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A growing body of evidence has indicated that behaviors of cancers are defined by not only intrinsic activities of tumor cells but also
tumor-infiltrating immune cells (TIICs) in the tumor microenvironment. However, it still lacks a well-structured and
comprehensive analysis of TIICs and its therapeutic value in esophageal cancer (EC). The proportions of 22 TIICs were
evaluated between 150 normal tissues and 141 tumor tissues of EC by the CIBERSORT algorithm. Besides, correlation analyses
between proportions of TIICs and clinicopathological characters, including age, gender, histologic grade, tumor location,
histologic type, LRP1B mutation, TP53 mutation, tumor stage, lymph node stage, and TNM stage, were conducted. We
constructed a risk score model to improve prognostic capacity with 5 TIICs by least absolute shrinkage and selection operator
(lasso) regression analysis. The risk score = −1:86 ∗ plasma + 2:56 ∗ T cell follicular helper − 1:37 ∗monocytes − 3:64 ∗ activated
dendritic cells − 2:24 ∗ restingmast cells (immune cells in the risk model mean the proportions of immune cell infiltration in
EC). Patients in the high-risk group had significantly worse overall survival than these in the low-risk group (HR: 2.146, 95% CI:
1.243-3.705, p = 0:0061). Finally, we identified Semustine and Sirolimus as two candidate compounds for the treatment of EC based
on CMap analysis. In conclusion, the proportions of TIICs may be important to the progression, prognosis, and treatment of EC.

1. Introduction

Esophageal cancer (EC) is one of the most common digestive
tract cancers; the morbidity and mortality of which is ranked
9th and 6th in all malignant tumors. It is estimated that, in
2018, 508,585 people worldwide would die of EC [1]. Thus,
it becomes extremely urgent to find effective treatments. In
most cases, for cancers in early stages, the general excision
of cancers is chosen as the surgical treatment. However,
due to the lack of early symptoms, most affected EC patients
lose the optimal opportunity of surgery [2]. Although in
recent years, new adjuvant therapy, chemotherapy, and pre-
cise radiation therapy for EC have made some progresses,
unfortunately, the overall efficacy is still not ideal, and the

5-year survival rate is around 30% [3]. Against this backdrop,
identifying other effective treatments is significant for
improving the survival rate of EC patients.

Increasing evidence indicates that behaviors of cancers
are defined by not only the intrinsic activities of tumor cells
but also the tumor-infiltrating immune cells (TIICs) in the
tumor microenvironment. TIICs are the heterogeneous
immune populations existing in the tumor tissues and which
play a key role in host antigen-specific tumor immune
response. The cells including T cells, B cells, natural killer
(NK) cells, macrophages, dendritic cells (DC), and polymor-
phonuclear leukocytes all belong to TIICs [4]. In this regard,
it is reported in hepatocellular carcinoma (HCC) that the
functional interaction of tumor-infiltrating T cells and B cells
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was contributed to the prognosis of HCC patients through
immune activation [5]. In breast cancer, the findings demon-
strated that the increased fractions of regulatory T cells and
M0 macrophages were linked to a lower pathological com-
plete response rate, shorter disease-free survival (DFS), and
worse overall survival (OS) [6]. For EC, the reports similarly
have linked the presence of TIICs with its treatment response
and outcome. In these stage II+III patients, the densities of
NK cells and macrophages found a significant relation with
patients’ postoperative prognoses [7]. For esophageal squa-
mous cell carcinoma (ESCC), the expression of PD-L1 was
positively associated with TIIC density and that was also cor-
related with worse prognosis [8, 9]. Another evidence indi-
cated that regulatory T cell (Treg) infiltrate presented in the
tumor had an association with the pathological response
and exhibited a favorable value in predicting cancer-specific
survival [10]. Thus, the full analysis of the types and the range
of TIICs is a promising strategy to make a huge change for
the treatment of EC.

