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Objective. A growing body of emerging evidence indicates that metabolic processes play a pivotal role in the biological processes
underlying acute myocardial infarction (AMI). The aim of the current study was to identify featured metabolism-related genes
in patients with AMI using a support vector machine (SVM) and to further explore the value of these genes in the diagnosis of
AMI. Methods. Gene microarray expression data related to AMI were downloaded from the GSE66360 dataset in the Gene
Expression Omnibus (GEO) database. This data set consisted of 50 AMI samples and 49 normal controls that were randomly
classified into a discovery cohort (21 AMI samples and 22 normal controls) and a validation cohort (28 AMI and 28 normal
controls). We applied a machine learning method that combined SVM with recursive feature elimination (RFE) to discriminate
AMI patients from normal controls. Based on this, an SVM classifier was constructed. Receiver operating characteristic (ROC)
analysis was used to investigate the predictive value for the early diagnosis of AMI in the two cohorts and was then further
verified in an independent external cohort. Results. Three metabolism-related genes were identified based on SVM-RFE
(AKR1C3, GLUL, and PDE4B). The SVM classifier based on the three genes allowed for excellent discrimination between AMI
and healthy samples in both the discovery cohort (AUC = 0:989) and the validation cohort (AUC = 0:964), and this was further
confirmed in the GSE68060 dataset (AUC = 0:839). Additionally, the SVM classifier allowed for perfect discrimination between
recurrent AMI events and nonrecurrent events in the GSE68060 cohort (AUC = 0:992). GO and KEGG pathway enrichment
analysis of the identified featured genes revealed significant enrichment of specific metabolic pathways. Conclusion. The
identified metabolism-related genes may play important roles in the development of AMI and may represent diagnostic and
therapeutic biomarkers of AMI.

1. Introduction

AMI results from interrupted blood flow to a certain area of
the heart and is considered one of the primary causes of
disability and death from cardiovascular disease worldwide,
thus posing a serious threat to human health [1]. Over the
last decade, the primary therapeutic strategies, including
percutaneous coronary intervention, coronary artery bypass
surgery, and medications, have improved the prognosis of
AMI. However, approximately one-third of eligible patients
failed to receive early reperfusion therapy due to late detection
[2]. Early diagnosis and interventional therapy are beneficial
in that they significantly reduce mortality and improve
prognosis [3]. Therefore, an early diagnosis may markedly
contribute to overall survival.

The diagnosis of AMI is typically based upon the observa-
tion of changes in a surface electrocardiogram (ECG) and
blood levels of sensitive and specific biomarkers such as
cTnI/T and CKMB. However, the sensitivity and specificity
of these biomarkers remain unsatisfactory, often resulting in
a lack of diagnosis ormisdiagnosis [3, 4]. Based on this, poten-
tial biomarkers possessing high sensitivity and specificity for
early diagnosis of AMI are urgently required and could ulti-
mately contribute to improved clinical survival. Gene expres-
sion profiles related to AMI have been previously studied. The
differentially expressed genes related to cardiovascular events
exhibit similar variation components to those of AMI-related
genes. Regardless of if they are upregulated or downregulated,
they change in the same direction [5]. This study suggests that
differentially expressed genes may provide a new biomarker
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for predicting AMI. Recently, metabolic pathways in cardio-
vascular disease have been demonstrated to represent poten-
tial new valuable targets for drug therapy [6, 7]. A recent
study revealed that exercise improves cardiac function and
glucose metabolism in mice with experimental myocardial
infarction by inhibiting phosphorylated histone deacetylase
4 (HDAC4) and upregulating glucose transporter 1 (GLUT1)
expression. These results demonstrated that metabolic pro-
cesses play a pivotal role in the biological processes underlying
AMI. Metabolism-related genes have been studied in the con-
text of cardiac ischemia. By inhibiting miR-92a-3p, LNA-92a
can increase endothelial cell autophagy and regulate the expres-
sion of metabolism-related genes, thereby increasing myocar-
dial fatty acid uptake and mitochondrial function. These
prosurvival mechanisms may reduce tissue damage after
myocardial infarction [8]. However, the role of metabolism-
related genes in AMI remains to be fully elucidated.

