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Abstract. Aim: We investigated on parental history and IgE serum level in 2588 consecutive newborns to individuate babies “at
risk” of atopy at birth and we analysed the polymorphisms of class III region to evaluate the association with immunogenetic
markers of HLA: C4A, C4B, LTA, RAGE and TNFA genes; we performed TNF and IgE receptor (FCERB1) physiologically
related gene polymorphisms.
Result: 791 babies/2588 (30.6%) were considered “at risk” for atopy and followed-up: 400 had familial history of atopy (at least
one parent or sibling), 256 had IgE > 0.35 kUA/l at birth and during the follow-up and 135 were positive for both conditions.
The allele C4B2 was significantly more frequent in the sample of babies at risk (22.1% vs 10%, p < 0.001). Furthermore, the
mean value of IgE at birth in babies carrying the allele C4B2 was 2.26 KUA/l versus 0.74 KUA/l in those not carrying this allele
(p = 0.01). No significant association emerged for RAGE at the centromeric end of class III region and for LTA, TNFA at the
telomeric one. TNFRI, TNFRII and FCERB1 gene polymorphisms also seemed not implicated.
Conclusion: Our study confirms that HLA class III region seems involved in familial predisposition to atopy, and C4B gene
probably acts as a marker of a more restricted subregion.

1. Introduction

The incidence, prevalence and severity of atopic dis-
ease are increasing in our industrialised countries: it
seems of peculiar interest understanding the ethiology
of this condition finalised to the prevention. Relation-
ship among IgE hyperproduction and genetic predis-
position or environmental influences have already been
demonstrated [1]. It is well known that babies of atopic
parents are at high risk of developing atopic diseases;
however, the phenotypic expression of such diseases
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varies widely, as atopy is a heterogeneous state, prob-
ably determined by genetic and environmental interac-
tions.

Atopic disease is often mediated by the production
of immunoglobulin E (IgE) and is characterized by pre-
dominance of Th2 pathway activation. Neonates with
a familial risk of IgE-mediated allergy have a signifi-
cantly decreased production in cord blood of the Th1
cell secreted cytokines, IFN-γ and TNF-α, that could
be correlated with atopy later in life [2,3].

Several investigators have provided evidence for a
genetic susceptibility of atopy [4]. Despite evidence
of heritability, it has been difficult to determine ge-
netic markers that predispose individuals. Many stud-
ies have attempted to identify an association between
this condition and immune genes and in particular with
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HLA genomic region, given its role in regulating the
immune response. In particular MHC (chromosome
6p21.3) was considered to be a major locus influencing
immunoglobulin levels: IgA deficit [5,6] and modula-
tion of total serum IgE [7]. HLA class II polymorphism
is variably associated with sensitisation to specific al-
lergens, but few convincing data supporting association
of HLA class II with asthma or general state of atopy,
emerged [8]. Associations of asthma with HLA class
III polymorphisms, in particular with Tumor Necro-
sis Factor (TNF), were also proposed. TNF-α, a po-
tent pro-inflammatory cytokine, was found in excess in
asthmatic airways [9,10], but these results emphasize
the inflammatory nature of the asthmatic response as a
distinct fact from its allergic basis [11].

In order to individuate babies “at risk” of atopy at
birth we enrolled and follow-up all newborn with IgE >
0.35 KU/l and/or familial history of atopy and we want
to evaluate the association between these risk condi-
tions and immunogenetic markers of HLA class III re-
gion (6p21.3): receptor advanced glycation end prod-
ucts (RAGE), complement serum component 4 (genes
C4A and C4B), Lymphotoxin alpha (LTA), and TNFA
genes. HLA class III region contains about 70 struc-
tural genes spanning 1100 Kb of genomic DNA in an
unusually dense arrangement. The physiological role
of many class III products are yet to be clearly deter-
mined, but many diseases (autoimmune, neurological,
endocrinological and malignant) have been associated
with this subregion [12–17]. Studying these polymor-
phisms could be useful to better understand the molec-
ular basis of many diseases. Several genes located
within HLA class III are not “immune response” genes
but are critical for growth, development and differen-
tiation as they code for receptors, extracellular matrix
proteins and transcriptional factors [17–22]. Further-
more we investigated TNF and IgE receptor physiolog-
ically related genes coding for TNF receptor I (TNFRI
12p13) and II (TNFRII 1p36) and β subunit of the high-
affinity IgE receptor (FCERB1 11q13) [23,24]. We
presented HLA class II polymorphisms of DRB1 lo-
cus in 4 unrelated families of babies carrying the allele
C4B2 and hyperIgE from birth and history of atopy,
in order to better define the inheritance by descent of
classical HLA predisposing genes.