In colorectal cancer, it has more recently been established
that the type, density, and location of TIICs within tumor
samples are more powerful to predict patient survival than
the histopathological methods currently used for its tumor
stage [11, 12]. However, for EC, it still lacks a well-
structured and comprehensive analysis of TIICs and its
therapeutic value. Due to the limitations of methods and
techniques, previous studies thus were focused merely on
the finite areas of immune response. Recently, with the devel-
opment of a novel metagene approach of CIBERSORT [13],
it is possible to computationally dissect the density of TIICs
and then to predict the clinical value in EC. In this study,
20 differential fractions of TIICs were identified in normal
tissues and tumor tissues by CIBERSORT. Based on the least
absolute shrinkage and selection operator (lasso) regression
model, it was revealed that TIICs exhibited potential effect
in EC prognosis. Additionally, following the gene ontology
(GO) analysis for illuminating the differential enrichment
signals between the low- and high-risk groups, we also found
candidate compounds for the treatment of EC.

2. Materials and Methods

2.1. Database. The Cancer Genome Atlas (TCGA,
RRID:SCR_003193) expression data of normal and tumor
tissues of EC was downloaded from UCSC Xena (https://
xena.ucsc.edu/) [14]. Because there were only 6 samples of
normal tissues that were eligible, we downloaded the expres-
sion data of normal esophagus tissues from Genotype-Tissue
Expression (GTEx) data from https://www.gtexportal.org/
(RRID:SCR_013042) [15]. After normalization by “Limma”
package of R (RRID:SCR_010943) [16], the expression data
from GTEx were added into the TCGA, which were unified
to log2 (FPKM+1) (FPKM, Fragments Per Kilobase of tran-
script per million fragments mapped) to improve the repre-
sentation. An indirect validation cohort, GSE19417,
containing 76 human esophageal adenocarcinoma tissues
and some clinical data, was downloaded from GEO Datasets
(https://www.ncbi.nlm.nih.gov/geo/query/) [17].

2.2. Assessment of Immune Cell Infiltration. The CIBERSORT
(RRID:SCR_016955) algorithm was applied to evaluate the
proportions of TIICs in tissues. CIBERSORT was a method
that was designed and robustly validated to identify 22
human immune cell phenotypes, outperforming other
methods in the matter of noise and unknown mixed content
[13]. 22 human immune cell phenotypes were analyzed in the
study, including seven T cell types (T cell CD8, naïve T cell
CD4, resting T cell CD4 memory, activated T cell CD4 mem-
ory, T cell follicular helper, regulatory T cells (Tregs), and T
cell gamma delta); naïve and memory B cells; plasma cells;
resting and activated NK cells; monocytes; macrophages
M0, M1, andM2; resting and activated dendritic cells; resting
and activated mast cells; eosinophils; and neutrophils. The
CIBERSORT p value and root mean squared error (RMSE)
were calculated for each tissues. Only samples with a CIBER-
SORT p value < 0.05 were enrolled. Eventually, there were
144 normal samples from GTEx and 6 normal samples and
141 tumor samples from TCGA were eligible in the study
(Supplementary Figure 1).

2.3. Connectivity Map (CMap) Analysis. CMap (https://
portals.broadinstitute.org/cmap/, RRID:SCR_015674) was
used to find connections between drugs and genes [18]. Up
tag file and down tag file were uploaded into the quick query
of the tool web. The value of connectivity score fluctuated
between -1 and 1, and a high negative connectivity score
manifested that the drug reversed the expression of the query
signature.

2.4. Statistical Analyses. For each immune cell phenotypes,
we calculated the quartile, median, and third quartile of the
normal and tumor groups. The Wilcoxon signed-rank test
was used to compare the different TIICs. Correlation analysis
was performed by package “corrplot”of R. Correlations
between clinicopathological characters and proportions of
TIICs were realized by the Wilcoxon signed-rank test and
visualized by GraphPad Prism 8.0.1 (RRID:SCR_002798).
The Lasso regression model was built by package “glmnet”
and “survival” of R. Univariate and multivariate cox analyses
and forestplot were completed by “survival” and “forestplot”
of R. GO analysis between the high- and low-risk groups
was conducted by “clusterProfiler,” “http://org.Hs.eg.db/,”
“enrichplot,” and “ggplot2.” Gene set enrichment analysis
(GSEA) was performed to get the core genes of top sets
(RRID:SCR_003199) [19, 20]. All tests were two-tailed p value,
and p value < 0.05 was considered significant. Survival was
evaluated with the hazard ratio (95% confidence intervals).