In this study, differentially expressed metabolism-related
genes were identified in normal and AMI samples. Next, an
SVM classifier consisting of three risk genes was established.
This classifier allowed patient samples to be distinguished
from normal controls.

2. Materials and Methods

2.1. Microarray Data. To investigate metabolism-related
genes, the microarray data for AMI were collected from the
GEO (http://www.ncbi.nlm.nih.gov/geo/) database under
the accession number GSE66360, where 50 AMI samples
and 49 normal controls were included. The dataset was
divided into a discovery cohort (21 AMI samples and 22
normal controls) and a validation cohort (28 AMI samples
and 28 normal controls). Furthermore, the GSE48060 dataset
consisting of 31 AMI patients and 21 healthy controls was
obtained to confirm the performance of the SVM classifier.
Additionally, 5 recurrence and 26 no-recurrence samples over
a 1.5-year follow-up period were included in the GSE48060
dataset. All datasets were produced using the Affymetrix
HumanGenomeU133 Plus 2.0Array. Background correction
and normalization were performed using linear models for
the microarray data (LIMMA) software package. Normaliza-
tion between arrays was performed using the quantile algo-
rithm in LIMMA.

2.2. Metabolism-Related Genes. Metabolism-related genes
were obtained from the Molecular Signatures Database v7.1
(MSigDB) (http://software.broadinstitute.org/gsea/msigdb)
by searching using the term “metabolism.” The C2
(c2.cp.kegg.v7.1.symbols.gmt) subcollection was selected as
the reference gene set (Supplementary Table 1). A total of
948 unique metabolism-related genes were obtained. Next,
we extracted the metabolism-related gene expression matrix
from the GSE66360 dataset using the R language merge
package. Finally, a gene expression matrix consisting of 862
gene expression values was obtained in the discovery cohort.

2.3. Screening of Differentially Expressed Metabolism-Related
Genes. The analysis of differentially expressed metabolism-
related genes between AMI and normal samples was con-

ducted using the LIMMA package implemented in the R
statistical package (http://www.r-project.org). The threshold
for the identification of differentially expressed genes was
set at a P value of <0.05 and a ∣log 2fold change ðFCÞ ∣ ≥1.

2.4. Featured Gene Selection and the SVM Classifier
Construction. The featured selection technique is an efficient
tool for identifying meaningful information from a given
gene dataset [9]. SVM is a supervised learning model that is
aimed at classifying data points by maximizing the distance
of a hyperplane for classification and regression analysis with
high accuracy [10]. SVM-RFE is a popular feature selection
technique and has exhibited promising and expanding appli-
cations for the analysis of high-dimensional data. It is much
more robust with regard to data overfitting and classification
accuracy than many other feature selection methods, and this
technique has demonstrated its power in many fields, includ-
ing metabolomics [11–13]. Therefore, we applied a machine
learning method that combined SVM with RFE to select the
best parameters for gene selection among all differentially
expressed metabolism-related genes. Using this algorithm,
optional feature genes were identified as risk genes in the
context of AMI. Next, the identified feature genes were added
into an SVM classifier with a radial basis function (RBF)
kernel and 5-fold cross-validation to achieve predictions.
To test the value of the identified featured genes, a heat
map was clustered using the pheatmap package in R for all
samples in the two cohorts (clustering method = “ward”).
The Euclidean distance was used to cluster samples. Further-
more, the discriminatory power of the SVM classifier was
measured according to the AUC (defined as the area under
the receiver operating curve) in both cohorts, and this was
further validated in the independent external cohort. Addi-
tionally, the performance of the SVM classifier was further
explored in terms of AMI recurrence and nonrecurrence.

