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Te paper is organized to study some mathematical properties and dynamics of a simple Cournot duopoly game based on
a computed quadratic cost. Te time evolution of this game is described by a two-dimensional noninvertible discrete time map
using the bounded rationality mechanism. For this map, some dynamic characteristics such as multistability and synchronization
are investigated. Its equilibrium points are obtained for the asymmetric case, and their conditions of stability are obtained. Our
results investigate that the Nash equilibrium point may be unstable due to fip bifurcation and under certain parameter values, and
Neimark–Sacker bifurcation is born after the period-4 cycle. Trough some restrictions, the coordinate axes of the map construct
an invariant manifold, and therefore, their dynamics can be analyzed by using a one-dimensional map. In the symmetric case,
both frms behave identically, and this implies that the diagonal set forms an invariant manifold, and hence the synchronization
phenomena take place. Furthermore, the global bifurcation of the map is confrmed through contact between critical curves and
the boundaries of infeasible domains.

1. Introduction

In this paper, investigations on the dynamics of nonlinear
economic games whose competing players adopt linear
inverse demand and horizontal diferentiation with com-
puted quadratic cost function derived from the
Cobb–Douglas utility function are studied. Te time evo-
lution of this game is expressed by a two-dimensional
nonlinear discrete-time map using the bounded rational-
ity. Literature has reported several analyses of such eco-
nomic games which have attracted many researchers
because of the complicated behaviors of these maps. In the
current paper, we focus on a special type of those maps that
are known as duopoly maps. Te focus of this paper is on
studying duopoly games with quantity setting, and for future
studies, we urge interested readers and researchers to in-
vestigate the cases of Cournot–Bertrand mixed game and
triopoly under the conditions imposed on the current game.
Te duopoly game has been characterized by a market

possessing only two competing frms (or players) seeking the
optimal quantities that maximize players’ profts. After
Cournot, the famous French economist, who introduced the
frst duopoly model with quantity setting as decision vari-
ables, many works have been raised to study the dynamics of
such games. Analyzing the dynamics of such games has been
dated to [1] who died last year after enriching literature with
many useful books and papers. In 1950, the Nash equilib-
rium point explored by John Nash, a famous American
mathematician, has been raised in the theory of equilibrium
points in noncooperative games. Te Nash equilibrium
point represented the optimum output of a game in which
no player has an incentive to deviate from their chosen
strategy after considering an opponent’s choice. Studying
the dynamic characteristics of duopoly games requires frst
to calculate the Nash point and then studying its stability. In
fact, one should highlight the theory of games as an im-
portant applied mathematics tool that has been adopted to
analyze the interaction amongst players in such economic
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games. Game theory has been used for investigating strategic
interactions amongst decision-makers and rational com-
petitors. It was extensively developed in the 1950s by many
scholars and was explicitly applied to several felds such as
social science, logic relations, computer science, biology, and
economics’ models. Recently, it has been applied to eco-
nomic models for studying the dynamic competition
amongst competing frms. However, static equilibrium
analysis of such games is limited and has not given valuable
information on the time evolution of such games, although it
has been studied by many researchers (see, for example, [2]).
Dynamic studies give more valuable information on the
stability/instability of Nash equilibrium, future predictions
of the game’s behavior, types of bifurcations by which the
Nash point may lose its stability, and the topological
structure of the phase plane describing the dynamics around
the Nash equilibrium point. In literature, it has been re-
ported that Rand [3] was the frst person who analyzed some
of these dynamic characteristics.

Literature has reported many works that have analyzed
the dynamic characteristics of duopoly games. Tese dy-
namic characteristics have included bifurcation types such as
fip and Neimark–Sacker, some attracting sets and chaotic
attractors whose basin of attractions are represented by
peculiar shapes, and synchronization and multistability
phenomena. Moreover, adopting specifc inverse demand
functions requires using specifc types of utility consumer
preferences. One of the most important utilities in literature
is known as the Cobb–Douglas utility which was used in
several studies in the literature and is adopted in the current
work.Te reason is that the Cobb–Douglas utility represents
a production function and has been widely used to represent
the technological relationship between the inputs and
production outputs. Tere are other utility functions that
have been reported in the literature and used in such games,
for example, constant elasticity of substitution (CES) and
Singh and Vives utility. Interested readers on the properties
of these utilities are advised to check references [4–10].

Te complexity behind duopoly models and their dy-
namic characteristics reveal interesting information on
game’s evolution and its future predictions. Such interesting
results on the complexity have been raised in the literature
and opened new routes for investigations. Here, we report
some related works and results from the literature. For
instance, a Cournot duopoly game that is known as a mixed
game (in such a game, the two decision variables are rep-
resented by quantity and price) has been analyzed in [11].
Other related works on duopoly and triopoly in which
competing players or frms have sought optimality of pro-
duction have been introduced and analyzed in [12–14]. In
[15], a Cournot duopoly game with rational competing
players adopting the bounded rationality mechanism and
seeking themaximization of relative profts has been studied.
Based on a theoretical framework, a mixed-type game has
been formalized and analyzed in [8]. In [16], another mixed-
type game has been introduced and studied by Naimzada
et al. based on a two-dimensional discrete nonlinear map.
Tey focused on analyzing the dynamics of Nash equilib-
rium and its instability through two diferent types of

bifurcations. On the other hand, studying the complex
dynamic characteristics of such a game requires building
a map which is used to describe the time evolution of the
game. From an economic perspective, this map is a tool by
which frms can update their productions. Forming such
maps depends on some adjustment rules. Amongst those
rules, literature has extensively reported the famous one
which is known as the bounded rationality approach. Many
duopoly games have been deeply used this approach for the
process of modelling the discrete maps used to represent the
time evolutions of these games. Tis approach is called
a gradient rule as it depends on the marginal profts of
competing frms. It requires frms to perform an estimation
for their marginal profts to see whether they are increased or
decreased, and consequently, they may update their outputs
next time step. Besides this approach, there are other
mechanisms that have been adopted in the modelling
process such as the tit-for-tat rule and local monopolistic
approximation mechanism [17–27]. Other recent studies on
the dynamics of such games have been recently reported in
the literature [28–32]. Recent studies on the complicated
dynamics of such games have been reported in literature
[33–40]. In addition, the case of Cournot–Bertrand on where
decision variables are quantity and price has been recently
studied in [41].

