 4cKPa)
o= (-1+m)(2+ Lh")ci,fy" . aciy (2+Lh")
. r(i2 - 4cK13(xh*) (1+1,)(-1+a(-1+m)x")’ r(i2 - 4cKl3och*) (1+X)(1+Ky")
cy"B(-1+m) _ 2bx(ciy (2 + LR")) (19)
(1+1,) (1 +a(-1+mx")’ r(iy - 4cKPah™)(1+),)
(-1 +m)cx*p (-1 +m)cx"Bi, (2 + Lh™)
ayp = ¥ +— 3 "
(1+a(-1+m)x")(1+1,) r(12 — 4cKlath )(1 +4,)(L+a(-1+m)x")
~ Kex™aiy (2+ LR
r(iy — 4cKPah™) (1+1,) (1 + Ky")”
ciy (2+ Lh") ~4cKPrah® + ri,
by = 3 3 up
(1+1,) (12 — 4cKP ah” ) r(l +/12)(12 4cKIah” )
b - ciy(2+Lh") ~4cKPrah® + i,
2 1+, (12 — 4cKPah* ) r(l + /12)(12 — 4cKPah’ )
b ci(2+Lh")
2o r(1+A2, (12 — 4cKPah® )
b ciy(2+Lh") —4cKPrah® + i,
# (1+1,) (12—4CK13<xh ) r(l +/12)(12 4cKPah’ )
b — ci, (2+ Lh") —4cKPrah” + i,
25 1+, (12 - 4cKPah* ) r(l + /12)(12 — 4cKPah’ )
b — ciy(2+Lh")
% (1+1,) (12 — 4cKPah® )
ciy(2+Lh")
by =

r(1+4,)(i, - 4cKPah’ )

bj=hc; (=12j=12..7).
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Using the transformation (@ ) = T( II\JI"“ >, system
(10) becomes n+l n+l

(Nn+1 ) :( -N, ) +(f3(Nn’Pn’8) )

Py MP, )\ f4(N,, P, 0)

f3(N,, P, 6) = d11Nn5+d12Pn5+euNi +epN,P, +613Pi +el4Nfl +615Nipn + elGNnsz'l + 617P31 +f11N316
+ [N P8+ f13Pod + f1uPy8 + f1sNopd + 16N, Pud + f1,P)0,

2 2 3 2 2 3 2
fi(N,, P, 0) =dy N6 +dpP, 0 +ey N, +eyN,P, + e3P, +eyN, + 5N, P, +exN,P;, +eyP, + f, N6
2 3 2 2 3
+ NP0+ f23P,0 + [P0 + f1sN,pd + frsN,P,6+ fr;P,0,

(20)

let then
JAKarl?

%)

ky, =Ky =—h + ok, =-2-Lky=1,-1-1,

(oW

(21)

dyy = aypky, +apky,dy; = ayky +apky,

ey = byyki, + bk kyy +bysks)s

e1, = 2by kg kiy + by, (kyikyy + kiokyy) + 2by3ky Ky,

e13 = bykiy + bykpky +bisksy ey = bkl + biski kyy +bigky kg, +bysks,,

e1s = 3byski oy + bls(kikzz + 2k11k12k21) + b16(2k11k21k22 + klzk;) +3b17k s
€16 = 3byky k3, + bys(2ky Kok, + KoKy, ) + by (ki K, + 2K 5Ky kg ) + 317k K,
€17 = bygki, + bysktykyy + bygky ok, + bysks,,s

dyy = aykyy +ayky,dy = ay ki, + ayky, (22)
ex = by Ky + byky ky +bysks,

€y, = 2by 1k kiy + by (Kyrkyy + kinkyy) + 2bysky sy,

€33 = bk, + byykiykyy + i3k, 54 = byuky + bysks kg + by K5, + bk,

€y = 3byuk Ky + by (K Koy + 2Ky KoKy, ) + bog( 2Ky Ky gy + Kk ) + 37K K,
€25 = 3byski ki, + b25(2k11k12k22 + k§2k21) + bzé(kuk%z + 2k12k21k22) + 3byrky s
€27 = byki, + byskiy ke, + bagkinks, + byksy,

eij:h*fij’ (121)27]:1,2,,7)

During our analysis, we will utilize the central manifold Let
theorem and normal form theory to investigate the direction
of the flip bifurcation at the point N* (x*, y*).

