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Objective.This study aimed to evaluate the relationships between long noncoding RNAs (lncRNAs) in tumor tissues and hepatocel-
lular carcinoma (HCC) aggressiveness and survival.Methods. We correlated the lncRNAs in tumor tissues with HCC survival and
clinicopathological features based onGene ExpressionOmnibus expression profileGSE36376.Results. Eight lncRNAs and 240HCC
patients were included. Cox regression analysis indicated that HULC was a positive factor for HCC overall survival (HR = 0.885,
95% CI = 0.797–0.983, and 𝑃 = 0.023) and disease-free survival time (HR = 0.913, 95% CI = 0.835–0.998, and 𝑃 = 0.045). H19 and
UCA1were both demonstrated to be risk factors of HCCdisease-free survival inmultivariate Coxmodel (HR= 1.071, 95%CI = 1.01–
1.137, and 𝑃 = 0.022 and HR = 2.4, 95% CI = 1.092–5.273, and 𝑃 = 0.029, resp.). But Kaplan-Meier method showed no significant
association between UCA1 and HCC disease-free survival (log rank 𝑃 = 0.616). Logistic regression demonstrated that H19 was
overexpressed in HBV-infected patients (OR = 1.14, 95% CI = 1.008–1.29, and 𝑃 = 0.037). HULC had a significant association with
vascular invasion (OR = 0.648, 95% CI = 0.523–0.803, and 𝑃 < 0.001). H19 and MEG3 were both considered to be risk factors
for high AFP level (OR = 1.45, 95% CI = 1.277–1.646, and 𝑃 < 0.001 and OR = 1.613, 95% CI = 1.1–2.365, and 𝑃 = 0.014, resp.).
Conclusions. Contributing to decreased susceptibility to vascular invasion, upregulation of HULC in tumor tissues was positively
associated with HCC survival. In contrast, H19 overexpression might be risk factor for HCC aggressiveness and poor outcomes.

1. Introduction

Globally, HCC is the most common primary liver cancer,
the fifth most common cancer, and the third most common
cause of cancer-related deaths, representing around 5% of
all cancers [1]. The occurrence and metastasis of HCC
is a multistep process including tumor clinicopathological
features, changes in signal transduction pathways, environ-
mental makeup, gene mutations, and gene regulations [2,
3]. Recently, the widespread search for effective biomarkers
of HCC is hoped to lead to earlier diagnosis and improve
prognosis by allowing earlier intervention [3]. However, the
molecular mechanism of HCC, especially gene regulatory
mechanism, has not yet been fully elucidated.

It is well known that more than 90% of human genome
undergoes transcription but does not code for proteins.
lncRNAs are a class of noncoding RNA transcripts longer
than 200 nucleotides with little or no protein-coding capacity
[4]. As one of the key members of gene regulatory networks,
lncRNAs take part in epigenetic regulation and are involved
in diverse biological processes as well as disease pathogenesis
[5, 6]. It is proved that lncRNAs can be used as potential
carcinogenic and anticarcinogenic RNA [7]. In recent years,
several reports revealed that lncRNAs were dysregulated in
cancers [8–10], though their specific role in cancer prolif-
eration, development, and progression was largely unclear.
Increasing evidence has indicated that lncRNAs play a critical
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role in tumor biology, including tumor initiation, progres-
sion, and metastasis [11–13]. In addition, recent studies
indicated that a number of lncRNAs are dysregulated in
HCC, while their aberrant expressions are associated with
tumorigenesis, metastasis, and diagnosis. Unfortunately, few
data focused on the association of lncRNAs with prognosis
of HCC [14, 15]. On the other hand, the roles of lncRNAs in
HCC aggressiveness were controversial [10, 14].

Considering that increased evidence relates changes in
expression levels of lncRNAs to cancers and controversial
conflict existed before and few studies have evaluated the
role of lncRNAs in HCC patients, further analysis to clarify
this relationship between lncRNAs and HCC prognosis is
urgently needed.This study set out to define the relationships
between lncRNAs and survival and clinicopathological fea-
tures in HCC patients, in the hope that the data may provide
novel biomarker candidates as well as useful insights into the
pathogenesis and progression of HCC.

