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In order to determine if the expression of the activation marker CD38 can correlate with HIV disease progression independently
of cycling, we performed a cluster-based multivariate correlation analysis of total circulating CD4+ T cell counts and viral loads
with frequencies of CD38 and Ki67 expression on CD4+ lymphocytes from patients with untreated HIV infection, stratified in
maturation subpopulations, and subpopulation subsets defined by the expression of CXCR5, CXCR3, andCCR4.The frequencies of
the activated phenotypes %CD38+ Ki67− and %CD38+ Ki67+ of the CXCR5− CXCR3− CCR4+ (“pre-Th2”) central memory (TCM)
cell subset clustered together, comprising a significant negative correlate of total circulating CD4+ T cell counts and a positive
correlate of viral load in multivariate analysis. Frequency of cycling-uncoupled CD38 expression in “pre-Th2” TCM cells was a
negative correlate of total circulating CD4+ T cell counts in univariate analysis, which was not the case of their %CD38+ Ki67+.
CXCR5+ CXCR3− CCR4− TCM cells were underrepresented in patients, and their absolute counts correlated negatively with their
%CD38+ Ki67− but not with their % CD38+ Ki67+. Our results may imply that CD38 expression either reflects or participates in
pathogenic mechanisms of HIV disease independently of cell cycling.

1. Introduction

T cell activation is a strong predictor of CD4+ T cell loss in
HIV infection [1], particularly when assessed by the expres-
sion of CD38, which shows a remarkable value as a predictor
of HIV disease progression in diverse settings [1–3]. T cell
activation has accordingly been deemed a possible indirect
mechanism of CD4+ T cell depletion in HIV disease [4, 5].

A number of studies on activation have also measured
the expression of the nuclear and perinuclear protein Ki67
initially considered to indicate proliferation [6, 7] and later

delimited as an indicator that cells are in cycle [8] and under-
going turnover [9]. However, the expression of Ki67 does not
always correlate with that of CD38, and thesemolecules show
different predictive value depending on the T cell subset on
which they are analyzed [5, 10–12]. In several studies Ki67+
CD4+ T cells comprise only a fraction of CD38+ cells [13–
16], and these molecules show different expression dynamics
during antiretroviral treatment and in other settings [17–
19]. Therefore, it is important to investigate their relative
contributions to the association of T cell activation and
overall CD4 T cell loss.
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The differences between CD38 and Ki67 as predictors
may also reflect that their relationship with CD4+ T cell loss
depends on the cell population that is studied which makes
it potentially relevant to detect activation in different mat-
uration subpopulations and additionally in relevant subsets
within maturation subpopulations. Among subpopulations,
central memory CD4 T cells (TCM cells) have important
self-renewal and differentiation capacities [20–22] and are
crucial to the relative homeostasis of memory cells during the
chronic phase of HIV infection [23–26].

Different subsets of TCM cells have been identified by
their expression of CXCR5, CXCR3, and CCR4 chemokine
receptors.These subsets display specialized responses in vitro
to TCR engagement or homeostatic cytokines, either pro-
liferating and self-renewing (CXCR5+ CXCR3− CCR4− TCM
cells) or proliferating anddifferentiating toTh1 cells (CXCR5−
CXCR3+ CCR4− “pre-Th1” cells) or to Th2 cells (CXCR5−
CXCR3− CCR4+ “pre-Th2” cells) [20, 27]. This further sub-
division of TCM cells may be useful to investigate differential
associations of CD38 and Ki67 withHIV disease progression,
since their specialized functions correspond to those required
by TCM cells for their regenerative capacity in untreated HIV
infection. Additionally, these chemokine receptors are by
themselves important in T cell function and in HIV disease
pathogenesis. CXCR5 is expressed by TCM cells with B cell-
help capacity [28] and by follicular helper cells, which are
important inHIV control [29]. T cells expressing CXCR3 and
CCR5, HIV’s coreceptor, home to inflammatory sites [30],
where CD4 T cell turnover is high [31]. CCR4 confers T cells
the capacity to home to lungmucosal tissues [32], also critical
in HIV disease [33]. Thus, we considered the subdivision of
TCM (and TEM) cells according to the expression of these
receptors as potentially informative.