In literature, many cost functions have been assumed to
be linear or nonlinear, and in this manuscript, we introduce
a computed quadratic cost function that is used for con-
structing our game’s model. Our aim in this paper is to
deepen the complex dynamic characteristics of the nonlinear
Cournot duopoly game considering that competing players
(or frms) operate with quadratic cost function (a case of
decreasing returns-to-scale technology) with incomplete
market information. Tis paper’s game is presented by
a two-dimensional (2D) nonlinear discrete dynamic map
with four fxed points, three of which are boundary points
while the fourth is an interior point representing a Nash
equilibrium point. Te complex dynamic behavior of the
map is entirely analyzed based on the local and global in-
vestigations. Tese investigations show that the Nash
equilibrium point can be destabilized through fip bi-
furcation, and under certain parameters, the values of
Neimark–Sacker bifurcations are raised after the period-4
cycle. Furthermore, under some restrictions, synchroniza-
tion and multistability are studied showing that the diagonal
set in the phase plane forms an invariant manifold. In ad-
dition, the obtained results show that the game’s map is
noninvertible and its phase plane is formed by three zones
that are Z4, Z2, and Z0. Overall, the proposed game and its
characteristics generalize some existing works in the liter-
ature [9, 10, 15].

In brief, the current paper consists of many sections.
Section 2 introduces the market competition including the
computation of cost and proft. In Section 3, the 2D game’s
map is formed and its characteristics such as critical curves
and noninvertible properties are discussed. Te map’s fxed
points and their stability are given in Section 4. In Section 5,
the invariant manifold for the map is investigated through
a one-dimensional map. In Section 6, the basin of attraction,
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global analysis, and the case of independent frms are an-
alyzed. Finally, the conclusion is presented in Section 7.

2. Market Competition

Te market competition proposed in this paper consists of
two frms labeled by F1 and F2. Both frms produce the
quantities, q1 and q2, respectively. Te market price is re-
stricted to the following inverse demand functions (prices):

p1 � a − q1 − dq2,

p2 � a − q2 − dq1,
(1)

where a> 0 denotes the maximum price in the market. Te
parameter d has an important infuence on the dynamics of
the competition. It denotes the degree of product difer-
entiation or product substitution. If d � 1, one gets two
identical inverse demand functions and hence homogeneous
goods are provided to the market. If d � 0, the two prices are
independent and the case of two monopolistic markets is
raised. If d ∈ [− 1, 0), the complementarity between the two
competing frms is obtained. We will discuss the analysis of
competition in the case of substitutability on which
d ∈ [0, 1].

2.1. Computation of Cost and Proft Functions. In order to
compute the quantities produced by the two frms, we recall
the Cobb–Douglas [42] production function given by

qi � EiL
α
K

1− α
; i � 1, 2, (2)

where Ei, i � 1, 2 is a constant and refers to the total factor
productivity, L denotes the total labor, and K is the total
capital. α is a constant, and for simplicity, it is assumed to be
0.5. Te total cost imposed by a frm can be computed as

TC � wL + rK, (3)

where w refers to the wage per unit of labor, while r denotes
the rental price per unit of capital. Terefore, by substituting
(2) in (3), the total cost for each frm takes the following
form:

TCi �
wq

2
i

E
2
i K

+ rK; i � 1, 2, (4)

where the marginal cost is MCi � (dTCi/dqi) � ciqi; i � 1, 2
and ci � (2w/E2

i K)> 0. Now, the proft is given by

πi � TRi − TCi; i � 1, 2, (5)

where TRi � piqi is the total revenue. By using (1) and (4) in
(5), the profts become

π1 � a − q1 − dq2( 􏼁q1 −
1
2
c1q

2
1 − rK,

π2 � a − q2 − dq1( 􏼁q2 −
1
2
c2q

2
2 − rK.

(6)

3. The Competition Model

Tere are many mechanisms that have been used in the
literature to build the discrete dynamic model describing
such games. In this paper, the bounded rationality mech-
anism is adopted. It depends on themarginal profts of frms.
Te marginal profts (φi � (zπi/zqi), i � 1, 2) then become
as follows:

φ1 � a − 2 + c1( 􏼁q1 − dq2,

φ2 � a − 2 + c2( 􏼁q2 − dq1.
(7)

In such games, frms watch their marginal profts φi, i �

1, 2 whether they are increased or decreased. If
φi > 0, i � 1, 2, it means that frms are ready to increase their
production in the next period of time, and otherwise, they
decrease production or become naive. So, the updating of
productions is described by the following mechanism:

qi(t + 1) � qi(t) + ki qi( 􏼁φi; i � 1, 2. (8)

Let us assume that ki(qi) � kiqi; i � 1, 2, where ki > 0, i �

1, 2 is the parameter of speed of adjustment. It means that
the relative production (qi(t + 1) − qi(t)/qi(t)) is directly
proportional to φi; i � 1, 2. By substituting (7) in (8), one gets
the discrete map that is used to describe the evolution of the
proposed game (or the game’s repetition) as follows:

T q1, q2( 􏼁 :
q1(t + 1) � q1(t) + k1q1(t) a − 2 + c1( 􏼁q1(t) − dq2(t)( 􏼁,

q2(t + 1) � q2(t) + k2q2(t) a − 2 + c2( 􏼁q2(t) − dq1(t)( 􏼁,
􏼨 (9)

where the time steps are denoted by the parameter
t � 0, 1, 2, . . .. Setting φi � 0, i � 1, 2 gives qi � (a/2 + ci) −

(d/2 + ci)qj; i, j � 1, 2; i≠ j, which describes each frm’s
optimal (proft-maximizing) quantity of output. Tis can be
thought of as describing a frm’s best response to the other
frm’s level of output. Terefore, by using this symmetrical
relationship between frms, we fnd the equilibrium quantity

by fxing q1 � q2. Te equilibrium levels make frms have no
incentive to change their level of output.

3.1. Critical Curves and Noninvertible Property. Te critical
curves are used to describe the decision space and are re-
sponsible for dividing it into zones. Te rank-1 of the critical
curve is expressed by LC which forms a locus containing all
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rank-1 preimages located on a set denoted by LC− 1. As one
can see that map (9) is of class C1 (continuously diferen-
tiable). Tis means that the set LC− 1 can be defned as the
locus of points such that the Jacobian determinant associated
with it is vanished. So, LC− 1 is given by

LC− 1 ⊆ q1, q2( 􏼁 ∈ R2
: det J q1, q2( 􏼁( 􏼁 � 0􏽮 􏽯, (10)

where J(q1, q2) is the Jacobian matrix. Terefore, LC rep-
resents the rank-1 image of LC− 1 under the map T, i.e.,
LC � T(LC− 1). For map (9), LC− 1 is expressed by the fol-
lowing relation:

Aq
2
2 + Bq

2
1 + Cq1q2 − Dq1 − Eq2 + F � 0, (11)

where

A � 2d 2 + c2( 􏼁,

B � 2d 2 + c1( 􏼁,

C � 4 2 + c1( 􏼁 2 + c2( 􏼁,

D � a 4 + d + 2c1( 􏼁k1k2 + 2 2 + c1( 􏼁k1 + dk2,

E � a 4 + d + 2c2( 􏼁k1k2 + 2 2 + c2( 􏼁k2 + dk1,

F � 1 + a k1 + k2( 􏼁 + a
2
k1k2.