3. Results

3.1. Different Proportions of Immune Cell Infiltration in Normal
and Tumor Tissues.We evaluated the proportions of 22 TIICs
in 150 normal tissues and 141 tumor tissues of EC by the
CIBERSORT algorithm. From the results of Figures 1(a) and
1(b) and Table 1, 20 TIICs had a statistic difference between
normal and tumor tissues. Setting∣ log 2FC∣ > 2, p < 0:05 as
significant difference cutoff, the proportions of B cell mem-
ory, monocytes, and resting mast cells were significantly
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decreased in EC, while the proportions of activated T cell
CD4 memory, regulatory T cells (Tregs), macrophage M0,
macrophage M1, resting dendritic cells, and activated den-
dritic cells were significantly increased.

To illuminate the potential relationship of TIICs, we per-
formed correlation analysis among them. From Figure 1(c),
there were positive correlations among the percentage of
naïve B cell, monocytes, macrophage M2, and resting mast

cells. Similarly, there also existed positive correlations among
the proportions of resting T cell CD4 memory, regulatory T
cells (Tregs), activated T cell CD4 memory, macrophage
M1, resting dendritic cells, macrophage M0, and activated
dendritic cells. Also, there were negative correlations between
the groups naïve B cell, monocytes, macrophage M2, and
resting mast cells and the groups resting T cell CD4 memory,
regulatory T cells (Tregs), activated T cell CD4 memory,
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Figure 1: Relative distributions of infiltrated immune cells between normal and tumor tissues and correlation of TIICs in EC. (a) Distribution
of 22 infiltrated immune cells in 150 normal tissues and 141 tumor tissues of EC. Each bar represented the relative proportion of infiltrated
immune cells of one tissue. (b) Violin plot of infiltrated immune cells between normal and tumor tissues. The blue color represented normal
tissue, and the red represented tumor tissues. Inner violin plot showed the quartile, median, and third quartile. (c) Correlation analysis among
each TIIC in esophagus cancer. The blue color represented negative correlation, and the red represented positive correlation.
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macrophage M1, resting dendritic cells, macrophage M0, and
activated dendritic cells.

3.2. Correlations between Clinicopathological Characters and
Proportions of TIICs in EC. For basic information of EC
patients, the proportions of naïve B cell and regulatory T cells
(Tregs) were higher in older patients (age > 65), while the
proportion of activated dendritic cells was significantly
reduced in older male patients (Figures 2(a) and 2(b)). The
percentage of monocytes was slightly increased in male
patients (Figure 2(b)). The higher the histologic grade was,
the higher proportions of naïve B cell and regulatory T cells
(Tregs) were found in EC (Figure 2(c)), while the trend was
opposite in activated dendritic cells (Figure 2(c)). When it
came to the tumor location, the percentages of T cell follicu-
lar helper, resting dendritic cells, and activated dendritic cells
rose in mid portion (Figure 2(d)). Besides, the proportion of
regulatory T cells (Tregs) was decreased in mid portion and
activated NK cells were upregulated in proximal portion
(Figure 2(d)). With regard to the histologic type, naïve B cell,
resting T cell CD4 memory, regulatory T cells (Tregs), and
neutrophils had higher percentages in adenocarcinoma of
the esophagus, while T cell follicular helper, activated NK
cells, monocytes, macrophage M1, resting dendritic cells,
and activated dendritic cells rose in proportion in squamous
cell carcinoma of the esophagus (ESCC) (Figure 2(e)). As for
mutation in EC, the percentages of naïve B cell and regula-
tory T cells (Tregs) were higher, and T cell follicular helper
and activated dendritic cells were lower for LRP1B mutation

(Figure 2(f)). The proportion of monocytes increased, and
neutrophils were cut for TP53 mutation (Figure 2(g)). There
were more proportions of Tregs and macrophage M0, while
less of resting NK cells and resting dendritic cells in higher
tumor stages (Figure 2(h)). Furthermore, the proportions of
naïve B cell and Tregs increased in the higher lymph node
stage and TNM stage (Figures 2(i) and 2(j)).