Our objective was to study both the joint or independent
participation of CD38 expression and cell cycling (assessed
by Ki67 expression), measured in different subsets within the
different maturation subpopulations of circulating CD4+ and
CD8+ T cells, as correlates of HIV disease progression, and to
determine if they are mutually dependent.

2. Methods

This study was approved by the Institutional Boards of
Instituto Nacional de Enfermedades Respiratorias Ismael
Cośıo Villegas (INER) and Instituto Nacional de Ciencias
Médicas y Nutrición Salvador Zubirán (INCMN), Mexico.
Blood samples were collected from 11 HIV+ antiretroviral-
naive patients from the Department of Infectious Diseases
of INCMN and from 11 healthy HIV− controls. Both groups
had 9 men and 2 women. Patients signed informed consent
according to the Helsinki Protocol. Patients did not have
any active opportunistic infection or malignancy, and none
was receiving immunomodulatory drugs. CD4+ T cell counts
were not available for one patient.

2.1. Phenotyping of Subsets of CD4+ and CD8+ Lympho-
cytes and Activation Phenotypes. To determine frequency,

activation phenotype, and functionality of maturation sub-
sets of CD4+ T cells [20, 27], peripheral blood mononu-
clear cells (PBMCs) from HIV+ patients and healthy con-
trols were obtained and processed completely immediately
after sampling. Cells were incubated for 30 minutes at 4–
8∘C away from light with titrated biotin-conjugated mon-
oclonal antibody specific for CD45RO (BioLegend, San
Diego, CA, USA, Supplemental Material, Table A available
online at http://dx.doi.org/10.1155/2016/9510756), washed
with phosphate-buffered solution containing 10% bovine
serum albumin, and stained with Streptavidin conjugated
with PE-Texas Red (BD Biosciences, San Jose, CA, USA,
Supplemental Material, Table A). This was followed by incu-
bationwith fluorochrome-conjugatedmonoclonal antibodies
specific for surfacemolecules in the same conditions (Supple-
mental Material, Table A). Cells were then washed with PBS
(Lonza, Walkersville, MD, USA), fixed for 30 minutes with
500𝜇L 4% p-formaldehyde (JK Baker, Mexico City, Mexico),
and washed twice with 1mL of a 1/2 dilution of Permeabiliza-
tion Wash Buffer (10x BioLegend). Cells were then stained
with anti Ki67-FITC (BD Biosciences, San Jose, CA, USA)
in Perm/Wash buffer for 40 minutes on ice and away from
light. Appropriate negative controls for each marker were
used, consisting of cells stained with isotype controls plus
the necessary fluorochrome-conjugated specific antibodies
to eliminated spillover (Supplemental Material, Table B).
Cells were analyzed in a FACSCanto II cytometer (Becton
Dickinson, San Jose, CA, USA) and analyzed with FlowJo
software (Tree Star, San Carlos, CA, USA). Lymphocytes were
identified by their side scatter and forward scatter properties,
and, among them, we selected CD4high cells (excluding all
CD4dim events) as well as CD8high cells. Central memory
cells (TCM) were delineated as CD45ROhigh CCR7+ CD4high

or CD8high lymphocytes. Effector memory cells (TEM) were
CD45ROhigh CCR7− CD4+ CD4high CD8high lymphocytes,
naive cells (TN) were CD45RO− CCR7+ CD4high CD8high
lymphocytes, and terminally differentiated cells were identi-
fied by the phenotype CD45RO− CCR7−. This broadly used
strategy excludes most of the possible contaminating cells
other than CD4+ and CD8+ T cells (Figure 1).

