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RNA profiling for biomarker discovery:
Practical considerations for limiting sample
sizes
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Abstract. We have compared microarray data generated on AffymetrixTM chips from standard (8 micrograms) or low (100
nanograms) amounts of total RNA. We evaluated the gene signals and gene fold-change estimates obtained from the two methods
and validated a subset of the results by real time, polymerase chain reaction assays. The correlation of low RNA derived gene
signals to gene signals obtained from standard RNA was poor for less to moderately abundant genes. Genes with high abundance
showed better correlation in signals between the two methods. The signal correlation between the low RNA and standard RNA
methods was improved by including a reference sample in the microarray analysis. In contrast, the fold-change estimates for
genes were better correlated between the two methods regardless of the magnitude of gene signals. A reference sample based
method is suggested for studies that would end up comparing gene signal data from a combination of low and standard RNA
templates; no such referencing appears to be necessary when comparing fold-changes of gene expression between standard and
low template reactions.
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1. Introduction

DNA-based microarrays [1] enable us to quantify the
transcript levels of tens of thousands of genes simul-
taneously and is one of the most powerful approaches
towards understanding genome function. Microarrays
are rapidly emerging as a frontier technology for the
identification of potential biomarkers by application to
biological materials most relevant to the phenotypes
under investigation. These include biopsy materials
from fine needle aspirates (FNA), cell sub-populations,
or enriched isolates from laser capture microdissec-
tion (LCM). However, materials obtained from LCM
or FNA samples very rarely provide enough RNA that
is required for standard microarry reactions (5–100 mi-
crograms, depending on the technology). Newer meth-
ods, involving synthetic amplification of the starting
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RNA, are therefore necessary to make such samples
amenable to microarray analysis [2–7].

Consequently, an important question that needs to be
addressed is whether or not the data generated from low
amounts of RNA are comparable to data generated from
a standard reaction. Two prior publications [4,5] have
evaluated the reproducibility of fold-change estimates
between low template and standard reactions. One
study employed Affymetrix oligonucleotide arrays [5]
and the other study employed cDNA based arrays and
an exponential amplification strategy [4]. However,
none of these studies addressed the issue of compara-
bility of gene signals (as opposed to gene fold-changes)
between low template and standard reactions. In prac-
tice, however, we are often interested in determining the
expression pattern of a gene or genes across a wide va-
riety of experiments (resident in public and proprietary
databases) that may contain a mixture of low template
and standard microarray hybridizations. The present
report is aimed towards evaluating the comparability of
gene signals as well as gene fold-change estimates. We
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present a practical approach for making gene signals
from low-template and standard reactions more com-
parable. We also provide evidence that fold-change
estimates between low template and standard reactions
are comparable across genes of varying signals and also
comparable to results obtained on an independent gene
expression platform (real time, quantitative polymerase
chain reaction, reference 10).

2. Materials and methods

2.1. Sample preparation and processing

Experiments were carried out with total human RNA
samples from heart, kidney, lung, spleen and skele-
tal muscle (Ambion). The standard microarray re-
actions (SR) utilized 8 ug of total RNA whereas the
low-template amplification reactions (LTA) employed
100 ng of total RNA. SR reactions per tissue were sin-
gle reactions and the LTA were duplicates. The proto-
cols for synthesis of cDNA and cRNA from SR or LTA
were performed according to recommendations from
Affymetrix [7–9]. For LTA reactions, we followed the
Affymetrix protocol modified for small sample label-
ing [9]. The quality and integrity of RNA samples
were assessed on a Bioanalyzer 2100 instrument. For
both SR and LTA samples, 20 ug of the final cRNA
product was fragmented and 15 ug of the fragmented
cRNA was hybridized to Affymetrix human U95Av2
chips. The hybridized chips were scanned on a confo-
cal GeneArray scanner (Hewlett Packard, Santa Clara,
CA).