2. Materials and methods

2.1. Identification and follow up of babies at risk

We investigated familial history of atopy and evalu-
ated total serum IgE at birth in 2588 consecutive full

term healthy newborns at the Division of Neonatology
from January 2001 to June 2003 whose parents signed
informed consent. 127 babies born in Pavia (4.7%) in
the same period were not tested for lack of parental
consent. Babies with parents or a sibling suffering for
allergic dermatitis, rhynitis or asthma and babies with
total serum IgE > 0.35 KU/L were considered “at risk”
and followed up: a blood sample was drawn every six
months to evaluate total IgE level and specific IgE to a
panel of food or inhalants allergens. The total IgE have
been carried out by fluoroenzymeimmunoassay (Phar-
macia CAP System FEIA. Uppsala, Sweden). IgE cal-
ibrators, traceable to the WHO preparation 75/502 for
Human IgE, are used for the determination of total IgE
and values are expressed in kU/l.

Atopy screening test (Phadiatop ) and multi-aller-
gen tests (Fx5) are expressed as positive or negative
using the specific IgE calibrator 0.35 kU/l as cut-off.

2.2. Genetic study design

The typing of C4 polymorphisms was planned in
a subsample of 6 month-old babies scheduled for the
follow-up visit in September-December 2001: thus the
allele frequencies of C4A and C4B genes were evalu-
ated in 61 Caucasian (Northern Italy) consecutive ba-
bies “at risk” who show-up at the visit out of 92 in-
fants scheduled. At the follow-up visit, scheduled at 12
months, 35 of the 61 babies already typed for C4A and
C4B at 6 months of age were typed for RAGE, LTA,
TNFA, FCERB1, TNFRI and TNFRII. The remaining
26 were lost to follow-up.

To avoid Bonferroni correction for multiple tests we
retested all the significant associations in an indepen-
dent sample: inclusion criteria were the same of the
first sampling (being at risk of atopy and being sched-
uled for 6 month visit in the period selected for the
genetic study enrollment). 34 consecutive babies were
enrolled at the 6 month visit in April-May 2002 (C4A
and B typing). Sixteen babies scheduled for 6-month
visit did not show-up and were not tested. 23 of these
babies show up at the follow-up visit of 12 months
and were typed for TNFRI in October-November 2002
(Fig. 1).

2.3. Controls

Gene frequencies of the babies at risk were compared
with those of 245 blood donors of the same area (Pavia
province). There were 112 females (46%), this fre-
quency is quite similar to the one observed in our sam-
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Fig. 1. Study design.

ple of infants (female: 47.3%). Mean age was 35 years,
obviously older than our baby sample, but difference
in genotype distribution in different age class has not
been reported; so we prefer to use healthy blood donors
without atopic disorders than other babies at birth. For
the second sample of babies used to retest the signifi-
cant associations we enrolled as controls 153 umbilical
cord blood donors of our cord blood bank at the Trans-
fusional center , born in Pavia to ensure homogeneity
also with age. All babies were IgE < 0.35KU/L at birth
and blood samples were drawn at age of six months
during routine examination.