(12)

Both LC and LC− 1 are plotted at two diferent sets of
parameter values in Figure 1. Figure 1(a) shows that LC− 1
consists of two parts LC1

− 1 and LC2
− 1. Figure 1(b) shows also

that LC consists of two parts LC1 and LC2. Both fgures are
plotted at the values of the parameters, a � 1, c1 � 0.2, c2 �

0.3, k1 � 0.5, k2 � 0.4, and d � 0.2. Figures 1(c) and 1(d)
present those critical curves at the parameters values,
a � 2, c1 � 0.4, c2 � 0.3, k1 � 1.25, k2 � 1.26, and d � 0.5.
One can also see that map (9) is a noninvertible map since
the two branches of the critical curve LC divide the decision
space into three zones Z4, Z2, and Z0. Tese zones possess
the set of points with 0, 2, and 4 positive real number
preimages. In order to declare that let us calculate the real
rank-1 preimages for the origin point. By substituting qi(t +

1) � 0, i � 1, 2 in map T and by solving the obtained alge-
braic system, one gets

O � (0, 0), O
1
− 1 �

1 + k1a

k1 2 + c1( 􏼁
, 0􏼠 􏼡,

O
2
− 1 � 0,

1 + k2a

k2 2 + c2( 􏼁
􏼠 􏼡,

O
3
− 1 �

a 2 + c2 − d( 􏼁k1k2 + 2 + c2( 􏼁k2 − dk1

k1k2 2 + c1( 􏼁 2 + c2( 􏼁 − d
2

􏽨 􏽩
,
a 2 + c1 − d( 􏼁k1k2 + 2 + c1( 􏼁k1 − dk2

k1k2 2 + c1( 􏼁 2 + c2( 􏼁 − d
2

􏽨 􏽩
⎛⎝ ⎞⎠.

(13)

Tis means that the origin point belongs to zone Z4. For
convenience, let w1 � OO1

− 1 and w2 � OO2
− 1 be two seg-

ments on the invariant axes q1 and q2. Let also w− 1
1 and w− 1

2
be their rank-1 preimages, respectively. So at any points
(u, 0) ∈ w1 and (0, v) ∈ w2, their rank-1 preimages will
satisfy the following algebraic systems:

u � q1(t) + k1q1(t) a − 2 + c1( 􏼁q1(t) − dq2(t)( 􏼁,

0 � q2(t) + k2q2(t) a − 2 + c2( 􏼁q2(t) − dq1(t)( 􏼁,
􏼨

0 � q1(t) + k1q1(t) a − 2 + c1( 􏼁q1(t) − dq2(t)( 􏼁,

v � q2(t) + k2q2(t) a − 2 + c2( 􏼁q2(t) − dq1(t)( 􏼁.
􏼨

(14)

So both w− 1
1 and w− 1

2 can be presented by

w
− 1
1 : q2 � 0 or 1 + k2 a − 2 + c2( 􏼁q2(t) − dq1(t)( 􏼁 � 0,

w
− 1
2 : q1 � 0 or 1 + k1 a − 2 + c1( 􏼁q1(t) − dq2(t)( 􏼁 � 0.

(15)

As one can see in Figure 2, those lines intersect at point
O3

− 1.

4. Fixed Points and Stability

By setting qi(t + 1) � qi(t) � q in map (9), the following
fxed points are obtained:

Eo � (0, 0), E1 �
a

2 + c1
, 0􏼠 􏼡, E2 � 0,

a

2 + c2
􏼠 􏼡,

E∗ �
a 2 + c2 − d( 􏼁

2 + c1( 􏼁 2 + c2( 􏼁 − d
2,

a 2 + c1 − d( 􏼁

2 + c1( 􏼁 2 + c2( 􏼁 − d
2􏼠 􏼡.

(16)
Since a> 0, ci > 0, i � 1, 2 and d ∈ [− 1, 1], it is clear that

all the fxed points are positive. Te following propositions
are raised, and their proofs are given in Appendix A.

Proposition 1. Te boundary equilibrium point Eo � (0, 0)

is an unstable repelling node.

Proposition  . Te boundary equilibrium point
E1 � ((a/2 + c1), 0) is a saddle point if 0< k1 < (2/a). Oth-
erwise, it is an unstable node.
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Proposition 3. Te boundary equilibrium point E2 � (0,

(a/2 + c2)) is a saddle point if 0< k2 < (2/a). Otherwise, it is
an unstable node.

Proposition 4. Te point E∗ is called the Nash equilibrium
point and is asymptotically stable if

k1k2 >
2 + c1( 􏼁

a 2 + c1 − d( 􏼁
k1 +

2 + c2( 􏼁

a 2 + c2 − d( 􏼁
k2. (17)

Proposition 5. Te Nash point loses its stability due to fip
bifurcation if

k1k2 <
2 + c1( 􏼁

a 2 + c1 − d( 􏼁
k1 +

2 + c2( 􏼁

a 2 + c2 − d( 􏼁
k2. (18)

Figure 2 presents the basin of attraction of Nash point
which looks like a regular convex polygon whose vertices are

O1
-2

O1
-3

q2

B (E*)

B (∞)

O1
-1

w-1
2

w-1
1

q1E1

E*

E0

E2

Figure 2: Te basin of attraction of Nash equilibrium point E∗ at
the parameters values, a � 1, c1 � 0.2, c2 � 0.3, k1 � 0.5, k2 � 0.5,
and d � 0.2.
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(a)

LC1

LC2

Z4 Z2
Z0

0

0.1

0.2

0.3

0.4

0.5

0.6

q2

0.1 0.2 0.3 0.4 0.5 0.60
q1

(b)

LC1
-1

LC2
-1

q1=q2

0

0.2

0.4

0.6

0.8

1

q2

0.2 0.4 0.6 0.8 10
q1

(c)