3.3. Prognostic Value of Proportions of TIICs in EC. To inves-
tigate the prognostic value of TIICs, we performed univariate
cox regression analysis. The result of Supplementary Figure 2
showed that one proportion of TIICs cannot predict the
outcome. Thus, we constructed a lasso regression model to
improve prognostic capacity. Figures 3(a) and 3(b) showed
the process of building the risk model. A five-cell immune
infiltration-related risk model was built: −1:86 ∗ plasma +
2:56 ∗ T cell follicular helper − 1:37 ∗monocytes − 3:64 ∗
activated dendritic cells − 2:24 ∗ restingmast cells (immune
cells in the risk model mean the proportions of immune
cell infiltration in EC) (Figure 3(c)). Then, we divided
patients into two groups: the high-risk group
(risk score > median value of all patients) and the low-risk
group (risk score ≤median value). The survivorship curve
(Figure 3(d)) indicated that patients in the high-risk group
had significantly worse overall survival than that in low-risk
group (HR: 2.146, 95% CI: 1.243-3.705, p = 0:0061).
Figure 3(e) showed that the distributions of five immune
cell infiltration involved in risk model, survival status and
survival time in low- and high-risk group, indicating the

Table 1: Different proportions of immune cell infiltration in normal and tumor tissues of esophagus cancer.

Elements Normal mean Tumor mean |Log2FC| p value

Naïve B cell 0.150328828 0.099252886 -0.59894074 2.69E-15

Memory B cell 0.004501406 0.000624709 -2.849119332 0.003169

Plasma cell 0.045761521 0.065299383 0.512934359 3.22E-05

T cell CD8 0.076262723 0.072047936 -0.082020934 0.177424

Naïve T cell CD4 0.000169422 0 NA 0.092744

Resting T cell CD4 memory 0.129593083 0.188880046 0.54348158 7.24E-15

Activated T cell CD4 memory 0.00149565 0.032217892 4.429017635 1.74E-36

T cell follicular helper 0.04635218 0.038316743 -0.274662245 0.014469

Regulatory T cell (Treg) 0.005591945 0.038123896 2.769273551 1.38E-28

T cell gamma delta 0 0.00076106 NA 0.038445

Resting NK cell 0.019864511 0.011368435 -0.805159562 0.000221

Activated NK cell 0.034988158 0.027034051 -0.372088999 0.000235

Monocytes 0.065933699 0.013084405 -2.333167736 5.27E-34

Macrophage M0 0.00158835 0.08482624 5.738909999 3.37E-50

Macrophage M1 0.011738194 0.059927909 2.35201761 3.74E-36

Macrophage M2 0.220429513 0.102609075 -1.10315907 2.46E-33

Resting dendritic cell 0.008666269 0.048631755 2.48841577 1.73E-24

Activated dendritic cell 0.006626912 0.048122149 2.860292337 3.26E-34

Resting mast cell 0.154389795 0.038572188 -2.00094452 8.25E-37

Activated mast cell 0.004146638 0.01388375 1.74338341 0.001248

Eosinophil 0.002143682 0.00235641 0.136499567 0.210273

Neutrophil 0.009427524 0.014059083 0.576551742 1.02E-06
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great diagnostic performance of the risk model. As a
validation of GSE19417 in an indirect manner, the risk
score of poorly differentiated group was higher than that of
the well-differentiated group (p = 0:025). Besides, the risk
score of patients with more than 5 positive lymph nodes
was higher than that in patients with only 1 positive lymph
node (p = 0:033) (Supplementary Figure 3). It is reported
that the increasing number of positive nodes is related to
poor outcome of EC [21]. Furthermore, from the results of
univariate (HR: 3.150, 95% CI: 1.435-6.915, p = 0:004,

Figure 4(a)) and multivariate (HR: 2.342, 95% CI: 1.012-
5.416, p = 0:047, Figure 4(b)) cox analyses, the risk score
was the independent risk factor for EC.