2.4. Genetic polymorphisms

C4A and C4B polymorphisms were investigated at
proteinic level. Samples of serum were conserved
in EDTA, treated with carboxipeptidase and neu-
roaminidase and electrophoresed onto agarose gel with
high voltage. The allelic proteinic bands were under-
lined after immunofixation with polyclonal antibodies
anti-human C4 and Coomassie blue painting. The elec-
trophoretic bands were subjected to densitometric anal-
ysis in order to define null alleles, hetero and homodu-
plications, as suggested by Mauff [25]. C4A and C4B
genes code for two serum isophorms [12–14] and the
polymorphism had been associated with many disor-
ders [15–22].

These polymorphisms were investigated at genomic
level:

LTA +252 G > A: RFLP obtained by NcoI restriction
according a method modified from Ozaki [26] using
primer F: 5’-CCGTGCTTCGTGCTTTGGACTA-3’,
primer R: 5’-AGAGCTGGTGGGGACATGTCTTC-3.

RAGE −374 T > A: RFLP obtained by Tsp509I re-
striction according a method modified from modified
from Hudson [27] using the primers RAGE PROF: 5’-
CCTGGGTTTAGTTGAGAATTTTTT-3’ and RAGE
PROR: 5’-GAAAGGCACTTCCTGGGTTCT-3’.

TNFA −308 G > A: RFLP obtained by NcoI restric-
tion according a method modified from Sakao [28] us-
ing the primers TNFRE3: 5’-AAAGTTGGGGACAC
ACAA-3’, TNFU2: 5’-AAATGGAGGCAATAGGTT
TTGAGGGCC-3’.

TNFRI +36 A > G: RFLP obtained by MspAII re-
striction according a method modified from Pitts [29]
using primer F: 5’-GAGCCCAAATGGGGGGAGTG
AGAGG-3’ and primer R: 5’-ACCAGGCCCGGGCA
GGAGAG-3’.

TNFRII +196 T > G: RFLP obtained by NlaIII
restriction according a method modified from Al-
Ansari [30] using primer F: 5’-ACTCTCCTATC
CTGCCTGCT-3’, primer R: 5’-TTCTGGAGTTGG
CTGCGTTTGT3’.

FCERB1 −109 C > /T: RFLP according the
method by Hizawa [31] using primer sense: 5’-
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Table 1
(a) C4A and C4B polymorphism study in infants and controls

Allele Babies “at risk” Controls

C4A0 4 (3%) 39 (11%)
C4A2 2 (2%) 36 (10%)
C4A3 116 (95%) 260 (73%)
C4A5 0 7 (2%)

C4B0 10 (8%) 52 (15%)
C4B1 85 (70%) 269 (75%)
C4B2∗ 27 (22%) 35 (10%)
∗p = 0.001.

(b) C4B2 allele distribution in different categories analysed

Allele Babies with IgE Babies with familial Babies with Total
> 0.35 KUA/l history of atopy both conditions Controls

C4B2 8/38 14/66 5/18 27/122 35/356
(21.0%)a (21.2%)b (27.8%)c (22.1%)d (10%)

ap = 0.05 vs controls.
bp = 0.003 vs controls.
cp = 0.03 vs controls.
dp = 0.0009 vs controls OR = 2.61 (95% CI: 1.45–4.69).

GTGGGGACAATTCCAGAAGA-3’ and antisense:
5’CCGAGCTGTCCAGGAATAAA-3’.

HLA-DRB1: a polymerase chain reaction sequence
specific primer (PCR-SSP) technique was used to typed
HLA-DRB1 at low resolution level [32].

2.5. Statistical methods

Comparisons of allele frequencies found in controls
and children with IgE > 0.35, children with familial
history of atopy and children with both conditions were
made by means of χ2 or Fisher exact test as appropri-
ate. The mean value of IgE at birth in babies carrying
or not the allele C4B2A was compared using t-test for
independent samples. A p value <0.05 was considered
significant and multiple test correction was not applied
since all significant association were retested in an in-
dependent sample of babies with appropriate control.
All analysis were performed using STATA v 8.0 (Stata-
Corp, College station, TX). Given the allelic frequency
in the control sample and the power of the study for a
true gene association of C4A and C4B alleles was 31%
when OR = 2, 76% when OR = 3 and 99% when OR
= 5.