2. Methods

2.1. Patients. 240 tumor tissues containing no necrosis or
hemorrhage were available from primary HCC patients who
were treated with surgical resection or liver transplantation
at Samsung Medical Center, Seoul, Korea, from July 2000
to May 2006. None of the patients received preoperative
chemotherapy. Informed consent was obtained from each
patient included in the study, and this study was approved
by the institutional review board of SamsungMedical Center,
Seoul, Korea, which is consistent with reports by Lim et al.
[16].The second analysis protocol was approved by the Ethics
Committee of Shanghai Public Health Clinical Center, Fudan
University.

2.2. Source of Data. Tumor tissues of HCC patients after
curative hepatectomy in this study were profiled using Illu-
mina HumanHT-12 V4.0 expression beadchip (Illumina Inc.,
SanDiego, CA).The expression data was retrieved fromGene
Expression Omnibus (GSE36376, http://www.ncbi.nlm.nih
.gov/geo/) [16]. We restricted our search to genes within the
lncRNAs, and eight lncRNAs previously reported in chronic
liver diseases were included in our analysis.

2.3. End Points. The overall survival was defined as time
from surgery to the date of death or last follow-up. The
disease-free survival was defined as time from surgery to
the date of tumor recurrence or death. The censoring time
was defined as the final documented date of no evidence of
tumor recurrence by imaging. As presented by Lim et al.
[16], clinicopathological features of HCC patients including
vascular invasion, major portal vein invasion, intrahepatic
metastasis, multicentric occurrence, and nontumor liver
pathology were all considered. Patient serum 𝛼-fetoprotein
levels were evaluated and three phase dynamic computed
tomography scans were performed at least once every 3
months after surgery until December 31, 2010. When tumor
recurrence was suspected, precise diagnostic imaging was
performed by magnetic resonance imaging.

Table 1: Baseline characteristics of HCC patients.

Characteristics 𝑛 = 240

Male, 𝑛 (%) 199 (82.9)
Age, median (range), years 53 (45–61)
Body mass index, mean ± SD, kg/m2 24.2 ± 2.8
Etiology, HBV/HCV/alcohol/NA, 𝑛 186/20/14/20
Tumor size, median (range), cm 3.7 (2.5–6.15)
Vascular invasion, 𝑛 (%) 133 (55.4)
Major portal vein invasion, 𝑛 (%) 9 (3.8)
Intrahepatic metastasis, 𝑛 (%) 55 (22.9)
Multicentric occurrence, 𝑛 (%) 13 (5.4)
Direct invasion of adjacent organ, 𝑛 (%) 5 (2.1)
AJCC stage, I/II/III/IV, 𝑛 102/100/33/5
BCLC stage, A/B/C, 𝑛 139/91/10
𝛼-Fetoprotein >200 ng/mL, 𝑛 (%) 87 (36.3)
Liver histology of nontumor tissues, 𝑛 (%)
Cirrhosis 115 (47.9)
Chronic active hepatitis 58 (24.2)
Chronic persistent hepatitis 36 (15.0)
Reactive hepatitis 11 (4.6)
Alcoholic hepatitis 11 (4.6)

NA: not available; HBV: hepatitis B virus; HCV: hepatitis C virus; AJCC:
American JointCommittee onCancer; BCLC: BarcelonaClinic LiverCancer.

2.4. Statistical Analysis. Student’s t-test was used to compare
means for normally distributed continuous data; Mann-
WhitneyU test was used for nonnormally distributed contin-
uous data. Factors associated with the outcomes and clinico-
pathological features were assessed by univariate analysis and
multivariate analysis separately using Cox and logistic regres-
sion. Only covariates significantly associated with outcomes
at univariate analysis (two-sided 𝑃 < 0.10) were included
in the multivariate model. Results were reported as hazard
ratios (HR) or odd ratios (OR) with 95% confidence intervals
(CI). The Kaplan-Meier method was used to compare overall
survival between different groups, and the log rank test
was used to estimate the difference in survival. ROC curve
was performed to evaluate predictive values of potential
factors for HCC survival. Statistical analyses were performed
using PASW Statistics software version 18.0 from SPSS Inc.
(Chicago, IL, USA). All statistical tests were two-tailed, and
differences with 𝑃 < 0.05 were considered statistically
significant.