2.2. DataAnalysis. Weobtained groups of variables for analy-
sis by subsequent subgating, depicted as levels in Figure 2.We
determined the frequency (%) of cells in each classification
level of CD4+ T cells as follows (Figure 2):

Level 1, activation phenotypes (CD38 and Ki67
expression patterns) on total CD4+ and CD8+ T cells.

Level 2, maturation subpopulations on total CD4+
and CD8+ T cells.

Level 3, activation phenotypes on subpopulations of
level 2.

Level 4, subsets within subpopulations, discriminated
by the expression of chemokine receptors CXCR5,
CXCR3, and CCR4 [20, 27].

Level 5, activation phenotypes of each subset.
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Figure 1: Successive analysis of CD4+ and CD8+ lymphocyte subsets and expression of CD38 and/or Ki67. The CD38 versus Ki67 plot,
yielding three possible activation phenotypes, was analyzed in each gating stratum (layer); third plot, whole CD4 high lymphocytes (or CD8+
lymphocytes); each quadrant in the fourth plot, maturation subpopulations; each of eight possible patterns of expression of CXCR5 CCR4
and CXCR3 within each maturation subpopulation.

Gating was performed only on subpopulations compris-
ing at least 300 events, which would assure meaningful
percentages in the daughter population under the assumption
of independent and identically distributed (iid) samples
under a binomial distribution and considering only the last
gate’s variance. In this case, percentages derived from ≥300
events will have an 80% power for effect sizes of ℎ ≥ 0.16.

Mann-Whitney test was used to analyze univariate differ-
ences betweenHIV+ patients and controls. Correlations were
carried out by Spearman’s ranked correlation.These testswere
performed with StatView (Brain Power Inc., Calabasas, CA,
USA) and Prism (GraphPad Software Inc., La Jolla, CA,USA)
software.

2.3. Multivariate Analysis. Our analysis strategy started with
a principal component analysis (PCA) to account for corre-
lations between variables. PCA reduced variables to clusters
of variables and generated a new variable consisting of the
mean of their standardized values. Variables resulting from
PCA were then utilized in multivariate analysis. We selected
the PCA dimensions that cumulatively explained 80% of
the dataset variance. As centroids for a 𝑘-means clustering
algorithmweused for each variable the value of the individual
that most contributed to the dimension to which the variable
in question belonged.The final clusters had a 95% confidence
measured by bootstrapping 1000 PCA clustering algorithms.

This analysis was performed using R 2.1.1 with FactoMineR
package [34]. Each cluster of variables had within it variables
that had positive and negative estimates, and these are
reported only as positive or negative, but the whole score
for the dimension comprising all the variables was analyzed
through normal multivariate logistic (in the case of HIV
versus control) or linear (in the case of T CD4+ cell/mL
of blood count or viral load) regressions, with associated 𝑃
values.

2.4. Correction for Confounders. Statistical analysis required
assuring that effects at a given subset were not influenced by
differences in the parental population from which the subset
was subgated. To control for these confounders, we included
in the analysis of each cell group the frequency of its parent
population (indicated in Figure 2 by a dotted arrow). For
example, in the analysis using percentage of each activation
phenotype in TN cells (level 3), the frequency of TN cells
within CD4 T cells was also included.

3. Results

Patients had a median age of 33.1 years (range: 19 to 50),
not differing significantly from controls (median: 27.3 years;
range: 20 to 43). Patients had median 116 565 HIV RNA
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Figure 2: Groups of variables used in each cluster-based multivariate analysis. Subsequent gating generated groups of variables depicted as
levels: level 1, CD4+ T cells; level 2, maturation subpopulations (naive, central memory, effector memory, and terminally differentiated); level
4, the eight possible combinations of expressions of CXCR5, CCR4, and CXCR3 within each maturation subset; and level 5, frequency of
activation phenotypes within each subset. The frequencies (%) of activation phenotypes were analyzed at all higher levels. In each analysis
level, the parent population was included to correct for differences in the percentage of the parent population as a confounder.

copies/mL blood (range: 1527–421 290), and median 323
CD4+ T cells/mm3 blood (range: 96–561).