, (23)
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where the coefficients of 0, and 6, are derived from (20).

Theorem 5. The system exhibits a flip bifurcation at the
immobile point N* (x*, y*) if both 0, and 0, are nonzero, and
it is stable (unstable) at that point with a period of 2 if
0,>0(<0).

Proof. In a sufficiently small neighborhood with parameter
6 = 0, there exists a central manifold located at (0, 0):

_ _ _ _2
WC (0’ 0) = {(NnJrl’PnJrl): Pn+1 = mlNrH-l + man+15}
(24)
Substituting (24) into (20), the solution is given as

€ bzlku +byky k) + b23k21

my, =

1-1, 1-1,
(25)
I —dy _ ~(ay kyy +ayky)
214, 1+1,

By focusing on the system of equations at W* (0, 0), we
can derive the following outcome:

~ 2 — 2 _
N, =-N,+rN, +r,N8+rN§+rN,8

~3 ~ 4
+r5Nn+O<< " +|6|> >

which r, =¢;, = bllki +byoky Ky + b13k§1> ry=dy=ay
kiy +apky, 13 =dpm + fi +epmy, ry=d;m,, and
Ts = €My + eqy.

Based on the reference [33], it is stated that when
considering values at (N,P,d) = (0,0,0) and having
0,#0,0,+0, the system exhibits a flip bifurcation at the
fixed point N* (x*, y*). If 6, > 0( <0), the point with a pe-
riod of 2 is stable (unstable).

which

(26)

0, = f l —f =r
'\ oN, 08 "200 0y
(27)
2
10 1 0
0, = —af3+ —ajz :r5+rf.
65N, \20N, 0.0)

This completes the proof.

To validate the accuracy of the theoretical proof, numerical
simulations are conducted in the following sections. When the
parameters are taken as h = 4.05937004,r = 0.8, d = 0.5,¢ =
0.9,b=0.02,e =0.6,a =0.6,K =9.99, m = 0.46, (7) is sat-
isfied; see Figure 3. O

Remark 6. From an ecological perspective, the occurrence of
a flip bifurcation is characterized by population size fluc-
tuating in cycles of 2, 4, 8, and so on until a chaotic state is
reached. This phenomenon implies that prey populations
cannot maintain stability, ultimately resulting in an eco-
logical imbalance.

4. Hopf Bifurcation at Positive
Equilibrium Point

4.1. Existence Conditions for Hopf Bifurcation. If a Hopf
bifurcation occurs near a positive equilibrium point
N*(x*,y*), the characteristic polynomial (3) must have
a pair of conjugate unit complex roots. Consequently, we can
deduce the bifurcation parameter as follows:

MAy =T (NT) + 1, (N")] 5 (N7) = L. (28)

Since the step size h >0, the choice of the bifurcation
parameter under the condition ¢f-ar>0, a>0 and
0<m<1— (br/a(cf —ar)) is given by

ds
dyds’

where d; = (2a0%/ (1 + VA)? — Kber) — (2br/l) —(B(1 —m)
(VA =) = Kber)2K (L +a(1 —m)r)?), d, = (4Karl?/
(1+ VA)? = Kber) + (r/c), and dg = (cf(1-m) ((VA -
1)I2— Kber)2K (1 + a(1 — m)r)).