3. Results

3.1. Patient Characteristics. As shown in Table 1, of the 240
patients included, 82.9% (199/240) were men and 17.1%
(41/240) women with a median age of 53 (45–61) years
and a mean body mass index (BMI) 24.2 ± 2.8 kg/m2.
77.5% (186/240) of patients had evidence of hepatitis B virus
(HBV) infection, 8.3% (20/240) had evidence of hepatitis C
virus (HCV) infection, and 5.8% (14/240) had evidence of
alcohol use and for 20 patients no information was available.
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Table 2: LncRNA expression between tumor tissues and nontumor tissues of HCC patients.

LncRNAs Tumor tissues Nontumor tissues P value
H19, median (range) 9.28 (6.10–14.54) 10.65 (7.58–13.83) <0.001
HOTAIR, mean ± SD 6.19 ± 0.15 6.20 ± 0.14 0.448
MEG3, median (range) 5.98 (5.56–11.15) 5.92 (5.64–9.30) 0.001
MALAT1, mean ± SD 5.82 ± 0.13 5.84 ± 0.14 0.138
HULC, median (range) 11.87 (6.06–14.23) 11.77 (7.80–12.80) 0.085
UCA1, median (range) 6.51 (6.14–7.62) 6.51 (6.06–6.90) 0.373
HOXA13, median (range) 6.62 (6.11–8.57) 6.45 (5.92–6.81) <0.001
KCNQ1OT1, median (range) 6.23 (5.45–10.21) 6.17 (5.63–6.63) 0.004

Table 3: Univariate and multivariate Cox regression analysis of lncRNAs associated with overall survival of HCC patients.

LncRNAs Univariate analysis, HR (95% CI) P value Multivariate analysis, HR (95% CI) P value
H19, per increase of 1 unit 1.025 (0.955–1.101) 0.488
HOTAIR, per increase of 1 unit 3.059 (0.788–11.873) 0.106
MEG3, per increase of 1 unit 1.079 (0.884–1.318) 0.455
MALAT1, per increase of 1 unit 3.009 (0.673–13.45) 0.149
HULC, per increase of 1 unit 0.859 (0.773–0.955) 0.005 0.885 (0.797–0.983) 0.023
UCA1, per increase of 1 unit 1.986 (0.842–4.685) 0.117
HOXA13, per increase of 1 unit 0.715 (0.449–1.14) 0.159
KCNQ1OT1, per increase of 1 unit 0.753 (0.415–1.366) 0.35
HR: hazard ratios; CI: confidence intervals.

Themedian tumor size was 3.7 (2.5–6.15) cm. 55.4% (133/240)
of patients had evidence of vascular invasion, 3.8% (9/240)
had evidence of major portal vein invasion, 22.9% (55/240)
had evidence of intrahepatic metastasis, and 5.4% (13/240)
had evidence of multicentric occurrence. 2.1% (5/240) had
direct invasion of adjacent organ. 36.3% (87/240) of these
patients had an alpha-fetoprotein level more than 200 ng/mL
and 47.9% (115/240) had a history of cirrhosis, 24.2% (58/240)
had chronic active hepatitis, and 15% (36/240) had chronic
persistent hepatitis. Tumor staging including AJCC and
BCLC is also described in Table 1.

3.2. LncRNAs Expression Levels. Eight lncRNAs including
H19, HOTAIR, MEG3, MALAT1, HULC, UCA1, HOXA13,
and KCNQ1OT1 were considered in this analysis. LncRNAs
expression levels between tumor and nontumor tissue of
HCC patients are shown in Table 2. HOTAIR, MALAT1,
HULC, and UCA1 were similarly expressed between tumor
tissues and nontumor tissues in HCC patients (𝑃 =
0.448, 0.138, 0.085, and 0.373, resp.). MEG3, HOXA13, and
KCNQ1OT1 were all overexpressed in HCC tumor tissues
(𝑃 = 0.001, 𝑃 < 0.001, and 𝑃 = 0.004, resp.). However,
H19was expressed relatively higher in nontumor tissues com-
pared to those in tumor tissues of HCC patients (𝑃 < 0.001).