LC1

LC2

Z4
Z2 Z0

0

0.2

0.4

0.6

0.8

1

1.2

q2

0.2 0.4 0.6 0.8 1 1.20
q1

(d)

Figure 1: Te critical curves of map (9). (a) Te preimages of critical curve LC represented by (11) at the parameters values,
a � 1, c1 � 0.2, c2 � 0.3, k1 � 0.5, k2 � 0.4, and d � 0.2. (b) Te critical curves LC � T(LC− 1) at the same parameters as of (a). (c) Te
preimages of critical curve LC represented by (11) at the parameters values, a � 2, c1 � 0.4, c2 � 0.3, k1 � 1.25, k2 � 1.26, and d � 0.5. (d)Te
critical curves LC � T(LC− 1) at the same parameters as of (c).
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the four preimages of the origin. It can be seen that both w− 1
1

and w− 1
2 divide the phase plane into two parts B(E∗) and

B(∞). Te frst part B(E∗) contains all points which gen-
erate bounded trajectories converging to the Nash point, i.e.,
B(E∗) � (q1, q2) ∈ R2

+ : Tt(q1, q2)⟶ E∗, t⟶∞􏼈 􏼉, while
the second part B(∞) consists of all points which generate
unbounded trajectories colored by gray. It can also be seen
that the boundaries of B(E∗) and B(∞) are equal, i.e.,
zB(E∗) � zB(∞).

4.1. Local Bifurcation. Map (9) presents a dynamical system
that contains two important parameters k1 and k2. Tese
parameters are called the speed of adjustment parameters
and any slight change in themmay raise a great change in the
dynamics of the system. Tese parameters are selected to be
the bifurcation parameters. Let us assume the following
values, a � 1, c1 � 0.2, c2 � 0.3, d � 0.2, and k1 � 0.5 (or
k2 � 0.5) on varying k2 (or on varying k1). Figures 3(a) and
3(b) show the infuence of the speed parameters on the
stability of the Nash point. Both parameters undergo a fip
bifurcation diagram. Fixing those parameters and changing
the value of d present its impact on the stability region of
Nash point. Numerical experiments show that increasing d

close to 1 makes the region of stability with respect to the
speed parameters increase. On the other hand, at the values,
a � 2, c1 � 0.4, c2 � 0.3, d � 0.5, and k1 � 1.25 (or k2 � 1.26)
on varying k2 (or on varying k1), Figures 3(c) and 3(d) show
that the period-4 cycle emanating from the fip bifurcation
may undergo a Neimark–Sacker one as both the speed
parameters increase. Keeping the value of speed parameters
relatively small keeps system (9) in a stable state. Further-
more, as d increases to be close to 1, the region of stability
with respect to the speed parameters is also extended.
Conversely, as the parameter a increases while the other
parameter values are fxed, the stability region is decreased
with respect to the speed parameters. To end this local
analysis, we plot in Figure 4 the infuence of the parameter a

on the map’s dynamics at the values, c1 � 0.4, c2 � 0.3, d �

0.95, k1 � 1.25 and k2 � 1.26.

5. The Invariant Manifold

Te point (0, 0) for map (9) has an important aspect. If the
map initiates from this point it will be directly trapped to this
point. Tis means that if q1(t) � 0 or q2(t) � 0, then q1(t +

1) � 0 or q2(t + 1) � 0 and hence the coordinates axes Oq1
���→

andOq2
���→

become invariant.Tose axes construct an invariant
manifold for T, and then, its dynamics can be described by
a one-dimensional map as follows:

qi(t + 1) � 1 + kia( 􏼁 1 −
ki 2 + ci( 􏼁

1 + kia
qi(t)􏼢 􏼣qi(t), i � 1, 2.

(19)

We see that map (19) is topologically equivalent to

yi(t + 1) � μiyi(t) 1 − yi(t)( 􏼁, i � 1, 2, (20)

through the linear transformation given as

qi �
1 + kia

ki 2 + ci( 􏼁
yi, i � 1, 2, (21)

and μi � 1 + kia, i � 1, 2.

5.1. Dynamic Analysis. For map (20), let us consider the
following function:

σ(y) � μy(1 − y). (22)

Tis function presents the well-known logistic equation
with a parameter μ causing its dynamics. Te frst derivative,
σ
�

(y) � μ(1 − 2y) attains a function maximum value oc-
curring at μ/4 and the point y � 1/2. It is clear that σ(0) � 0
and σ(1) � 0, which means that σ(y) ∈ [0, 1) and 0< μ< 4
for all y ∈ [0, 1]. It is also simple to see that map (20) has two
fxed points, y � 0 and y � 1 − (1/μ), which are nonnegative
provided that μ> 1. One can see that σ

�
(0) � μ and then the

fxed point y � 0 is stable if μ ∈ (0, 1), otherwise it is un-
stable. Te point, y � 1 − (1/μ), is stable if μ ∈ (1, 3), oth-
erwise it is unstable if μ> 3. Figure 5(a) demonstrates the
bifurcation diagram of map (20) on varying parameter μ. As
mentioned above, its dynamics is similar to the well-known
standard logistic map. Figures 5(b) and 5(c) illustrate the
cobweb diagrams of map (20) at diferent values of the
parameter μ. When 0< μ< 1, the fxed point y � 0 becomes
stable but when μ � 1, a transcritical bifurcation emerges. At
1< μ< 3, the fxed point y � 1 − (1/μ) gets stable resulting in
a stable period-2 cycle at μ � 3 as shown in Figure 5(b). At
μ � 3.9, the period-2 cycle becomes unstable around the
fxed point as shown in Figure 5(c) on which a chaotic
trajectory is born.

Proposition 6. At the critical value, ki � (2/a), i � 1, 2, the

trajectories of T beginning on the invariant axes Oq1
���→

and Oq2
���→

diverge when ki ∈ ((2/a), +∞), i � 1, 2.