Taking & as a small bifurcation parameter, i.e.,
h=h," + 6, |0] <« 1. Then, characteristic (6) can be written as

h™ =

(29)

M +s(OL+w(d) =0, (30)

in which s(8)=-2- (h"+0)L, w(d) =1+ (b +d)L+
(h," + 8% ( (4Karl?/iy) + (r/c)) ((cB(1 — m)i,/i5)). The roots

of the equation at J| . ,. are
s(8) +iyaw(8) - s(8)’ R s(8) — inf4w (&) - 5(8)>
1= ) 2= B

> >

(31)

in the meantime [}, = vw(8)(dIA,l/dd)|s, = (2i;
(al® = b iyr) +iyIB (1 —m) (2h,*r (4acKP +i,) — i,)/2 i,i5])
X (=Lh,* + (h,*%i,rB(1 =m)  (4acKP +i,)/iyiy) + 1)~ 1),
(dA1,1/ dd)|s-q # 0 can be obtained if and only if (2i; (al® —
bi,r) + i 1B (1 —m) (2h,"r (4acKP +1i,) — i,)/2i,is]) #0.

If s(0)#0,1, we have —(h} + 0)L#2,3, 1], # 1, where
n=12,3,4.

If (dIA,1/dd)1s— # 0, — (h] + §)L #2, 3, Hopf bifurcation
occurs at the positive equilibrium point N* (x*, y*).

4.2. Normal Form of Hopf Bifurcation at Positive Equilibria.
Assuming  that A, =u+iv, A, =u-iv, where
u=(1/2)(=2+hL), z= (4rh%, (4cKPa)B(1 —m)/iyis),
v = (1/2)\/4 -2- hlL)2 +z—4h L. The corresponding
invertible matrix can be obtained as

4Karl®

—h*

i c
T=(T, T, = 2 (32)
u-1-hL —v

The corresponding inverse matrix is
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x1073
1.2420749945

1.242074994

1.2420749935

gy,

1.242074993

Y, 1.2420749925 +
1.242074992
1.2420749915

+
s
.
.
.
-
o

1.242074991
200 250

300

1.2420749905 . . .
0 50 100 150
t

200 250 300

h = 4.05937004, r

=0.8,d=0.5,c=0.9,b=0.02,e = 0.6,a = 0.6, K = 9.99,m = 0.46.

100 150

Nﬂ
PVI

)o(TE.

Nn+1

()

ci,
riy — 4cKlPrah* P .
T = (33) "
ciy(-1+u—-Lh") 1 in which
rv(i2 - 4cKl3¢xh*) v
Using the following transformations
(x”“ ) = T< Nowa ), (10) is converted to
Ynt1 n+l
P,)=¢,N, +&,N,P, +¢;P,  +¢,N, +esN, P, + NP, +e,P, ,

The coefficients are

f(N,
9(N.P,) =N, +5,N,P, + 5P, +,N,” + 5N, P, + 5sN,P,” +5,P,.

2 2 2 2
U Z) +uvz, +v'zs, e, = —2uvz, +u'z, — vz, + 2uvzs,

o
—_
|

2 3 2 2 3
ViZ i —uvz, t Uz, e, =Wz, tUVEZs UV Zg + vV zZo,

2
2 3 2 2 3 2
=3UTvzy +UZ5 — 22UV Z5 + 2UTVZs — V Zg + 3UV Zy,

()
[5))
|

2 2 3 3 2 2
B3uvizy, —2uTvzs +V Zs + U Zg — 2uV Zg + 3U vz,

eg =
3 2 2 3
=—VzZ +uvzs —uvzg + Uz,

2 2 2
=UTU + UV, S, = —2UViH 4 U Uy — VU,

€;
1
2 3 2
S3 = VU —UVUy, S, = W U3 + U VU,
2 3 2 2 2 3
S5 = =3uvus + U Us — 2UV Us, Sg = UV U3 — 2U VU + V U,
3 2
S; =V uz +uvus,

SO

24.691358018 .
0 50
t
Ficure 3: Flip bifurcation periodic solution at N*(x*,y*) = (24.691358,0.001242) when the parameters are taken to be

(35)
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ci,
ri, — 4cKPrah®

=t
2
T

Il
j
VN
S 0>
ERe
N——

S\l
=
|

=

ciy(-1+u—Lh")
rv(i2 - 4cKl3och*) v
(37)
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By utilizing the central manifold theorem and the
normal form theory, we can determine the bifurcation di-
rection of the Hopf bifurcation at the positive equilibrium
point. Furthermore, by applying the canonical type theory of
the Hopf bifurcation, we can evaluate the equation at
(N,, P,,8) = (0,0,0).