3.3. HULC Was Associated with HCC Overall Survival. All
lncRNAs included in the analysis were summarized in
Table 3. Univariate analysis showed that HULC was a factor
associated with overall survival in HCC patients (𝑃 = 0.005).
When all these lncRNAs were evaluated by a multivariate
model using enter selection, HULC was indicated to be

a positive factor for HCC overall survival (HR = 0.885, 95%
CI = 0.797–0.983, and 𝑃 = 0.023).

We performed a Kaplan-Meier event analysis grouping
by HULC identified to be significantly associated with sur-
vival presented above. For HULC, we grouped by median
expression into a low expression and a high expression group
with an 11.87 cut-off. As shown in Figure 1, this revealed that
the higher the HULC expression, the greater the chance for
longer survival (mean survival time, high = 96.82 ± 3.70
and low = 71.52 ± 4.49 months, resp.; log rank 𝑃 < 0.001,
Figure 1(A)). ROC curve also demonstrated that HULC
expression level in tumor tissues could significantly predict
HCC overall survival (area under ROC = 0.608; 𝑃 = 0.004,
Figure 1(a)).

3.4. H19, HULC, and UCA1 Were Associated with HCC
Disease-Free Survival. Table 4 summarizes results from uni-
variate andmultivariate regression analyses of potential lncR-
NAs associated with HCC disease-free survival. H19, HULC,
UCA1, and HOXA13 were all factors associated with disease-
free survival in HCC patients (all 𝑃 < 0.10). Furthermore,
multivariate analysis using forward selection has shown that
HULC should play a positive role in prolongingHCCdisease-
free survival time (HR = 0.913, 95% CI = 0.835–0.998, and
𝑃 = 0.045).However,H19 andUCA1were both demonstrated
to be risk factors forHCCdisease-free survival inmultivariate
Cox model (HR = 1.071, 95% CI = 1.01–1.137, and 𝑃 = 0.022
and HR = 2.4, 95% CI = 1.092–5.273, and 𝑃 = 0.029; resp.).

A Kaplan-Meier event analysis using log rank method
was also performed further. For H19, HULC, and UCA1, we
grouped by median expression into a low expression and a
high expression group with cut-offs of 9.28, 11.87, and 6.51,



4 Disease Markers

Table 4: Univariate and multivariate Cox regression analysis of lncRNAs associated with disease-free survival of HCC patients.

LncRNAs Univariate analysis, HR (95% CI) P value Multivariate analysis, HR (95% CI) P value
H19, per increase of 1 unit 1.068 (1.007–1.133) 0.028 1.071 (1.01–1.137) 0.022
HOTAIR, per increase of 1 unit 2.206 (0.711–6.842) 0.171
MEG3, per increase of 1 unit 1.113 (0.947–1.307) 0.193
MALAT1, per increase of 1 unit 2.765 (0.785–9.748) 0.114
HULC, per increase of 1 unit 0.903 (0.825–0.989) 0.027 0.913 (0.835–0.998) 0.045
UCA1, per increase of 1 unit 2.352 (1.071–5.167) 0.033 2.4 (1.092–5.273) 0.029
HOXA13, per increase of 1 unit 0.697 (0.478–1.016) 0.06
KCNQ1OT1, per increase of 1 unit 1.116 (0.712–1.75) 0.632
HR: hazard ratios; CI: confidence intervals.
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Figure 1: (A) Kaplan-Meier analysis of HCC overall survival by
HULC with median cut-off; (a) ROC curve of HULC for predicting
HCC overall survival.