2.5. Functional Enrichment Analysis of Identified Feature
Genes. To explore the functions and pathways of the identi-
fied feature genes, gene ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathway enrichment
analyses were performed to identify potential functional
components and pathways underlying numerous genes using
the clusterProfiler package [14]. P < 0:05 was considered to
be statistically significant.

2.6. Statistical Analysis. The differentially expressed
metabolism-related genes were identified using the Limma
package with P < 0:05 and ∣log 2fold change ðFCÞ ∣ ≥1 as
the cut-off criteria. Featured gene selection was performed
using the RFE function in the caret package with 5-fold
cross-validation. The SVM classifier was constructed using
R package e1071 with 5-fold cross-validation. Hierarchical
clustering analysis was used for the identified featured genes
using the pheatmap package in R. ROC analysis was
performed, and the area under the curve (AUC) was calcu-
lated to evaluate the predictive performance of the classifier.
P < 0:05 was considered to indicate a statistically significant
difference. All statistical analyses were performed using R
software (version 3.6.3, http://www.r-project.org).
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3. Results

3.1. Identification of Differentially Expressed Metabolism-
Related Genes and Feature Genes. A total of 17 differentially
expressed upregulated genes were identified betweenAMI tis-
sues and normal tissues (Figure 1.). Based on the SVM-RFE
algorithm, three genes (AKR1C3, GLUL, and PDE4B) with
minimum root mean square error were fit into the SVM
classifier (Figure 2). Hierarchical clustering analysis in the
discovery cohort (Figure 3(a)) and the validation cohort
(Figure 3(b)) revealed that patients could be clearly separated
into two clusters based on the expression levels of the three
identified feature genes. To validate the expression levels of
three featured genes, the identified featured genes were
confirmed in the validation cohort. As shown in Figure 4,
the expression levels of two featured genes (GLUL and
PDE4B) in AMI tissues were significantly higher than those
in the control group (P < 0:05).

3.2. Diagnostic Value of Three Feature Genes in AMI. As pre-
sented in Figure 5(a), the results of the 5-fold cross-validation
illustrated that the SVM classifier allowed for good classifica-
tion in the discovery cohort between AMI and normal
controls with anAUCof 0.989 (95%CI = 0:966-1.00), a sensi-
tivity of 95.24%, and a specificity of 100.00%. The SVM classi-
fier demonstrated excellent discriminatory ability in the
validation cohort with an AUC of 0.964 (95% CI = 0:925

-1.000), a sensitivity of 85.71%, and a specificity of 92.86%
(Figure 5(b)). The discrimination power was confirmed in
the independent GSE48060 cohort with an AUC of 0.839
(95% CI = 0:715-0.962), a sensitivity of 83.87%, and a speci-
ficity of 90.95% (Figure 5(c)). Furthermore, we investigated
the discrimination ability of the classifier in the context of
recurrent AMI. The classifier exhibited outstanding discrim-
ination ability of recurrent AMI with an AUC of 0.992 (95%
CI = 0:971-1.00), a sensitivity of 100%, and a specificity of
96.15% (Figure 5(d)).
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Figure 1: Differential expression of metabolic-related genes in AMI tissue and normal samples.
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Figure 2: A plot of feature metabolic-related gene selection by
recursive feature elimination.
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Figure 3: Hierarchical clustering analysis demonstrates identified metabolic-related gene expression patterns between AMI and normal
tissues in the discovery cohort (a) and validation cohort (b).
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3.3. Functional Analysis of Feature Genes. Based on our
results, cellular response to starvation, cellular response to
nutrient levels, cellular response to extracellular stimulus,
diterpenoid biosynthetic process, small molecule catabolic
process, cyclooxygenase pathway, and negative regulation of
hormone metabolic processes were the most significantly
enriched biological processes (Figure 6(a)). Additionally,
nitrogen metabolism, arginine biosynthesis, and folate bio-
synthesis were considered to be themost remarkably enriched
pathways (Figure 6(b)).