Proof. Te proof is straightforward. Using μi � 1 + kia, i �

1, 2 and μi > 3, i � 1, 2, we complete the proof. □

5.2. Te Symmetric Case. Map (9) possesses an important
aspect. At the assumption ki � k, ci � c; i � 1, 2, the map
becomes symmetric. It means that if q1 and q2 are
swapped, the structure of the map does not change, i.e.,
T ° F � F ° T, where F : (q1, q2)⟶ (q2, q1). Consequently,
the diagonal set defned by Δ � (q1, q2) : q1 � q2􏼈 􏼉 con-
structs an invariant manifold. Tis implies that the dy-
namics of any trajectories which start on the diagonal set
(q1(0) � q2(0)) will come back to the diagonal set at each
time step t. So the dynamics of map (9) can be studied by
a one-dimensional map under the restriction given on Δ
as follows:

TΔ : �q � h(q) ≔ q + kq[a − (2 + c + d)q]. (23)

Now, for any synchronized trajectories (i.e.,
q1(t) � q2(t) at every time period t), they will be governed
by TΔ : Δ⟶ Δ and one gets the following proposition.
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Figure 3:Te bifurcation diagrams at the values, a � 1, c1 � 0.2, c2 � 0.3, d � 0.2, and (a) on varying k1 with k2 � 0.5. (b) On varying k2 with
k1 � 0.5. Te bifurcation diagrams at the values, a � 2, c1 � 0.4, c2 � 0.3, d � 0.5, and (c) on varying k1 with k2 � 1.25. (d) On varying k2
with k1 � 1.26.
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Proposition 7. Map (23) is characterized as unimodal and
concave and limq⟶0+ h(q) � 0 and limq⟶+∞ h(q) � − ∞. It
means that it possesses a threshold point q � (a/2 + c + d)

that occurs at h(q) � 0.Te unimodal aspect means that there
is a critical point given by

qcr �
1 + ka

2k(2 + c + d)
. (24)

Proof. It is easy to see that the second derivative of h(q) is
nonpositive for all q and hence h(q) has only one global
maximum value at qcr without any local maximum. Tis
means that the function h(q) is unimodal and concave with
�h(qcr) � 0. □

Now, the map TΔ possesses only one nonzero fxed point
that is q which is locally stable if k< (2/a), while fip bi-
furcation occurs at k � kf :� (2/a). Figure 6 shows the
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Figure 5: (a)Te 1D bifurcation diagram of map (20) with respect to μ. (b)Te cobweb diagram for a stable fxed point at μ � 3 where σ2(y)

is the second iteration of σ(y). (c) Te cobweb for a chaotic situation occurring at μ � 3.9.
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Figure 6: Te 1D bifurcation of the map TΔ on varying the pa-
rameter k at the values, a � 1, c � 0.4, and d � 0.5.
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one-dimensional bifurcation diagram where fip bifurcation
occurs at kf � 2.

6. Basin of Attraction

Let us now investigate additional properties for map (19)
such as its basin. Te map can be rewritten in the following
form:

�qi � gi qi( 􏼁 ≔ qi 1 + kia − ki 2 + ci( 􏼁qi􏼂 􏼃, i � 1, 2. (25)

Following [43], the invariant axes and their preimages of
any rank can be used to form the boundaries of non-
diverging trajectories. Map (25) possesses a positive fxed
point q∗i � (kia/ki(2 + ci)), i � 1, 2. One can easily see that
gi(qi) is a concave function and an increasing function if
qi < (1 + kia/2ki(2 + ci)). In addition, for any point
(q1, 0), q1 > 0 or (0, q2), q2 > 0, it gives �q1 > 0, �q2 � 0 or
�q1 � 0, �q2 > 0. In contrast, if qi > (1 + kia/2ki(2 + ci)), then
gi(qi) is concave and unimodal. In the latter case, one can
get the nonnegative points 􏽥q

bo

i � (1 + kia/ki(2 + ci)) and
􏽥q

cr

i � (1 + kia/2ki(2 + ci)) at �qi � 0 and �gi(􏽥q
cr

i ) � 0, re-
spectively. If gi(􏽥q

cr

i )< 􏽥q
bo

i , i.e., if kia< 3, then it means that

the bounded trajectories along the invariant axes Oq1
���→

and

Oq2
���→

are bounded provided that the initial states lie on the
segment wi � [O, O− 1

i ], i � 1, 2, where O− 1
i � 􏽥q

bo

i ≠ 0 presents
rank-1 preimages for the origin point. Conversely, any other
trajectories starting on those axes for initials outside ωi

become infeasible (or nondiverging) trajectories. Moreover,
the eigenvalues at a point (q1, q2) on those invariant axes
become 􏽥λi � 1 + aki − 2ki(2 + ci)qi, i � 1, 2. For example, at
a point (q1, 0), one gets 􏽥λ1 � 1 + ak1 − 2k1(2 + c1)q1 and
􏽥λ2 � 1 + ak2, which means that trajectories with positive
initial states beginning close to those axes are repelled by
them. Figure 7 presents the basin of attraction of the point
(q∗1 , q∗2 ) and period-4 cycle marked by the colors brown and
blues, respectively. Tis cycle is born at the values
a � 2, c1 � 0.4, c2 � 0.3, k1 � 1.25, and k2 � 1.26. Te other
colors that are gray and white are for the divergence and
nonconvergence points. It is easy to see that the lines wi, i �

1, 2 and their inverses w− 1
i , i � 1, 2 separate the divergence

and nonconvergence points.

6.1. Global Analysis. In economic models, it is necessary to
globally investigate the topological structure of the basin of
attraction. Tis structure does not appear when carrying out
local analysis. Analyzing the behavior of map (9) in the long-
run whose variables take intials values not close to the
equilibrium point is necessary in order to see the qualitative
changes that may be occurred in the topological structure.
Numerically, two cases for map (9) that are the asymmetric
and symmetric cases are investigated in this subsection.
First, the asymmetric case is studied at two diferent sets of
parameter values as follows. We start with the frst set,
(a, c1, c2, d) � (1, 0.2, 0.3, 0.5). Figure 8(a) shows the two-

dimensional bifurcation diagram in the (k1, k2) − plane. Te
gray color illustrates the stability region of the equilibrium
point E∗ while the other colors present diferent types of
period cycles marked by 2, 4, and 6, . . .. Assuming
k1 � 2.0801556 and k2 � 3.02933, Figure 8(b) shows the
basin of period-7 cycle marked by squares. Its basin is
colored in light blue while the yellow color is for the basin of
the equilibrium point E∗. It can be seen from the fgure that
the infeasible region colored in gray is disconnected. It is
clear that some holes of this region lie within the basin of
cycle 7. Tis is because of the contact bifurcation that took
place. Tis contact bifurcation is discussed in Figure 8(c) in
detail. Figure 8(c) presents the basin of attraction of a chaotic
attractor (marked by green) that occurred at the values,
(a, c1, c2, d, k1, k2) � (1, 0.2, 0.3, 0.5, 3.04278, 2.072089). Tis
chaotic attractor is distributed in the zones, Z4 and Z2. As
one can see, the infeasible region (or the escaping domain) is
disconnected. It is clear that the whole region does not lie in
Z0 and part of it denoted by ho enters the region Z2. Te part
ho is constructed due to the intersection between the critical
curve branch LC1 and the boundary line w− 1