respectively. As shown in Figure 2, this indicated that H19
overexpression in HCC tumor tissues might be a risk factor
associated with HCC disease-free survival (mean survival
time, high = 41.76 ± 4.35 and low = 62.54 ± 4.87 months,
resp.; log rank 𝑃 = 0.002, Figure 2(A)). In contrast, high
HULC expression level is contributed to a better disease-
free survival in HCC patients (mean survival time, high =
62.37 ± 4.73 and low = 40.98 ± 4.46 months, resp.; log rank
𝑃 < 0.001, Figure 2(B)). Despite a significant correlation
between UCA1 expression and HCC disease-free survival
both in univariate and inmultivariate regression analyses, the
extent of the association by Kaplan-Meier event analysis with
log rankmethod showed no significance (mean survival time,
high = 50.17 ± 4.71 and low = 52.92 ± 4.64months, resp.; log
rank 𝑃 = 0.616, Figure 2(C)). ROC curves revealed that H19
andHULC levels well predictHCCdisease-free survival (area
under ROC = 0.608, 𝑃 = 0.005, and area under ROC = 0.578,
𝑃 = 0.042, resp., Figures 2(a) and 2(b)), while no significance
was found between UCA1 and HCC disease-free survival by
ROCcurve (area under ROC=0.541,𝑃 = 0.282, Figure 2(c)).

3.5. Relationship between LncRNAs andHCCClinicopatholog-
ical Features. Only lncRNAs and clinicopathological features
with significant associationwere shown in Table 5. Univariate
logistic analysis showed that H19, MEG3, and MALAT1
expression were related with HBV infection (all 𝑃 < 0.10).
Multivariate model demonstrated that H19 and MALAT1
were overexpressed in HBV-infected patients (OR = 1.14, 95%
CI = 1.008–1.29, and 𝑃 = 0.037 and OR = 26.951, 95%
CI = 2.022–359.284, and 𝑃 = 0.013, resp.). Even though
MEG3, HULC, and UCA1 were all associated with vascular
invasion in univariate regression analysis (all 𝑃 < 0.10), only
HULC had a significant association with vascular invasion
by multivariate model (OR = 0.648, 95% CI = 0.523–0.803,
and 𝑃 < 0.001). Moreover, lncRNAs including H19, MEG3,
HULC, HOXA13, and KCNQ1OT1 were all factors associated
with AFP level over 200 ng/mL (all 𝑃 < 0.10), and when all
these lncRNAs were evaluated by a multivariate model using
forward selection, H19 and MEG3 were both considered to
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Figure 2: Kaplan-Meier analysis of HCC disease-free survival by H19 (A), HULC (B), and UCA1 (C); ROC curves of H19 (a), HULC (b), and
UCA1 (c) for predicting HCC disease-free survival.

be risk factors for high AFP level (OR = 1.45, 95% CI = 1.277–
1.646, and 𝑃 < 0.001 and OR = 1.613, 95% CI = 1.1–2.365, and
𝑃 = 0.014, resp.).

4. Discussion

Up to date, over 3,000 lncRNAs have been identified and only
a small number of functional lncRNAs have beenwell charac-
terized. Previous studies showed that lncRNAs are likely to be
involved in many diverse biological processes, including cell
proliferation, differentiation, cell cycle, apoptosis and inva-
sion, marker of cell fate, and parental imprinting, indicating
that theymay play amajor role in the regulation of eukaryotic
genome [17–19]. Moreover, multiple lines of evidence link
dysregulation of these lncRNAs to diverse human diseases,
especially cancers [8–10]. Four knownmolecular functions of
LncRNAs, including signal, decoy, guide, and scaffold, were
summarized recently [14]: Firstly, lncRNAs can act asmarkers
of functionally significant biological events by regulating

transcriptional activity or pathway. Secondly, lncRNAs can
bind and titrate away proteins or RNAs to indirectly exert
biological functions in multiple kingdoms of life. Thirdly,
the guide function of lncRNAs is that RNA binds specific
protein(s) and then directs the localization of the resultant
complex to specific targets. Fourthly, lncRNAs can serve as
adaptors to bind relevant molecular components to regulate
gene expression.

HULC (highly upregulated in liver cancer), 1.6 k
nucleotide long, containing two exons but not translated, has
been identified highly upregulated in HCC and colorectal
cancer that metastasized to livers [20, 21]. The expression
level of HULC is positively correlated with those of HBx in
clinical HCC tissues. Additionally, HBx could upregulate
HULC expression in human immortalized normal liver
L-O2 cells and hepatoma HepG2 cells and upregulation of
HULC byHBx could promote proliferation of hepatoma cells
through suppressing p18 [22]. Based on the previous reports,
HULC plays an important role in liver carcinogenesis



6 Disease Markers

Table 5: Univariate and multivariate regression analysis of relationship between lncRNAs and HCC clinicopathological features.