4. Discussion

AMI remains a primary cause of death and disability world-
wide despite significant improvements in diagnosis. The in-
hospital mortality for AMI remains high [15]. Recently,
metabolism-related processes have been reported to be
involved in the pathogenesis of AMI [7, 16]. PRODH overex-
pression increases the number of gene transcripts related to
metabolism, and this gene is related to the maintenance of
normal mitochondrial function, ATP level, and redox
homeostasis of human cardiomyocytes in a hypoxic environ-
ment [17]. However, the potential role of metabolism-related
genes in AMI remains poorly understood. Single-nucleotide
polymorphisms (SNPs) in some lipid metabolism-related
genes are closely related to blood lipids and can cause coro-
nary artery disease [18]. A study from Pakistan revealed that
SNPs in lipid metabolism genes are significantly associated
with MI susceptibility [19]. Circadian rhythm disorders can
cause worsening of atherosclerosis [20]. A large number of
metabolism-related genes exhibit a circadian rhythm [21].
Zhu et al. found that abnormal light can aggravate the circa-
dian rhythmof lipidmetabolism genes [22]. The above studies
indicate that metabolic genes may increase the risk of AMI by
affecting lipid metabolism.

To identify the metabolism-related genes that are
involved in AMI, GSE66360 datasets were used to screen

differentially expressed genes in patient tissues and control
tissues. By comparing the expression levels of metabolism-
related genes between AMI patients and healthy samples, we
found that 17 genes were differentially expressed inAMI com-
pared to healthy samples, indicating that metabolism-related
genes may play critical roles in the occurrence of AMI. Next,
three featured genes in AMI samples were identified using
the SVM-RFE algorithm that allowsAMI samples to be distin-
guished from normal samples. The SVM classifier based on
the identified featured genes allowed for good classification
with anAUCof 0.989 for the patient samples. The discrimina-
tion power values of the classifiers for the validation cohort
and the independent validation cohort were 0.964 and 0.839,
respectively. Furthermore, the SVM classifier can successfully
distinguish patients with recurrent and nonrecurrent AMI
with an AUC of 0.992. Therefore, the present study suggested
that the featured genes could provide useful markers for
identifying patients with AMI.

The present study demonstrated the potential value of
metabolic-related genes in the context of AMI in the clinical
setting. GLUL, PDE4B, and AKR1C3 were identified as
potential metabolism-related genes that were associated with
AMI and the recurrence of AMI. Glutamate-ammonia ligase
(GLUL) belongs to the glutamine synthetase family and func-
tions to catalyze the synthesis of glutamine from glutamate
and ammonia in an ATP-dependent reaction [23]. Genetic
studies have revealed a GLUL rs10911021 polymorphism
that is associated with cardiovascular disease morbidity and
mortality among people with type 2 diabetes [24]. Genome-
wide association analyses suggested that the GLUL may
regulate the risk of coronary heart disease by affecting gluta-
mate/glutamine metabolism and the activity of the γ-gluta-
mine cycle [25]. Coronary heart disease is the primary cause
of death in patients with diabetes, and genetic factors can also
act as risk factors for increasedmortality. Clinical studies from
European populations indicate that SNP rs10911021 is an
independent risk factor for all-causemortality in patients with
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Figure 4: Validation of expression level of identified feature genes in patients with AMI and normal tissues in the validation cohort. (a)
PDE4B, (b) GLUL, and (c) AKR1C3.
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type 2 diabetes, and the risk may be due to cardiovascular
disease [26]. GLUL has also been reported to be involved in
endothelial cell motility, a process that affects endothelial cell
junctional integrity [27]. These studies provide possible
explanations for the role of GULU in AMI.