2 . It consists of
two parts connected by the branch LC2

− 1.Tis part belongs to
the zone Z2 whose points possess two distinct real rank-1
preimages and are responsible for the disconnection of the
escaping domain and the coexistence of main hole h− 1 that
entirely lies in Z4. Te main hole h− 1 is formed by two parts
h

(1)
− 1 and h

(2)
− 1 connected by the branch LC1

− 1. Each point
belonging to the main hole will have four distinct real rank-2
preimages. Numerical simulation shows that points in the
main hole are responsible for constructing the small holes
denoted by h

(1)
− 2 , h

(2)
− 2 , h

(3)
− 2 , and h

(4)
− 2 . So it is obvious from the

Figures 8(b) and 8(c) that contact bifurcation has occurred
and consequently holes from the infeasible domain are born.
It is also seen that the structure of the basins for the period-7
cycle and chaotic attractor is bounded by the quadrilateral
shape OO− 1

1 O− 1
3 O− 1

2 . Such complicated structures make the
future evolution of the game unpredictable in case players
take initial states inside those holes.
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Figure 7: Te basin of attraction for the period-4 cycle at the
values, a � 2, c1 � 0.4, c2 � 0.3, k1 � 1.25, and k2 � 1.26.

Discrete Dynamics in Nature and Society 9



Ten, we investigate the dynamics of map (9) using
another set of values. Let us assume the values, (a, c1, c2,

d, k1, k2) � (2, 0.4, 0.3, 0.5, 1.27, 1.26). At this set, the dy-
namics of map (9) are represented by four closed rings
around the equilibrium point due to Neimark–Sacker taking
place after the period-4 cycle. Keeping the set of values fxed
but by increasing k1 to 1.29, the four rings turn into a four-
band chaotic attractor. Te basin of attraction of this chaotic
attractor with the equilibrium point is plotted in Figure 9(b).
As one can see that the origin point belongs to Z4 and the
chaotic attractor is distributed in zonesZ4 andZ2. By further
increasing the speed parameter k1 to 1.3, the chaotic
attractor is converted into period-16 cycle. Tis cycle has
a basin of attraction bounded by the quadrilateral shape
OO− 1

1 O− 1
3 O− 1

2 . Tis period cycle is turned into a four-band

chaotic attractor as k1 increases to 1.32 as shown in
Figure 9(d). Keeping the other values fxed and by increasing
the speed parameter to the value k1 � 1.4 a two-band chaotic
attractor emerges whose basin is given in Figure 9(e). As one
can see that as the speed parameter increases the critical
branch LC1 is approaching to the boundary w− 1

2 . When the
speed parameter reaches the value 1.449, one gets a one-
band chaotic attractor whose attractive basin is given in
Figure 9(f ) and then LC1 becomes tangent to the boundary
w− 1

2 . Tis tangentiality causes the contact bifurcation and
makes the infeasible domain disconnected due to the holes
coexisting in the attracting domain.

In contrast, let us now investigate the symmetric case of
map (9). Tis case occurred by assuming that k1 � k2 �

k, c1 � c2 � c and hence map (9) can be rewritten as follows:

k1

k2

3.2
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Figure 8: (a)Te two-dimensional bifurcation diagram at the frst set of values, (a, c1, c2, d) � (1, 0.2, 0.3, 0.5). Te gray color represents the
stability region for E∗ while the other colors are for diferent period cycles as given in the graph. (b) Te basin of attraction of the period-7
cycle at the values (a, c1, c2, d, k1, k2) � (1, 0.2, 0.3, 0.5, 2.0801556, 3.02933). (c) Te basin of attraction of chaotic attractor at the values
(a, c1, c2, d, k1, k2) � (1, 0.2, 0.3, 0.5, 3.04278, 2.072089).
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Ts q1, q2( 􏼁 :
q1(t + 1) � q1(t) + kq1(t) a − (2 + c)q1(t) − dq2(t)( 􏼁,

q2(t + 1) � q2(t) + kq2(t) a − (2 + c)q2(t) − dq1(t)( 􏼁.
􏼨 (26)

It is easy to see that map (26) is symmetric on the di-
agonal Δ :� (q1, q2) ∈ R2

+ : q1 � q2􏼈 􏼉. In this case, there is no
mathematical meaning for the equilibrium points except the

point Es � ((a/2 + c + d), (a/2 + c + d)) which belongs to
the diagonal Δ. Te local stability of this point around Δ is
related to synchronization (intermittency). Simply, one can
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Figure 9: At (a, c1, c2, d, k2) � (2, 0.4, 0.3, 0.5, 1.26): (a) Te phase plane for four rings at k1 � 1.27. (b) Te phase plane and basin of
attraction for the chaotic attractor at k1 � 1.29. (c) Te basin of attraction of period-16 cycle at k1 � 1.30. Te phase plane and basin of
attraction for the chaotic attractor (d) at k1 � 1.32. (e) k1 � 1.4. (f ) k1 � 1.449.
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say that a synchronous dynamic behavior is obtained if there
exists a period of time t̂ such that q1(t) � q2(t) for any t> t̂.
So, the Jacobian of map (26) is given by

J q1, q2( 􏼁 �
l(q) m(q)

m(q) l(q)
􏼠 􏼡,

l(q) � 1 + k[a − (4 + 2c + d)q],

m(q) � − kdq,

(27)

where the eigenvalues are represented as

λ‖ � l(q) + m(q) � 1 + k[a − 2(2 + c + d)q],

λ⊥ � l(q) − m(q) � 1 + k[a − 2(2 + c)q],
(28)

and the corresponding eigenvectors are (1, 1) and (1, − 1),
respectively. Tus, the following proposition is obtained.

Proposition 8. Te local stability of the equilibrium point Es

is achieved if k< (2/a). A fip bifurcation is raised if
k � kf � (2/a).

Proof. Substituting Es in (28), one gets the following
eigenvalues:

λ‖ � 1 − ka
2 + c − d

2 + c + d
􏼠 􏼡,

λ⊥ � 1 − ka.