LncRNAs Univariate analysis,
OR (95% CI) P value Multivariate analysis,

OR (95% CI) P value

HBV infection
H19, per increase of 1 unit 1.143 (1.013–1.29) 0.03 1.14 (1.008–1.29) 0.037
MEG3, per increase of 1
unit 1.503 (0.949–2.383) 0.083

MALAT1, per increase of 1
unit

28.164
(2.179–364.071) 0.011 26.951

(2.022–359.284) 0.013

Vascular invasion
MEG3, per increase of 1
unit 1.425 (1.034–1.963) 0.031

HULC, per increase of 1
unit 0.64 (0.522–0.786) <0.001 0.648 (0.523–0.803) <0.001

UCA1, per increase of 1 unit 2.952 (0.822–10.601) 0.097
AFP over 200 ng/mL

H19, per increase of 1 unit 1.526 (1.352–1.723) <0.001 1.45 (1.277–1.646) <0.001
MEG3, per increase of 1
unit 2.304 (1.584–3.351) <0.001 1.613 (1.1–2.365) 0.014

HULC, per increase of 1
unit 0.855 (0.726–1.007) 0.06

HOXA13, per increase of 1
unit 0.547 (0.288–1.039) 0.065

KCNQ1OT1, per increase of
1 unit 2.557 (0.992–6.592) 0.052

HBV: hepatitis B virus; AFP: 𝛼-fetoprotein; OR: odd ratios; CI: confidence intervals.

and acts as an oncogenic ncRNA, but the role of HULC
in predicting outcomes in HCC patients after curative
therapy was largely unknown. In this study, we found that
HULC was elevated in HCC tumor tissues compared with
the corresponding nontumor tissues, even though there
was no significance. Interestingly, HULC decreased HCC
vascular invasion, which should be a positive factor for HCC
prognosis. Furthermore, univariate and multivariate Cox
regression analyses showed that upregulation of HULC in
tumor tissues contributed to better outcomes both in overall
survival and in disease-free survival. An interesting report
by Liu et al. [10] elucidated that the variant genotypes of
rs7763881 in HULC might contribute to decreased HCC
susceptibility in HBV persistent carriers.Thus, full molecular
mechanism of HULC in the natural history of HBV infection
to HCC development should be investigated further.

The H19 gene encodes a 2.3 kb lncRNA that is exclu-
sively expressed from the maternal allele, and it plays an
important role in genomic imprinting during growth and
development [14, 23]. Compared with healthy tissues, H19 is
overexpressed in breast adenocarcinoma and is significantly
associated with tumor values [24]. Recently, H19 was found
to play an important role in HCC progression. In our
analysis, H19 was overexpressed in HCC nontumor tissues.
Moreover, correlated to chronic HBV infection and AFP
evaluation, H19 overexpression was significantly associated
with poor disease-free survival. That is, H19 might be a
potential biomarker forHCC recurrence prediction. Previous
study revealed that H19 was upregulated in HBV-associated

HCC [14], which is inconsistent with our finding. Since
hypoxia is a key trigger enhancing the expression of the
H19 gene [25], the fact that more than half of HCC recur-
rence patients in this study were treated with transarterial
chemoembolization (TACE, 86/240) and/or radiofrequency
ablation (RFA, 38/240) might be an explanation for this. In
vitro, a publication strongly suggested that H19 could act as a
tumor suppressor [26], while other authors assumed that H19
acts as an oncogenic marker in humans [25, 27]. Although its
role in tumorigenesis is debated, the prevailing view is that
H19 behaves like an oncogene [28]. On the other side, AFP
is the most widely tested biomarker in HCC. It is known that
persistently elevated AFP levels can be used to help define at-
risk populations and predict HCC recurrence [29], and H19
mRNA was coregulated with AFP in liver [30]. Considering
previous reports and our results, we assumed that H19 should
be a predictive marker for HCC recurrence.