3.1. Multivariate Correlates of Disease Progression. Cluster-
basedmultivariate analysis showed a significant correlation of
CD4+ T cell counts and viral load with one cluster composed
of the %CD38+ Ki67− of CXCR5− CXCR3− CCR4+ TCM
cells and the %Ki67+ CD38+ of the same subset as positive
coefficients and the other phenotypes (Ki67+ CD38− and
Ki67− CD38−) as negative coefficients (𝑃 = 0.036 for CD4+ T
cell count, 𝑃 = 0.030 for viral load, Table 1).This was the only
multivariate correlate of CD4+ T cell counts that we found
within all levels. Multivariate logistic regression showed a
correlation of infection with a cluster containing %CD38+
Ki67− of CXCR5− CXCR3− CCR4+ TEM cells as the only

positive coefficient with CD38 expression thus determining
the significance (Table 1).

3.2. Linear Correlation of Relevant Activation Phenotypes with
CD4+ T Cell Count. Since %CD38+ Ki67− and %CD38+
Ki67+ of CXCR5− CXCR3− CCR4+ TCM cells clustered as
multivariate correlates of CD4+ T cell counts, we asked if both
activation phenotypes were overrepresented among CXCR5−
CXCR3− CCR4+ TCM and TEM cells from patients and if each
one separately correlated with CD4+ T cell counts.

Among the three possible activation phenotypes (CD38+
Ki67−, CD38+ Ki67+, and CD38− Ki67+), the CD38+ Ki67+
phenotype had an increased frequency in patients’ CXCR5−
CXCR3− CCR4+ TCM cells, compared with their counter-
parts from controls (𝑃 = 0.009, Figures 3(a) and 3(b), upper
right quadrants), and comprised the majority of Ki67+ cells,
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Table 1: Clusters of variables with significant correlation with HIV disease. 𝑃 values correspond to a multivariate linear regression using
main clusters as independent variables (see Section 2) and CD4+ T cell counts and viral load as dependent variable or status (HIV+ or HIV−)
as dependent variable.

Correlate Coefficient sign
in cluster model CD4+ T cells/mm3 blood∗ HIV RNA copies/mL blood

Variables in cluster Sign of regression coefficient 𝑃 Sign of regression coefficient 𝑃
TCM CXCR5− CCR4+ CXCR3−/Ki67− CD38+ +

− 0.036 + 0.030TCM CXCR5− CCR4+ CXCR3−/Ki67+ CD38+ +

TCM CXCR5− CCR4+ CXCR3−/Ki67+ CD38− −

TCM CXCR5− CCR4+ CXCR3−/Ki67− CD38− −

HIV+ versus control
TEM CXCR5− CCR4+ CXCR3−/Ki67− CD38+ +

+ 0.043TEM CXCR5− CCR4+ CXCR3−/Ki67+ CD38+ −

TEM CXCR5− CCR4+ CXCR3−/Ki67+ CD38− −

TEM CXCR5− CCR4+ CXCR3−/Ki67− CD38− −

as previously described [35]. Contrastingly, a mean 23.4% of
patients’ CXCR5− CXCR3− CCR4+ TCM cells showed Ki67-
uncoupled CD38 expression (CD38+ Ki67−, Figure 3(b)),
which comprised a majority of all CD38+ cells, and were also
significantly more frequent, compared with controls (𝑃 =
0.0003).

Patients’ TEM cell subset with the same pattern of expres-
sion of chemokine receptors (CXCR5− CXCR3− CCR4+)
showed an increased percent of Ki67-uncoupled CD38
expression (mean 22.1%, Figures 3(c) and 3(d), upper left
quadrants), also significantly greater than its percentage
among the controls’ counterparts (𝑃 = 0.0001). Notably, the
frequency of cells coexpressing CD38 and Ki67 did not differ
between patients and controls and was negligible (Figures
3(c) and 3(d), lower right quadrant).