3. Results

We enrolled 2588 consecutive babies born at Neona-
tology Division of IRCCS Policlinico S. Matteo in
Pavia (North Italy) whose parent signed informed con-

sent: 256 had total IgE > 0.35 KU/l at birth and dur-
ing the follow-up (6 months and 1 year); 400 had fa-
milial history of atopy (at least one parent or sibling),
while 135 were positive for both conditions (Fig. 1).
All these 791 babies/2588 (30.6%) were considered “at
risk” for atopy and clinically followed-up whilst 1797
were negative both for IgE presence and familial his-
tory of atopy. The percentage of males and females in
babies with IgE > 0.35 KU/l was 52.7% and 47.3%
respectively; among the hyperIgE infants with familiar
history of atopy in 49% of cases the atopic parent was
the mother, in the 41% was the father, in 8% both the
parents were atopic; in the remaining 2% the familiar-
ity was given by sibling. In nonhyperIge infants with
familiar history of atopy in 35% of cases the atopic
parent was the mother, in the 46% was the father, in
16% both the parents were atopic; in the remaining 3%
the familiarity was given by sibling. Babies with atopic
mothers are at higher risk of being hyperIgE at birth
(OR 1.77 p = 0.004).

As shown in Table 1(a), no significant difference
emerged for C4A alleles while the allele C4B2 was sig-
nificantly more frequent in the sample of babies at risk
(22.1% vs 10%; p < 0.001). As shown in Table 1(b),
the frequency of the allele C4B2 is particularly high in
babies that presented both hyperIgE and familial his-
tory of atopy (27.8%) while in babies with hyperIgE is
21.0%, and 21.2 in babies with familial history of atopy.
All these frequencies are significantly higher than in
controls (p = 0.03, p = 0.05 and p = 0.003 respec-
tively). These data were confirmed in an independent
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Table 2
LTA, RAGE, TNFA, TNFRI, TNFRII and FCERB1 genotypes distribution

Genotypes Babies “at risk” Controls P OR

LTA+252 AA 2/35 (5.7%) 18/241 (7.0%)
LTA+252 AG 15/35 (42.8%) 107/241 (44.0%)
LTA+252 GG 18/35 (51.4%) 116/241 (48.0%)

0.89 1.14
RAGE-374 AA 5/35 (14.3%) 49/213 (23.0%)
RAGE-374 AT 16/35 (45.7%) 97/213 (45.5%)
RAGE-374 TT 14/35 (40.0%) 67/213 (31.5%)

0.42 1.45
TNFA-308 GG 25/35 (71.4%) 185/241 (76.8%)
TNFA-308 GA 10/35 (28.6%) 53/241 (22.0%)
TNFA-308 AA 0 3/241 (1.2%)

0.57 1.41
TNFRI+36 AA 13/35 (37.1%) 74/228 (32.5%)
TNFRI+36 AG 22/35 (62.9%) 119/228 (52.2%)
TNFRI+36 GG 0 35/228 (15.3%)

0.044 infinite
TNFRII+196 MM 18/35 (51.4%) 104/190 (54.7%)
TNFRII+196 MR 15/35 (42.9%)2 75/190 (39.5%)
TNFRII+196 RR 2/35 (5.7%) 11/190 (5.8%) 0.93 1.07

FCERB1-109 CC 21/57 (36.8%) 38/147 (25.8%)
FCERB1-109 CT 22/57 (38.6%) 62/147 (42.2%)
FCERB1-109 TT 14/57 (24.6%) 47/147 (32.0%)

0.27∗ 1.44
∗Subdividing babies in three categories: babies with familial history of atopy:
significantly higher frequency of CC genotype (12/27, 44.4% vs 25.8% p =
0.05); babies with IgE > 0.35 KU/l: no significant difference was observed
(5/18 27.8%I vs 27.8%) babies with both conditions: no significant difference
was observed (4/12 33.3% vs 27.8%).

sample of other 34 babies (gene frequency of C4B2 in
babies at “risk” 20% vs 9% in cord blood donors, p =
0.0036, OR 2.78, 95%CI 1.26–5.92). Furthermore, the
mean value of IgE at birth in babies carrying the allele
C4B2 was 2.26 KUA/l versus 0.74 KUA/l in those not
carrying this allele (p = 0.01).