2.2. Real time quantitative PCR

Gene specific primers for real time quantitative PCR
were designed in Primer3 (http://www-genome.wi.mit.
edu/genomesoftware/other/primer3.html) using gene
sequences around Affymetrix probesets as input (from
www.affymetrix.com). Primers were obtained from
IDT. Reagents for the PCR reaction and SYBR Green
I dye were obtained from Molecular Probes (Eugene,
OR).

Real time PCR was conducted in the ABI PRISMTM

7700 Sequence Detection System (Applied Biosys-
tems, Foster City, CA). Each reaction contained 20
mM Tris-HCl (pH 8.3), 100 mM KCl, 7 mM MgCl2,
0.4 mM each dNTP (dATP, dCTP, dGTP, TTP), 0.05
unit/ml Taq DNA Polymerase, SYBR Green I dye,
300 nM each of gene-specific primers, and cDNA from

heart and kidney samples at 237 ng per reaction. The
PCR was initiated with a 10-minutes denaturation step
at 95◦C. Initial denaturation was followed by 40 cycles
at 95◦C for 15 seconds, 1-minute annealing at 60◦C.
Cycling was followed by a 4◦C hold. Analyses of
data were accomplished using the ABI PRISM 7700
Sequence Detection Software.

2.3. Data analysis

Gene expression data from LTA or SR were gen-
erated by the Microarray Analysis Suite 5.0 software
(MAS 5.0) provided by Affymetrix. Signal intensities
were obtained by scaling all hybridized chips to a target
intensity of 150. Data consisting of signal intensities,
call values (Present, Marginal or Absent, provided in
MAS5.0) and detection p-values were exported from
MAS 5.0 into two external applications, Microsoft Ex-
cel and JMP Statistical software (SAS Institute, Cary,
NC) for downstream analysis.

3. Results

3.1. Comparison of gene expression values

In the following sections, results from human heart
samples are primarily used as the basis for analysis.
Very similar results were obtained with the other RNA
samples from liver, lung, kidney and muscle. Typically
the LTA reactions resulted in chips with higher back-
ground signals although the differences were not statis-
tically significant. In the LTA, we also observed prefer-
ential hybridization to probes representing the 3′-ends
of control genes (GAPDH andβ-actin) compared to
probes in the 5′-ends of these genes, indicating a pro-
gressive shortening of cRNA product with each round
of linear amplification (data not shown). This is possi-
bly caused by the limited processivity of the oligo-dT
primed reverse transcription reaction which could re-
sult in incomplete cDNAs that are biased towards the
3′-ends of genes.

Comparison of the gene signals from the LTA sample
to the SR displayed good overall correlation (r = 0.88,
Fig. 1). Similar results have also been reported in
the literature [5] and has been used to infer the repro-
ducibility of oligonucleotide arrays using small sam-
ples. However, no further amplification beyond the
standard Affymetrix protocol was employed in [5] and
thus the results obtained are not strictly comparable
with the results discussed in our study which employed
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Table 1
Correlation of gene signals and fold-changes between low-template and standard microarray reactions on human heart samples. Gene signal
ranges for each bin (based on signals from standard reaction heart sample) are shown in row A. The correlation between the gene signals obtained
from the two methods are depicted as a function of different data treatment strategies (described in the text). The last row contains data on the
correlation of fold-changes in gene expression (heart vs kidney samples) between low-template and standard reactions. Row descriptors are as
follows: Untrans-Pearson, Pearson product moment correlation on untransformed data; Untrans-Spearman, rank-based Spearman’s rho values
on untransformed data; Log2 trans, Pearson correlation on logarithmically transformed data (to base 2); Square root trans, correlation on square
root transformed gene signals; Absent removed, correlation on filtered data excluding genes called ‘absent’ in both LTA and SR; Absent &
2-fold removed, correlation on filtered data excluding genes called ‘absent’ in LTA and SR plus genes showing a 2-fold or greater change in
signal between low template duplicates; Bin regression, correlation of gene signals adjusted by regression coefficient of each bin; Reference set,
correlation between samples adjusted by use of a ‘reference set’; LogRatio, correlation of log ratios (heart vs. kidney) between samples processed
either as LTA or SR