The frequency of the CD38+ Ki67− phenotype on
CXCR5− CXCR3− CCR4+ TCM cells (Figure 3(e)) and on
CXCR5− CXCR3− CCR4+ TEM (Figure 3(g)) showed a sig-
nificant negative correlation with CD4+ T cell counts (𝜌 =
−0.746, 𝑃 = 0.017, and 𝜌 = −0.685, 𝑃 = 0.035, resp.),
while the frequencies of theCD38+ Ki67+ phenotype on these
subsets showed no significant correlation with CD4+ T cell
counts (Figures 3(f) and 3(h)).

Cycling of other cell subsets, like CXCR5− CXCR3−
CCR4+ TEM cells, as well as CXCR5+ CXCR3+ CCR4− TCM
and TEM cells, was also negatively correlatedwith CD4+ T cell
counts; however, these associations were lost in multivariate
analysis.

3.3. The CD38+ Ki67− Phenotype Is the Only Negative Corre-
late of an Underrepresented TCM Cell Subset. The proportion
of CXCR5+ CXCR3− CCR4− cells among total TCM cells (14±
4.165%,mean± 1 SEM, Figure 4(a)) was significantly reduced
inHIV+ patients (5% ± 1.138%) comparedwith controls (𝑃 =
0.038, Figure 4(b)).The absolute counts of cells from this TCM
subset correlated negatively with their own %CD38+ Ki67−
(𝜌 = −0.709, 𝑃 = 0.032) but not with their %CD38+ Ki67+
(Figures 4(c) and 4(d)), which constitutes another instance of
the Ki67-uncoupled CD38 expression as a negative correlate
of CD4 T cell counts.

There were analogous changes in the subset composition
of TEM cells, where both the underrepresentation of CXCR5+
CXCR3− CCR4− cells and the overrepresentation of CXCR5−
CXCR3− CCR4− cells were significant (𝑃 = 0.008, 𝑃 = 0.014,
correspondingly, not shown). TN andTEMRA cells were almost
entirely CXCR5− CXCR3− and had only a small percentage of
CCR4+ cells within CXCR5− cells (not shown).

4. Discussion

In the present cross-sectional study of patients and con-
trols, we found evidence that CD38 expression determines
the correlation of activation and HIV disease progression
independently of cell cycling, adjusted to a multivariate
model that accounts for T cellmaturation subpopulations and
subsets within them. According to our analysis, cycling and
noncycling cells from a CXCR5− CXCR3− CCR4+ subset of
central memory CD4+ T cells (previously reported as “pre-
Th2” cells [20]) clustered together on the basis of CD38
expression. In turn, this cluster was a negative correlate
of circulating CD4+ T cell counts and a positive correlate
of viral load. The small sample size of this study may
have hampered the recognition of additional multivariate
correlates of HIV disease progression. Also, since we did
not determine additional indicators of activation, like, for
instance, metabolic changes [36], the present study does not
address the actual activation state of noncycling CD38+ cells,
a sizable proportion of CD38+ cells. Despite these limitations,
the thoroughness of our analysis evidences the fact that CD38
expression in a particular subset of CD4+ T cells has an
inherent relevance as a correlate of CD4+ T cell counts,
independent of whether CD38+ cells are in cycle.