(29)

Here, |λ⊥|< 1 and |λ‖|< 1 give k< (2/a) and k< (2/a)

(2 + c + d/2 + c − d), respectively. Tus, combining the two
conditions completes the proof. □

Te following fgures simulate the abovementioned
proposition. Let us assume a � 2, c � 0.4, k � 1.4 and
d � 0.5. Figure 10(a) shows that at k � kf � 1, the period-2
cycle and hence the one-dimensional fip bifurcation is
obtained on varying the speed parameter k. Figure 10(b)
presents the time series for both decision variables. One can
observe from Figure 10(c) (which represents the displace-
ment q1 − q2 with time t) that the transient behaviors of map
(25) may be described by bursts that appear outside the
diagonal Δ. Terefore, intermittency will occur in map (25)
as shown in Figure 10(d). Figure 10(e) shows a complex
chaotic attractor raised entirely on the diagonal Δ at the
parameters values, (a, c, k, d) � (2, 0.4, 1.4, 0.5) with bursts
out of the diagonal Δ. With a slight increase in the speed
parameter k with 2 × 10− 3 at the same parameter values, the
weak attractor given in Figure 10(d) turns into a complex
chaotic attractor depicted in Figure 10(e). As one can see, the
equilibrium point Es lies on the diagonal Δ and the chaotic
attractor is not symmetric around the diagonal due to bursts
raised on both sides as shown in Figure 10(f ).

From the abovementioned proposition and analysis, it is
clear that the speed parameter k afects the stabilization of
the equilibrium point Es. It is noted that the high reactivity
of the competing frms to the marginal proft should coexist.
Moreover, suppose a k− cycle given by (q1, q1), . . . ,􏼈

(qm, qm)} of the map Ts embedded into the invariant

diagonal Δ corresponding to the cycle q1, . . . , qm􏼈 􏼉. Tere-
fore, this k− cycle has multipliers given by

λk
‖ � 􏽙

k

i�1
l qi( 􏼁 + m qi( 􏼁( 􏼁,

λk
⊥ � 􏽙

k

i�1
l qi( 􏼁 − m qi( 􏼁( 􏼁,

(30)

with corresponding eigenvectors (1, 1) and (1, − 1). So, the
stability of Es is guaranteed by |λ⊥|< 1 and is confrmed by
|λ‖|< 1. For a complex chaotic attractorH of themap (25),H
is asymptotically stable if and only if all trajectories of H are
transversely attracting.Tis asymptotic stability condition of
H is obtained based on the transverse Lyapunov exponent as
follows:

Λ⊥ � lim
n⟶∞

􏽘

n

i�1
ln | λ⊥(q(i)) | , (31)

where q(0) ∈ H and q(i) are the trajectories constructed by
the map, and

Ts : q(t + 1) � q(t) + kq(t)[a − (2 + c + d)q(t)]. (32)

Te defnitions are given ([42, 43]) as follows.

Defnition 9. An asymptotically stable chaotic attractor H is
Lyapunov stable if for every neighborhood U of H there
exists a neighborhood V of H such that Tn(V) ⊂ U∀n≥ 0
and its basin B(H) has a neighborhood of H.

Defnition 10. A spectrum of Lyapunov exponent is defned
based on the initial conditions as follows:

Λmin
⊥ < . . . <Λnat

⊥ < . . . <Λmax
⊥ , (33)

where Λnat
⊥ denotes a Lyapunov exponent obtained at a ge-

neric trajectory in H. If Λmax
⊥ < 0, then a set is called

a Lyapunov attractor. When Λmax
⊥ > 0 and Λ

nat
⊥ < 0, then a set

is no longer Lyapunov stable and gets a Milnor attractor.
Milnor attractor is defned as follows.

Defnition 11. A closed invariant set H is called a weak
attractor in Milnor sense if its stable set (the basin of at-
traction) B(H) has a positive Lebesgue measure.

6.2. Independent Firms. In this subsection, we study a par-
ticular case in which competing frms behave as if they were
monopolistic frms with independent products, that is d � 0.
In this case, map (25) can be rewritten as follows:

Ts(d � 0) :
q1(t + 1) � q1(t) + kq1(t) a − (2 + c)q1(t)( 􏼁,

q2(t + 1) � q2(t) + kq2(t) a − (2 + c)q2(t)( 􏼁,
􏼨

(34)

which represents a diagonal map. It is easy to see that the
abovementioned map conjugates the logistic map,
x(t + 1) � μx(t)(1 − x(t)) with μ � 1 + ka. Te eigenvalues
of the abovementioned map λ⊥ � 1 − ka − 2k(2 + c)q1 and
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λ‖ � 1 − ka − 2k(2 + c)q2 are symmetric. Tis means that
any attracting set along the diagonal will have identical
eigenvalues. Due to this property, any period-doubling

bifurcation that has taken place along the diagonal (which is
also associated with the cascade bifurcation with the well-
known logistic map) will be followed by a simultaneous
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Figure 10: (a)Te 1D bifurcation diagram on varying the speed parameter k at the values, a � 2, c � 0.4, and d � 0.5. (b)Te time series for
q1 and q2 at the values, (a, c, k, d) � (2, 0.4, 1.4, 0.5). (c) Bursts away from Δ before synchronization takes place at the initial state
(q1(0), q2(0)) � (0.13, .012) and (a, c, k, d) � (2, 0.4, 1.4, 0.5). (d) Complex weak chaotic attractor raised at the values,
(a, c, k, d) � (2, 0.4, 1.4, 0.5). (e) Complex chaotic attractor raised at the values, (a, c, k, d) � (2, 0.4, 1.402, 0.5). (f )Te time series for q1 − q2
at the values, (a, c, k, d) � (2, 0.4, 1.402, 0.5).
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period-doubling bifurcation that has occurred along the
symmetric direction. Hence the following proposition is
raised.

Proposition 1 . Te equilibrium point Es(d � 0) � ((a/2 +

c), (a/2 + c)) is locally stable if k< (2/a). It loses its stability
through period-doubling bifurcation at k � kf � (2/a).

Proof. Substituting Es(d � 0) � ((a/2 + c), (a/2 + c)) in
(29) gives |λ⊥|< 1 and |λ‖|< 1 and this completes the proof.