Signal bin Bin1 Bin2 Bin3 Bin4 Bin5 Bin6 Bin7 Bin8 Bin9 Bin10 TextID
signal range 0.2–9 9–20 20–35 35–58 58–93 93–144 144–222 222–382 382–787 787–13870 A

Untrans-Pearson 0.11 0.12 0.19 0.18 0.15 0.18 0.20 0.25 0.32 0.80 B
UntransSpearman 0.31 0.17 0.21 0.17 0.17 0.17 0.19 0.26 0.33 0.67 C
Log2 trans. 0.31 0.16 0.20 0.16 0.16 0.15 0.18 0.25 0.31 0.68 D
Square root trans. 0.25 0.15 0.21 0.17 0.17 0.17 0.20 0.26 0.33 0.77 E
Absent removed 0.35 0.33 0.34 0.23 0.18 0.18 0.27 0.22 0.27 0.77 F
Absent & 2-fold removed 0.28 0.26 0.26 0.25 0.12 0.25 0.25 0.11 0.18 0.74 G
Bin regression 0.15 0.12 0.18 0.13 0.14 0.18 0.21 0.22 0.30 0.79 H
Reference set 0.30 0.15 0.21 0.23 0.31 0.29 0.34 0.52 0.68 0.97 I
LogRatio (Heart/Kidney) 0.42 0.44 0.39 0.56 0.61 0.75 0.78 0.86 0.91 0.95 J

two rounds of target amplification. We then investi-
gated whether the correlation of expression between
LTA and SR was dependent on the magnitude of the
gene signal. We first ranked the genes from the standard
reaction (heart samples) based on their signals and then
partitioned the ranked genes into 10 groups containing
approximately equal number of genes. The first group
(hereafter referred to as Bin 1) consists of genes with
very low expression intensities (range 0.2–8.7)whereas
the final bin (Bin 10) is enriched for highly expressed
genes (range> 780). Intermediate bins contain genes
with intermediate intensities (Table 1, row A). We then
compared the correlation of expression intensities be-
tween the LTA and SR separately for each bin. Corre-
lation was measured either on the expression intensi-
ties of the genes in each bin (Pearson product-moment
correlation) or on the signal-based ranks of the genes
in each bin (Spearman’s rho). The results are shown in
Table 1 (row B,C). From Table 1 we observed that the
correlation between the two methods was in fact quite
low (r = 0.12− 0.3) for the low and medium intensity
bins (Bins 1–9), and improved (r = 0.78) only for the
highest intensity bin (Bin 10). This result indicates that
for low to medium intensity genes, the gene expression
signals obtained from the standard or the low template
methods can differ considerably for a given gene. It is
only with the high intensity genes (signal>780) that
the two methods produce comparable values. When
looking at the entire dataset, the correlation among the
high- signal genes overshadow the poor correlation in
the low and medium signal ranges. The lack of corre-
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Fig. 1. Correlation analysis of gene signals from human heart samples
processed through a low-template amplification reaction (LTA) or
standard reaction (SR). Correlation is computed based on Pearson
product-moments.

lation in the low and medium signal ranges might arise
from two sources: (a), the higher instrumental noise
(during scanning and recording of low-intensity pixels
from the hybridized chip) for lowly expressed genes
and (b), greater variability in the amplification reac-
tions for the low to medium-expressed genes compared
to highly expressed genes. Based on our analysis, we
concluded that it would be erroneous to consider all
gene signals between LTA and SR to be comparable.

We next evaluated several data processing methods
to determine if the LTA gene signals could be made
more similar to the SR gene signals. We explored three
different data processing approaches: (a) data transfor-
mation, (b) data filtering and (c) data extrapolation.
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4. Data transformation

The scaled expression data from the SR and LTA
was transformed by either taking the log of the intensi-
ties (base 2) or their square roots. The log and square
root transformations are often applied for variance sta-
bilization and we reasoned that such a transformation
might benefit the high variation observed between LTA
and SR data. The transformed data were then plot-
ted by bins to compare the SR and LTA (Table 1, row
D,E). Neither transform improved the bin-wise corre-
lation between the two methods when compared to the
untransformed data.