Chronic T cell activation in HIV disease has been deter-
mined phenotypically by the detection of surface molecules
(activation markers) like CD69, CD25 [37, 38], and notably
CD38 and HLADR [2], which have different functions and
are thus associated with different cellular processes [39].
The expression of Ki67, indicating cycling and turnover of
T cells, has been used as a surrogate of activation markers
[6]. It may correlate with the expression of phenotypic



6 Disease Markers

6.8 0.9

87.9 4.4

105

104

103

0

CD
38

-A
le

xa
 F

lu
or

7
0
0

-A

1051041030

CCR4+ TCM cells
HIV− : CXCR5− CXCR3−

−103

−103

Ki67-FITC-A
(a)

HIV+ : CXCR5− CXCR3−

23.4 7.4

64.5 4.7

105

104

103

0

1051041030

CCR4+ TCM cells

−103

−103CD
38

-A
le

xa
 F

lu
or

7
0
0

-A

Ki67-FITC-A
(b)

HIV− : CXCR5− CXCR3−

4.5 0.5

91.5 3.5

105

104

103

0

1051041030

CCR4+ TEM cells

−103

−103CD
38

-A
le

xa
 F

lu
or

7
0
0

-A

Ki67-FITC-A
(c)

HIV+ : CXCR5− CXCR3−

22.1 1.6

72 4.3

105

104

103

0

1051041030

CCR4+ TEM cells

−103

−103CD
38

-A
le

xa
 F

lu
or

7
0
0

-A

Ki67-FITC-A
(d)

0

200

400

600

CD
4
+

T 
ce

lls
/m

m
3

bl
oo

d

0 10 20 30 40 50

P = 0.017

𝜌 = −0.746

38+ Ki67− of CXCR5− CXCR3− CCR4+ TCM cells%CD

(e)

0

200

400

600

N.S.

CD
4
+

T 
ce

lls
/m

m
3

bl
oo

d

0 2 4 6 8 10 30 60

38+ Ki67+ of CXCR5− CXCR3− CCR4+ TCM cells%CD

(f)

0

200

400

600

P = 0.035

𝜌 = −0.685

CD
4
+

T 
ce

lls
/m

m
3

bl
oo

d

0 10 20 30 40 706050

38+ Ki67− of CXCR5− CXCR3− CCR4+ TEM cells%CD

(g)

N.S.

0

200

400

600

CD
4
+

T 
ce

lls
/m

m
3

bl
oo

d

0 1 2 3 4 5

38+ Ki67+ of CXCR5− CXCR3− CCR4+ TEM cells%CD

(h)

Figure 3: Relevant activation phenotypes and univariate correlation with CD4+ T cell counts. (a) Contour plot of CD38 and/or Ki67
expression in the CXCR5− CCR4+ CXCR3− subset of TCM cells from a representative HIV− control and a representative HIV+ patient. (b)
CD38 and/or Ki67 expression on the CXCR5− CCR4+ CXCR3− subset of TEM cells from a representative HIV− control and a representative
HIV+ patient. Numbers in each quadrant correspond to the group’s mean frequency, as a percentage of the CXCR5− CXCR3− CCR4+ subset.
(c) Correlation of total circulating CD4+ T cell counts in HIV+ patients with the percentage of CXCR5− CXCR3− CCR4+ TCM cells with the
CD38+ Ki67− phenotype or (d) with the CD38+ Ki67+ phenotype. (e) Correlation of total circulating CD4+ T cell counts inHIV+ patients with
the percentage of CXCR5− CXCR3− CCR4+ TEM cells with the CD38+ Ki67− phenotype or (f) with the CD38+ Ki67+ phenotype. Analysis
was made with Spearman’s correlation.
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Figure 4: Effect of HIV on the relative subset composition of TCM cells and its association with activation. Each slice of the pie chart
corresponds to the mean percentage of each subset from a group, color-coded according to the list below (a) and (b). Pie charts correspond to
controls’ TCM cells (a) and patients’ TCM cells (b). 𝑃 values correspond to the comparison of patients and controls with Mann-Whitney’s test.
(c, d) Correlation of absolute counts of CXCR5+ CXCR3− CCR4− TCM cells from patients with the percentage of this subset with the CD38+
Ki67− activated phenotype (c) or with the CD38+ Ki67+ phenotype (d).

activation markers [35], and more importantly, it correlates
with decreased CD4+ T cell numbers [5, 40]. Cycling may
have a causal role in CD4+ T cell loss in HIV infection,
since cycling CD4+ T cells from HIV+ patients show an
increased turnover [9], are under cycle arrest [41], or die
after entering S phase [42]. In contrast, whether activation
markers, especially CD38 [2], reflect or participate in other
processes leading to HIV disease progression remains to be
elucidated.