The phosphodiesterase 4B (PDE4B) gene is a member of
the type IV cAMP-specific, cyclic nucleotide phosphodiester-
ase (PDE) family that regulates the cellular concentrations of
cyclic nucleotides and thereby plays a role in signal transduc-
tion. In the myocardium, the PDE3 and PDE4 families are
primarily used to degrade cAMP and regulate excitation-
contraction coupling (ECC). PDE4 is responsible for 40%
of cAMP-hydrolysis activity in human heart tissue [28].
Animal experiments have demonstrated that the primary

function of PDE4 is the control of the cAMP signal, and
PDE4 is responsible for the majority of the cAMP degrada-
tion activity in rat ventricular cells [29, 30]. In the heart,
cAMP regulates contraction, relaxation, and autonomy.When
the regulation of this molecule is imbalanced, it significantly
promotes the development of heart disease.Wang et al. demon-
strated that a moderate increase in cAMP levels prevents the
Ca2+-induced mitochondrial permeability transition pore
(MPTP) from opening through Epac1, thus affecting the death
of cardiomyocytes [31]. A number of studies have also con-
firmed that PDE4 is related to arrhythmia and heart failure
[32–34]. These studies may reveal the molecular mechanism
of PDE4B in AMI; however, more detailed mechanisms require
further exploration.
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Figure 5: Receiver operating characteristic curves of support vectormachine classifier for the discovery cohort (a), the validation cohort (b), the
independent external cohort (c), and ROC analysis of the SVM classifier for AMI recurrent prediction in the independent external cohort (d).

6 Disease Markers



The aldo-keto reductase family 1 member C3 (AKR1C3)
gene is the only 17β-HSD that is not a short-chaindehydrogen-
ase/reductase, and this gene encodes a member of the aldose/-
ketoreductase superfamily. AKR1C3 has been confirmed to
play a regulatory role in a variety of endocrine diseases [35].
Su et al. confirmed that AKR1C3 modulates vasodilation and
vasoconstriction by regulating the biosynthesis of prostaglan-
dins [36]. Prostacyclin is a vasodilator that can inhibit platelet
activation. Imbalances in prostacyclin production can result
in an increased risk for coronary events [37]. AKR1C3 did
not show a significant difference in expression in AMI and
control in the validation dataset GSE48060. Based on this,
AKR1C3may influence AMI; however, given the small num-
ber of research studies examining this process, more research
is required to provide a fuller understanding of the relation-
ship between AKR1C3 and AMI.

As revealed in the GO and KEGG pathway analyses, these
featured genes were primarily enriched in metabolism-
related processes, thus indicating that metabolism-related

genes play an important role in AMI. As an important pro-
cess of lipid metabolism, autophagy is activated by starvation
[38, 39]. Autophagy is also a regulated pathway of cellular
deprivation [40]. Prostaglandins have been reported to be
related to AMI [41, 42]. Thyroid hormone exerts an impor-
tant therapeutic effect by reducing the infarct size and
improving myocardial function after acute myocardial
infarction [43]. Clinical studies have shown that in adults
with hypertension, both low folate and high folate levels are
associated with an increased risk for death from cardiovascu-
lar disease [44]. Arginine has also been confirmed to be
associated with AMI [45, 46].

Our study does possess certain limitations. First, we failed
to validate the discriminatory ability of the SVM classifier in
the independent cohort with respect to the recurrent event.
Second, although the ROC analysis of the support vector
machine classifier for AMI recurrence prediction yields good
results, the sample size for recurrent AMI was small, and its
accuracy requires further verification using larger sample
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sizes. Finally, it should be noted that this research was based
on bioinformatics analyses. Therefore, further validations
in vivo and in vitro are required.

5. Conclusion

The present study identified three metabolic-related genes
(GLUL, PDE4B, and AKR1C3) in patients with AMI, and
these genes may be useful as potential biomarkers in the diag-
nosis of AMI. Knowledge of these genes will improve our
understanding of the molecular mechanism underlying the
occurrence of AMI.
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