(1- 201 1 -
M = —Re [9“920] - E|9“|2 ~ 90| + Re(19,,),

1-2
0= (Fere
1
9 :Z( N,N

oz-—(f

1

fNP +295.7, +i< N.N

-+ f5p * i(sznNn + gpnpn»’

+fPP + 295 p, +’(9NN gm_z.?m»’

~Gp+ 2fxz))

1 ~ _ _ o _ ~ ~
76( N~ tIneE tInEE tIpe t l(ﬁN,,N,,N,, +955p - SNND - anP”Pn)>’

2 2
= z(u Z, +uvz, +v 23),fm =

_ 2 3 2 2
JrNp, = —6u vz, + 2u'zs — 4uvzs + du'vze —

2
—2uvz, +u°z, -

vzz2 + 2uvz,,
(38)

3 2
2V zZg + 66UV z,,

7 2 2 3 3 2 2
PP = 6uv'zy —4u'ves + 2V zs + 2u zg — 4uv zg + 6U vz,
PPy
fop=2v7z, — 2uvz, +2 —6V'z, + 6 6u’vzg + 61U
anPn =2v"z, - 2uvz, +2u z3,fP PP v Z4 uv? Zs — 66U vzg + 6U 25,
G = 22Uy + 2uvidy, G = —2uvid, + U, — VVu
IN,N, = 1 » 9N, P, = 1 2 2>
- 2
INNN, = 6u’ us + 6u’ vu5,gN NP, —6u° Vuz + 2’ Us — 4uv-us,
G5 = 6uvii, — 4utvis + 2v7us, o = 20U, — 2uvu
9N P, = 3 5 559p.p, = 1 2

~ 3 2
555 = 6V U; + 6UV U:.
95,p,p, 3 5

Theorem 7. If s(0)#0,1 and M #0, a Hopf bifurcation
occurs at a positive equilibrium point N* (x*, y*). Moreover,
if M <0, an attracting invariant closed curve bifurcates from
the equilibrium point for § >0. On the other hand, if M >0,
a repelling invariant closed curve bifurcates from the equi-
librium point for 6 <0.

To validate the accuracy of the theoretical proof, nu-
merical simulations are conducted in the following sections.
When the parameters are taken as h = 0.168989,r = 0.2, K =
4.94,d =0.8,c=0.8, b=0.0l,e = 0.5,a = 0.5,m = 0.76, (7)
is satisfied; see Figure 4.

Remark 8. From an ecological perspective, as the parameter
h approaches the critical value h*, a stable curve emerges at
the equilibrium point N* (x*, y*), indicating a stable co-
existence between the prey and predator populations.
Conversely, if the constant curve at the equilibrium point
N* (x*, y*) becomes unstable as h increases, the populations
of prey and predators will fail to reach a stable state, leading
to an ecological imbalance within the ecosystem.

5. Chaotic Analysis

In general, flip bifurcation and Hopf bifurcation are two
ways in which discrete systems move towards chaos. Under
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Ficure 4: Hopf bifurcation periodic solution at N*(x*,y*)= (0.83333,0.83595) when the parameters are taken to be
h=0.168989,r = 0.2,K = 4.94,d = 0.8,c = 0.8;b = 0.01,e = 0.5,a = 0.5,m = 0.76.

the condition of the existence of two kinds of bifurcations,
applying perturbations to the bifurcation parameters,
sometimes a chaotic situation occurs, which is discussed in
the following.