5. Data filtering

Data filtering consisted of excluding genes whose
expression signals cannot be measured with high confi-
dence, before comparing LTA to SR data. We reasoned
that such genes may be adding unnecessary noise in the
analysis and removing them could improve the correla-
tion. We filtered genes in two separate ways. In the first
method, we eliminated all genes that were not assigned
a call of “Present” in both the LTA and standard reac-
tion by the Affymetrix software (MAS5.0). In the sec-
ond method, we increased the stringency by addition-
ally excluding genes that showed a greater than 2-fold
difference in expression intensity between the repli-
cates of the LTA reaction. After filtering, the remain-
ing genes were subjected to the same binning strategy
(with fewer genes per bin) and compared for expres-
sion between SR and LTA (Table 1, row F,G). However,
we did not see any significant improvement between
the SR and LTA correlation as a function of data filter-
ing, suggesting that the lack of good correlation is not
driven entirely by the so called ‘absent’ or noisy genes.

6. Data extrapolation

The data extrapolation strategy involved processing
an unrelated sample set (hereafter called the ‘reference
set’) through both SR and LTA reactions. The ‘ref-
erence set’ was created by averaging the gene signals
from four tissues (kidney, lung, liver and muscle) sep-
arately for LTA or SR data obtained from these tissues.
A gene-by-gene comparison was made between the SR
and LTA for the reference set to obtain an ‘equalizing
factor’ for every gene that would make its LTA and SR
values identical in the reference set. The ‘equalizing
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Fig. 2. Validation of results from LTA reaction by quantitative
PCR. Nine genes, differentially expressed between heart and kid-
ney samples in the LTA reaction, were selected for quantitative
PCR. A comparison of fold-change results obtained with the mi-
croarray and quantitative PCR assays are shown (quantitative PCR,
black bar; fold-change from SR, white bar; fold-change from LTA,
hatched bar). Gene identifiers are as follows: TNNI3, troponin, car-
diac; MB, myoglobin; ART3, ADP-ribosyltransferase 3; MYOZ2,
myozenin 2; CDH1, cadherin 1; PLG, plasminogen; BBOX1,
gamma-butyrobetaine hydroxylase 1; FABP1, fatty acid binding pro-
tein 1, UGT1A, UDP-glycosyltransferase 1.

factor’ for any gene was determined by dividing the
gene’s average signal in the SR by its average signal in
the LTA (for the reference sample). Any gene in the
experimental LTA sample (heart tissue) was multiplied
by its ‘equalizing factor’ (obtained from the reference
set) to obtain an estimated expression value for the
gene in a standard reaction. The estimated values were
then compared to the experimentally obtained values
for the standard reaction after binning the genes as de-
scribed above (Table 1, row I). For the very low inten-
sity bins (Bins 1–3), no improvement in the correlation
is observed compared to other data processing meth-
ods. However, for Bin 4 and higher bins, the agreement
between LTA and standard reaction is significantly im-
proved compared to the bin-wise correlation observed
in the other methods. Thus, data processing through
the ‘reference set’ approach appears to generate more
comparable data between the LTA and standard reac-
tion compared to other methods (although the agree-
ment is not perfect). We also tried replacing the gene-
specific ‘equalizing factor’ with a bin-specific normal-
ization factor represented by the slope of a regression
line through the LTA and standard reaction data per bin
(Table 1, row H). However, this approach did not im-
prove the bin-wise correlation over the untransformed
data.