UCA1, short for urothelial cancer associated 1, is believed
to regulate the expression of several genes involved in tumori-
genesis, embryonic development, or both [31]. It has been
presented that UCA1 functions in regulation of embryonic
development and in bladder cancer invasion and progression
[32, 33], as well as breast tumor [34] and colorectal cancer
[35]. Also, overexpression of UCA1 lncRNA could promote
metastatic but not proliferation ability of tongue squamous
cell carcinoma cells [36]. Our result showed that UCA1 is
negatively associated with HCC disease-free survival. Con-
sidering no difference inUAC1 expressionwas found between
tumor tissues and nontumor tissues in HCC patients, the
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predictive role of UAC1 in HCC disease-free survival should
be evaluated further.

In most of human cancer cell lines, overexpression of
MEG3 (maternally expressed gene 3) results in growth
suppression, accumulation of p53 protein, and activation
of p53 downstream targets [14]. In HCC tissues and cell
lines, MEG3 expression is markedly reduced. It has been
well revealed that the loss of MEG3 gene expression is
associated with hypermethylation of the promoter region in
HCC. Importantly, enforced expression of MEG3 in HCC
cells significantly decreases both anchorage-dependent and
anchorage-independent cell growth and induces cell apop-
tosis [37, 38]. However, our research showed that MEG3
elevated in HCC tumor tissues and correlated with AFP
elevation in human. As a tumor suppressor gene, MEG3 is
associated with tumorigenesis. An overall hypermethylation
in specific MEG3 regions might result in permanent gene
transcriptional silencing, consequent loss of its antiprolifer-
ative function contributing to oncogenesis [39].

MALAT1 (metastasis-associated lung adenocarcinoma
transcript 1) was discovered as a prognostic marker for lung
cancer metastasis but also has been linked to several other
human tumor entities [40]. In our study, MALAT1 is related
with chronic HBV infection, but not associated with HCC
outcomes. Previously, MALAT1 was reportedly upregulated
in HCC cell lines and clinical tissue samples. In addition,
inhibition ofMALAT1 inHepG2 cells could effectively reduce
cell viability, motility, and invasiveness, while increasing the
sensitivity to apoptosis [8, 41]. Therefore, MALAT1 may play
an important role in tumor progression and could be a novel
biomarker for predicting tumor prognosis [14].

Additionally, HOXA13 andKCNQ1OT1were upregulated
in HCC tumor tissues. A report by Quagliata et al. [42]
revealed HOX genes deregulation to be involved in hep-
atocarcinogenesis, and HOXA13 are associated with HCC
patients’ clinical progression and predict disease outcome.
Similarly, KCNQ1OT1 has been shown to be involved in mul-
tiple cancers. A short tandem repeat polymorphism within
KCNQ1OT1 contributes to hepatocarcinogenesis, indicating
that common genetic changes in KCNQ1OT1 may influence
HCC risk [43]. Further functional studies are needed to val-
idate these hypotheses and understand the roles of lncRNAs
in HCC progress and prognosis.

In conclusion, contributing to decreased susceptibility to
vascular invasion, upregulation of HULC in tumor tissues
was positively associated with HCC survival. In contrast,
H19, MEG3, and UCA1 might be risk factors for HCC
aggressiveness and poor outcomes. Even though this study
was based on data from a national data bank and no direct
first-hand data were available and a lot of key questions about
lncRNAs remain unsolved, exploration on lncRNAs field is
shedding new light on our understanding ofHCC. In patients
with HBV-associated HCC, the expression of lncRNAs in
HBV-HCC tissues was changed significantly compared with
normal liver tissues, and lncRNAs played a pivotal role in the
pathogenesis ofHBV-HCCprobably bymainly regulating the
carcinoma-related signaling pathway and MAPK signaling
pathway [44]. Unfortunately, lncRNA expression in healthy
tissues was not available in this analysis. Further research

focused on comparison between cancerous and normal
samples and the potential action mode of lncRNAs must be
conducted. In recent years, there is an exponential growth
of studies on the biological functions of lncRNAs in human
cancers, including HCC [14]. In the future, integration of
lncRNA biology into HCC biology may further deepen our
understanding of the mechanisms of HCC and provide novel
applications for efficient, rapid, and specific diagnosis and
effective treatments.
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