The independence of CD38 in the present study as a
correlate of disease progression has important implications.
Either CD38 expression in “pre-Th2” TCM cells is reflecting
pathogenic processes leading to CD4T cell loss or CD38 itself
is participating in pathogenic mechanisms. In this regard,
even though CD38 expression is highly correlated with T
cell activation, its function in this process remains unknown.
CD38 is a well-known ectoenzyme that catalyzes the trans-
formation of NAD into ADPR, cADPR, and NAADP, and
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these “second messengers” can regulate the functionality of
T cells [43–46]. Also regarding a possible role of CD38, we
have previously reported that CD38+ CD4+ TCM cells from
HIV-infected patients show a response to TCR engagement
dominated by IFN-𝛾, instead of IL-2, and disconnected of
CD40L induction, as well as lack of response to CD28
costimulation [47, 48]. Such functionality could be less
propitious to proliferation, a requirement for self-renewal
and differentiation [21, 49], and might thus underlie the
association of CD38 expression on “pre-Th2 TCM” (CXCR5

−

CXCR3− CCR4+) cells and overall CD4+ T cell loss in patients
with HIV infection. These previous studies, along with our
present findings, make a strong case for CD38 as an actor
in pathogenesis of HIV disease. Mechanistic studies of this
molecule in cells from patients with HIV are warranted.

There are additional ways in which activation of pre-
Th2 TCM cells could lead to depletion. Among human helper
T cells, CCR4 is distinctly expressed by cells that express
GATA3 and produce IL-4 when stimulated [50]. CCR4
expression in Th2-polarized central memory and effector
memory cells directs homing to lungs [51–53] or other tissues
with inflammation [54, 55], which are sites of increased
CD4+ T cell turnover during chronic HIV infection [23, 31].
Importantly, CD38 expression may make them permissive to
HIV infection [56, 57]. Additionally, IL-4 has been found to
enable productive infection of CD38+ T cells by X4-tropic
HIV-1 [58].

We observed a significant underrepresentation of
CXCR5+ CXCR3− CCR4− cells among TCM and TEM cells
from HIV+ patients. CXCR5+ CXCR3− CCR4− TCM cells
have been shown in vitro to self-renew by proliferating
without differentiating after TCR-mediated or homeostatic
cytokines [20]. Although the frequency of this TCM subset
was not amultivariate correlate ofCD4+ Tcell counts, it could
be expected that TCM cells fromHIV-infected patients would
be less able tomaintain thememory pool, given their reduced
percentage of CXCR5+ CXCR3− CCR4− cells. Additionally,
the use of surface CXCR5 in our subset delineation brings
forth the possibility that CXCR5+ CXCR3− CCR4− TCM
and TEM cells could contain circulating cellular subsets
with a follicular helper functionality [28, 59, 60]. Their
relative underrepresentation contrasts with the previously
reported expansion of dysfunctional follicular helper cells in
lymph nodes from HIV+ patients [61]. The knowledge of the
relationship between these two B cell-helping compartments
could help understand this contrast.

5. Conclusions

Our study addresses the call for studying the biology of the
diverse activation markers in the context of HIV infection
[62]. Our findings indicate that focusing research on CD38’s
has informative potential, by possibly showing pathogenic
mechanisms reflected by CD38 expression or mechanisms
in which CD38 participates. Studying the subset level within
the CD4+ maturation subpopulations is meaningful in HIV
pathogenesis research.
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