At a � 2, one gets k � kf � 1 and hence period-2 cycle is
born. A further increase in k gives rise to high periodic cycles
and hence fip bifurcation is obtained. Figure 11 shows the
basin of attraction of two diferent period-4 cycles. Te frst
one occurs at the values, a � 2, c � 0.4, and k � 1.25 and lies
entirely on the diagonal. As k increases to 1.27, the second
one is born but on both sides from the diagonal. Tis is due
to the phenomena of multistability. □

7. Conclusion

Trough this paper, the synchronization and multistability
phenomena for a simple Cournot duopoly game whose cost
has been computed based on the Cobb–Douglas utility
function have been investigated. As in many relevant papers
in the literature, the fxed points of the proposed game are
obtained for the asymmetric case and their conditions of
stability are investigated. Our obtained results have con-
frmed that the Nash equilibrium point may be unstable

through fip bifurcation and under certain parameter values,
Neimark–Sacker bifurcation has been born after the period-
4 cycle. Some complex structures of basins for the nonlinear
two-dimensional map describing the game have been dis-
cussed. Our discussion has shown that the game’s map is
noninvertible and its plane has been divided into three zones
of preimages that are Z0, Z2, and Z4. Furthermore, under
certain parameter values the dynamics of the game’s map
behave as a weak chaotic attractor in Milnor’s sense. Tis
weak attractor has been distributed on the diagonal at which
the synchronized trajectories arise. Any slight increase in the
speed parameter has afected this weak attractor and con-
verted it into a complicated one. Finally, the case when
competing frms behave as if they were monopolistic frms
with independent products has been studied showing the
coexistence of two diferent period-4 cycles due to
multistability.

Te obtained results in this manuscript and their po-
tential applications may be extended in future works for
biological models and economic games with three com-
petitors under diferent types of adjustment mechanisms.
Furthermore, it may be also applied to economic games
whose main interests are to optimize their objectives which
include profts and social welfare.

Appendix

Map (9) admits the following Jacobian matrix:

J q1, q2( 􏼁 �
1 + k1 a − dq2 − 2 2 + c1( 􏼁q1􏼂 􏼃 − k1dq1

− k2dq2 1 + k2 a − dq1 − 2 2 + c2( 􏼁q2􏼂 􏼃
􏼠 􏼡. (A.1)
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Figure 11: Te basin of attraction of two diferent period-4 cycles at the parameter values, (a) a � 2, c � 0.4, and k � 1.25 and
(b) a � 2, c � 0.4, and k � 1.27.
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Proof of Proposition 1. At Eo, the Jacobian matrix (A.1)
becomes

J Eo( 􏼁 �
1 + ak1 0

0 1 + ak2
􏼢 􏼣. (A.2)

It is quite obvious that (A.2) is a diagonal matrix and
hence the corresponding eigenvalues are λi � 1 + aki, i � 1, 2
with eigenvectors (1, 0) and (0, 1). From the nonnegativity of
the adjustment speed parameter, ki, i � 1, 2 and from the
auxiliary parameter a, it is clear that |λi|> 1, i � 1, 2, henceEo

is an unstable repelling node. □

Proof of Proposition 2. At E1, the Jacobian matrix (A.1)
becomes

J E1( 􏼁 �

1 − ak1 −
k1ad

2 + c1

0 1 + ak2 1 −
d

2 + c1
􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.3)

It is clear that the matrix (A.3) is an upper triangular
matrix whose eigenvalues are given by

λ1 � 1 − ak1,

λ2 � 1 + ak2 1 −
d

2 + c1
􏼠 􏼡.

(A.4)

Te corresponding eigenvectors are (1, 0) along the q1 −

axis and (1, 1 − (k1d/k1(2 + c1) + k2(2 + c1 − d))), re-
spectively. It is clear that |λ1|< 1 gives 0< k1 < (2/a) and if
λ2 > 1, then E1 is a saddle point. If k1 > (2/a), then E1 is an
unstable node. □

Proof of Proposition 3. Te proof is similar to
Proposition 2. □

Proof of Proposition 4. Te Jacobian (A.1) at Nash point E∗
becomes

J E∗( 􏼁 �
1 − A 2 + c1( 􏼁 − Ad

− Bd 1 − B 2 + c2( 􏼁
􏼢 􏼣, (A.5)

where

A �
k1a 2 + c2 − d( 􏼁

c1 + 2( 􏼁 c2 + 2( 􏼁 − d
2, B �

k2a 2 + c1 − d( 􏼁

c1 + 2( 􏼁 c2 + 2( 􏼁 − d
2,

(A.6)

and the trace τ and determinant δ are given by

τ � 2 − A 2 + c1( 􏼁 − B 2 + c2( 􏼁,

δ � AB c1 + 2( 􏼁 c2 + 2( 􏼁 − d
2

􏼐 􏼑 − B 2 + c2( 􏼁 − A 2 + c1( 􏼁 + 1.

(A.7)

Using (A.6) and (A.7) Jury conditions, [30] can be
obtained as follows:

1 − τ + δ �
a
2 2 + c1 − d( 􏼁 2 + c2 − d( 􏼁

c1 + 2( 􏼁 c2 + 2( 􏼁 − d
2 k1k2, (A.8a)

1 + τ + δ � 4 +
a
2 2 + c1 − d( 􏼁 2 + c2 − d( 􏼁

c1 + 2( 􏼁 c2 + 2( 􏼁 − d
2 k1k2 −

2a c1 + 2( 􏼁 2 + c2 − d( 􏼁

c1 + 2( 􏼁 c2 + 2( 􏼁 − d
2 k1 −

2a c2 + 2( 􏼁 2 + c1 − d( 􏼁

c1 + 2( 􏼁 c2 + 2( 􏼁 − d
2 k2, (A.8b)

1 − δ � −
a
2 2 + c1 − d( 􏼁 2 + c2 − d( 􏼁

c1 + 2( 􏼁 c2 + 2( 􏼁 − d
2 k1k2 +

a c1 + 2( 􏼁 2 + c2 − d( 􏼁

c1 + 2( 􏼁 c2 + 2( 􏼁 − d
2k1 +

a c2 + 2( 􏼁 2 + c1 − d( 􏼁

c1 + 2( 􏼁 c2 + 2( 􏼁 − d
2k2. (A.8c)

Due to the nonnegativity of the auxiliary parameters
a, c1, c2, and d, the condition (A.8a) is always positive.
Simple calculations show that if the condition (A.8c) is
greater than zero, this means that the condition (A.8b) is
greater than zero and hence E∗ is asymptotically stable. □

Proof of Proposition 5. Now, suppose that the condition
(A.8b) is less than zero and the condition (A.8c) is kept
nonnegative then using simple calculations, the point E∗
loses its stability due to fip bifurcation if the following
condition is achieved:

k1k2 <
2 + c1( 􏼁

a 2 + c1 − d( 􏼁
k1 +

2 + c2( 􏼁

a 2 + c2 − d( 􏼁
k2 (A.9)

□
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