At the follow-up visit, scheduled at 12 months, a
first group of these babies was typed for RAGE, LTA,
TNFA and TNFRI and TNFRII. As shown in Table 2,
the only significant difference is represented by TNFRI
polymorphism were the genotype GG is absent in ba-
bies “at risk”. To confirm our findings we retested the
association in an independent sample of other 23 babies
at risk presenting at the follow-up of 12 months of age.
In this group the difference was no longer significant
(Table 3).

Although no significant difference emerges between
the whole sample of babies “at risk” and controls (Ta-
ble 2), the polymorphism −109 in the promotor region
of FCERB1 showed in babies with familial history of
atopy a higher frequency of CC genotype (12/27,44.4%
vs 25.8% p = 0.05), while no difference was observed
in babies with IgE > 0.35 KU/l and in babies with both
conditions (5/18 27.8% and 4/12 33.3% respectively vs
38/147 25.8% in controls).

Table 3
TNFRI+36 G > A polymorphism in an independent sample of 23
babies at risk

Genotypes Babies at risk Cord blood donors p

AA 10/23 (43.5%) 51/153 (33.3%)
AG 10/23 (43.5%) 79/153 (51.7%)
GG 3/23 (13.0%) 23/153 (15.0%)

0.63

As shown in Fig. 2, investigating families, a com-
mon recurrent haplotype was not found but we noticed
the alleles (inherited by the allergic parent along with
C4B2) DRB1*01, *03 and *1001. These alleles were
recently shown to be associated to a high serum level
of IgE [33] in a white population from the Australian
rural town of Busselton. The allergic parent was the
mother in 3 out 4 cases; although the number of fami-
lies is limited this finding could suggest to investigate
a underlying parent-of-origin effect that could be in
common with other immune disorders [34–37].

4. Conclusion

Identifying the genes underlying atopy status could
be useful to better understand its pathogenesis and to
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Fig. 2. Family sample. The black symbols indicate an atopic subject, the grey ones a hyper IgE infant.

improve preventive strategies and therapies. Differ-
ent chromosomal regions containing genes influencing
atopy have been so far analyzed and several candidate
gene polymorphismshave been investigated. Our study
shows that C4B gene could be involved in familial pre-
disposition to atopy, although we cannot exclude that
the high frequency of C4B2 allele could just act as a
marker for other closely linked gene(s). C4B2 is not
known as a functionally deficient allele; but it was as-
sociated with some autoimmune disease as uveitis [17]
and diabetes [18]. C4 plays a fundamental role in anti-
body production as showed in hamsters, in transgenic
mice experiments and in man relatively to the anti-
HBV vaccine nonresponsiveness [19–22]. C4 serum
protein is involved in immunocomplexes destruction,
and since asthma patients were shown to have high lev-
els of immunocomplexes a suggestive hypothesis could
be that the C4B2 allele was impaired in this function.
On the other hand the C4B2 allele could act simply
as a marker: that is why we considered linked genes
as the telomeric ones TNFA/LTA and the centromeric
gene RAGE [27]. Non-HLA polymorphic genes as
TNFRI and TNFRII were also analysed because func-
tionally strictly related. No significant association was
observed. Although merely speculative since the small
number of families investigated, the family study could
suggest that it could be interesting to investigate the
HLA region between class II and III. Also regarding
FCERB1 gene we did not find significant association
except for babies with familial history of atopy (Ta-
ble 2, footnote), differently from what reported by oth-
ers: FCERB1 gene was strongly associated with asthma
and hyperproduction of IgE in Japanese and Australian
aborigenes [23,24].

We are following-up these babies in a precise pro-
gram to evaluate a possible correlation with clinical
development of overt atopic disease later in life. At
present we have not children with atopic problems.
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