D.J. Kelly and S. Ghosh / RNA profiling for biomarker discovery: Practical considerations for limiting sample sizes 47

7. Comparison of fold-change

We next compared fold-change estimates of gene ex-
pression between two samples processed either through
LTA or the standard reaction. This is an issue of prac-
tical importance since in many instances it will not
be feasible to compare gene signals between similar
samples processed through the LTA and standard re-
actions or the question of interest will be around gene
expression changes (fold-changes) and not gene sig-
nals. Where it is only possible to obtain data on fold-
changes in gene expression from LTA samples, it is
important to determine the validity of such fold-change
estimates. We addressed this issue by comparing fold-
change estimates of gene expression between two sam-
ples (heart and kidney) that are processed through both
LTA and standard reaction. Genes were further binned
by intensities as described above. We then compared
the bin-wise correlation of fold-changes (expressed as
log ratios to the base 2) between LTA and standard re-
action samples. The observed results are in Table 1
(row J). In contrast to the results with gene signals,
we observed significant correlation between the fold-
change estimates between LTA and standard reaction
samples with the exception of the very low intensity
bins (Bins 1–3). The majority of the genes in the low
intensity bins are also associated with an ‘absent’ call
(from Affymetrix software) and are therefore, likely to
be removed from the data analysis anyway. This re-
sult implies that despite significant discrepancies be-
tween LTA and SR signals, the reported fold-change
values for genes are quite comparable. Similar reports
on the comparability of fold-change estimates between
small samples and standard reactions exist in the liter-
ature [4]; however the small-sample amplification pro-
tocol and the microarray platform used in the report are
different from the one discussed here.

8. Validation of results by quantitative PCR

We next determined the agreement between the fold-
change estimates obtained for genes in the LTA proce-
dure (heart vs. kidney samples) to results obtained on
an independent RNA-measurement platform (real-time
PCR). This step is necessary for determining the valid-
ity of the LTA results. A total of 9 genes were selected
for validation and included genes that are upregulated
or downregulated in heart compared to kidney. As
shown in Fig. 2, we observed considerable agreement
between the LTA and RT-PCR methods in the directions

of fold-change observed, further validating the results
from the LTA reactions. It is to be noted that for some
of the 9 genes, the fold-change estimates obtained by
RT-PCR is greater in magnitude than fold-changes re-
ported from the microarray studies. This is attributable
to the greater sensitivity of the RT-PCR reaction which
is based on an exponential amplification of signal, com-
pared to signal detection on the Affymetrix chips which
rely on a linear amplification of the sample RNA. These
differences are further exacerbated for low abundance
transcripts.

9. Conclusion

We focus on a key issue of data comparability when
applying microarrays to limiting biological samples for
the identification of biomarkers. We used correlation
analysis to evaluate the agreement between the low
template and standard reactions either on gene signals
(within one sample) or fold-change of gene expression
(between two samples). Our findings indicate that the
correlation between gene signals is highly dependent
on the magnitude of gene expression; genes with low
or medium expression do not correlate well between
the low template and standard methods. Such discrep-
ancies can arise from multiple experimental factors, in-
cluding the RNA amplification steps and the ability of
the scanners to reliably detect low expression levels.
Common data processing techniques, such as log trans-
forms or data filtering failed to improve the correlation
between the two methods significantly. However, in-
cluding a non-experimental reference sample in the ex-
perimental design did significantly improved the level
of correlation between the low template and standard
reactions. When gene fold-changes are compared be-
tween two samples, the two methods provide results
that are in good agreement with each other (an unfavor-
able bias towards low expressors, although not entirely
removed, is much less) and does not necessitate further
treatment of the data. Finally, the fold-change esti-
mates obtained from an LTA study can be reproduced
on an independent RNA-measurement platform.

Based on our findings we propose the following. If
there is a need to compare gene signals from low tem-
plate samples to gene signals from standard microarray
reactions, the method of data extrapolation through the
use of a reference sample is advised. The reference
sample can be constructed in-silico. In our experience,
more reliable estimates of gene expression are obtained
if the reference samples are physiologically not too dis-
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tinct from the experimental samples (e.g. a cell-line
based reference sample is not optimal for an experiment
involving tissues). However, if the only comparisons
of interest are fold-changes of gene expression, then
the results obtained from the low template samples can
be accepted as comparable to standard reaction results
without further manipulation of the data (excepting for
the very low expressed genes). In both cases, better
agreement is to be expected for genes with higher levels
of expression.
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