5.1. Existence of Chaos

Definition 9 (see [34]). For the system x,,, = f(x,),
Vi1 = f(y,), if a small perturbation is applied to the sys-
tem, the system will diverge as the number of iterations
increases, and the degree of divergence is usually expressed
using the maximum Lyapunov index, which is given by

A= lim

n—~oo

(39)

Z In ‘df(xn,y)‘

Theorem 10 (see [34]). If A <0, it is an indication that
neighboring points will eventually converge to a single point.
This is the equivalent of stable, motionless points and periodic
motion. On the other hand, if A > 0, it means that neighboring
points will eventually separate from each other. This means
that orbits are locally unstable and chaotic.

After selecting the perturbation § = (0, 1.5), the trend of
x is analyzed numerically, and through numerical simula-
tion, the maximum Lyapunov exponential map agrees with
the trend of the bifurcation map, see Figures 5-7.

5.2. Chaos Control. Using the state feedback control method
[35-37] to stabilize the chaotic orbit at an unstable equi-
librium point of the system (3) and to achieve this, we

introduce the following controlled system, which corre-
sponds to (3):

X1 :xn+h(

_ My 2

_ﬂ(l_m)xnyn -U
1+Ky, " "

l1+a(l-m)x,

B cf(1-m)x,y,
yn+1_yn+h< ryn+1+a(1_m)xn)'
(40)

The feedback control is defined as
U,=0(x,—x")+0(y,—y"), where ¢ and 6 are the
feedback gains and N* (x*, y*) represents the only positive
equilibrium point of the system.

The Jacobi matrix of the controlled system at the ex-
clusive positive equilibrium point is displayed underneath:

. Ju=0J,-0

) = ,
Ja1 J2

where J;; =1+h((a/1 +Ky*)-2bx* - (B(1-m)y*/(1+
a(l-m)x*)?), Ji = —h((Kax*/(1+ Ky*)z) + (B(1-m)
x*1+a(l-m)x*)), J, = (hef(1-m)y*/(1+a (1-m)

X)), Ty = 1+ h(=r+ (1 —m)x*/1 +a (1 -m)x*)).
From the Jacobi matrix, the corresponding characteristic

equation is

Az_(]11+]22_

(41)

6) = 0.
(42)

A+ Ty (T =0) =T (J1z —

Let A, A, be the two eigenvalues of the equation, which
gives
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Ficure 6: Hopf bifurcation diagrams and MLE at N*(x* y*) = (0.83333,0.83595) for system (3) with
h=0.1689893,r =0.2,K =4.94,d = 0.8,c = 0.8,b = 0.01,e = 0.5,a = 0.5,m = 0.76.

Figure 7: Continued.
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(d)

FIGURE 7: Phase diagrams in the presence of different perturbations § at the equilibrium point N* (x*, y*). (a) §=-0.1. (b) §=0. (c) §=0.1.

(d) 6=0.2.
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0.5,m = 0.76 and initial conditions ¢ = 0.1, = —0.01.

3. 24691358029
30 f 24.691358028 |
281 ' 24.691358027 | .
267 : 24.691358026 | .
24 S ’,
. 24.691358025 | .,
x, 2| . x,
24691358024 |
20|
24.691358023 |
sl _— 691358023
6l 24691358022 |
1l ) 24691358021 |
12 - - - - - - 24.69135802 - - - - -
0 50 100 150 200 250 300 0 20 40 60 80 100
t t
(@) (b)

FiGgure 12: Continued.



16

Discrete Dynamics in Nature and Society

35 . 24.691358028
STt T e e 24.691358027 | *
30| coa e e e T s
o Lo N e Lo 24.691358026 | °,
25 b 4 oo F ' K
B N A R T 24691358025 | ™.
X, 200 T TS e T T T T e X 24691358024 |
T Lo o 24.691358023 |
L. s 8 R S S 24691358022 |
10| . . PR C .. ., A .o DAY
MR e * e 24.691358021 |
5 - - s - ; 24.69135802 ' ' ' ' '
0 100 200 300 400 500 0 20 40 60 80 100
t t
(©) (d)

FiGure 12: Changes in prey population size over time when different values of perturbation & are taken. Here, g, b is the case where the
perturbation § is 1 before and after control, and ¢, d is the case where the perturbation § is 1.5 before and after control. (a) Before control
d=1. (b) After control, §=1. (c) Before control, §=1.5. (d) After control, §=1.5.
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FIGURE 13: Changes in prey population size over time when different values of perturbation § are taken. Where g, b is the case where the
perturbation § is 0 before and after control, and ¢, d is the case where the perturbation § is 1.2 before and after control. (a) Before control,
6=0. (b) After control, §=0. (c) Before control, §=1.2. (d) After control, §=1.2.
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M+A =Ty +Tn=0MA =TTy —0) =Ty (J1, - 0).
(43)

To determine the lines of marginal stability, we need to
solve the equations A; = +1 and 1,4, = 1. These equations
impose constraints that guarantee the absolute values of A,
and A, are both less than 1. By finding the solutions to these
equations, we can identify the boundaries of stability.

Assume that A;1, = 1, it is possible to obtain L;: J;1/,, —
JoJi—1=0]5-0]5.

Next, assuming A, =1, one obtains L,: 0(1—-J,,) +
0l =Tu+Jn—-1-Jun+Tuln

Assuming A, = -1, one obtains L;: 6 (1 + J,) — 0], =
Ju+Tn+1+T0wln = Julo

It is evident that, for specific parameter values, the stable
eigenvalues are situated within the triangular region defined
by the straight lines L,,L,,L;; see Figures 8 and 9. By
selecting the appropriate parameter values in the restricted
area, it becomes apparent that the perturbation values in-
crease significantly when chaos emerges within the con-
trolled region;, see Figures 10 and 11. Furthermore, the
temporal evolution of the population numbers, both before
and after implementing control measures, can be effectively
validated through visual representations; see Figures 12
and 13.

Remark 11. From the ecological point of view, when
unfavourable chaos occurs, the antidisturbance ability of the
ecosystem is greatly enhanced by carrying out chaos control,
which is conducive to maintaining the stability of the
ecosystem and reducing the problem of ecological imbal-
ance. As an example, greening and the establishment of
biological shelters can effectively reduce the state of chaos
among groups of organisms, thus effectively protecting and
managing the diversity of species.

6. Conclusion

In this paper, we investigate a discrete predator-prey model
incorporating fear effects and refuge. We begin by discussing
the local stability and instability conditions of the three
equilibrium points of system (3). Specifically, we analyze the
occurrence of flip bifurcation at eigenvalues |A;| = -1 and
[A,] <1 of characteristic (6). Additionally, we explore the
Hopf bifurcation that arises when the eigenvalues of char-
acteristic (6) form a pair of conjugate unit complex roots.
We also examine the bifurcation directions associated with
these two types of bifurcations.

The chaotic behavior of the system is investigated
through both theoretical proofs and numerical simulations.
We demonstrate that chaotic dynamics can be controlled
using the feedback control method. Bifurcation diagrams
and maximum Lyapunov exponent diagrams clearly illus-
trate the significant increase in perturbation values when
system (3) exhibits chaos after control.

From a biological perspective, the stability analysis of the
equilibrium points reveals that, under the influence of fear
and other factors, the predator and prey populations
eventually reach an equilibrium state, allowing for
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harmonious coexistence. By controlling the chaotic situa-
tions arising from flip and Hopf bifurcations, we can ef-
fectively suppress chaotic behavior among organisms. This
can be achieved through various human-imposed in-
terventions such as greening, establishing biological refuges,
and implementing other measures. These interventions are
beneficial for the survival and development of biological
populations.

In future research, it would be worthwhile to explore
different chaos control methods in order to achieve im-
proved control effects.
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