3.4. Identification of Two Candidate Compounds for the
Treatment of EC Based on CMap Analysis. GO analysis was
conducted to illuminate the differential enrichment signals
between the low- and high-risk groups stratified by immune
cell infiltration of EC. The top ten enriched signals were
shown in the matter of biological process (BP), cellular
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component (CC), and molecular function (MF). And the
terms “mRNA processing,” “chromosomal region,” and
“chromatin binding” were the most enriched signals of BP,
CC, and MF, respectively (Figure 5(a)). Then, GSEA was per-
formed to identify the core genes. Figure 5(b) showed the
most enriched sets mRNA binding, mRNA metabolic pro-
cess, and M phase of mitotic cell cycle in the high-risk group,
while Figure 5(c) displayed the most enriched gene sets
receptor-mediated endocytosis, cell substrate adhesion, and
integrin binding in the low-risk group. The core genes of
high-risk group obtained from mRNA binding, mRNA met-
abolic process, and M phase of the mitotic cell cycle were
visualized in Figure 6(a), and the core genes of low-risk group
from gene sets, receptor mediated endocytosis, cell substrate
adhesion, and integrin binding, were revealed in Figure 6(b).
Then, 11 upregulation core genes (LSM3, LSM5, PABPC1,
PABPC3, PABPC4, EIF4A3, SMC3, ESPL1, CDC25B,
CCNA2, and AURKA) and 1 downregulation core gene
(THBS3) were uploaded into CMap as upregulated tags and

downregulated tags, respectively. Two compounds (Semus-
tine and Sirolimus) might be the candidate compounds for
the treatment of EC.

4. Discussion

To date, malignant tumors remain the main killer of human
health [1]. The focus of the research in the past with regard to
the tumor development is often on the tumor cells them-
selves. In 1989, Paget first proposed the theory of “seed and
soil,” which has been widely recognized and extended since
its introduction [22]. The theory holds that the occurrence
and development of tumors not only depend on the change
in tumor cytogenetics and epigenetics but also link to the
tumor microenvironment as a “fertile soil” for the growth
and breeding of malignant seeds [22, 23]. In normal tissues,
the microenvironment is an important barrier for defense
against tumors. However, the inhibitory function in tumor
cells would be reduced by recruiting integrated fibroblasts,
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regulating antitumor immune cells, secreting immunosup-
pressive molecules, and thus transforming into tumor
microenvironment suitable for tumor growth [24]. It is
just the interaction and coevolution of tumor cells and
their microenvironment that promote the production of
tumors. In recent years, increasing attention has been
given to the tumor microenvironment in terms of the
potential response to therapy.

In EC, it is also reported that tumor microenvironment has
a close relationship with tumor growth. The cells, including NK
cells, T cells, B cells, plasma cells, monocytes, macrophages,
dendritic cells, mast cells, eosinophils, and neutrophils, have
all been reported to have exhibited significant association with
EC treatment [7, 10, 25–32]. The elevation or reduction of these
different types of TIICs in tumor microenvironment is com-
monly associated with poor prognosis of EC. Nevertheless,
prior studies only focused on the density and clinical value of
one or two TIICs in EC, lacking systematic analysis of all TIICs
with a different density. In this study, following the operation of
CIBERSORT algorithm, we found that 20 immune-infiltrating
cells had statistic difference simultaneously between normal
and tumor tissues. Of note, the proportions of B cell memory,
monocytes, and resting mast cells were significantly decreased
in EC, while the proportions of activated T cell CD4 memory,
Tregs, macrophageM0, macrophageM1, resting dendritic cells,
and activated dendritic cells were significantly increased.

Tregs are a subpopulation of CD4+ T lymphocytes. It
could inhibit the antitumor immunity and assist in tumor
immune escape through secreting immunosuppressive fac-

tors, directly killing or inhibiting effector cell proliferation,
as well as affecting T cell activation [33, 34]. The clinical
research also points that the high-density infiltration of Tregs
often indicates the poor clinical outcomes. In severely immu-
nodeficient mice, the repeated reinfusion of patient-derived
CD3+CD25 T cells could prevent tumor growth. For the neg-
ative regulation of Tregs against tumor immune function, in
line with this, it was found that the reinfusion of Tregs could
reverse such protection [35, 36]. Similarly, Nishikawa et al.
found that leukocytes isolated from patients with melanoma
and ovarian cancer had responded to selective tumor
antigens only after removal of Tregs [37]. In this study, by
analyzing the correlations between clinicopathological
characters and TIICs, we found that Treg density infiltration
in EC patients had a close association with age, histologic
grade, tumor location, histologic type, LRP1B mutation,
tumor stage, lymph node stage, and TNM stage. In fact, it
has been acknowledged that Tregs increased according to
the EC progression [38]. In ESCC, IL32 expression and Treg
infiltration were found to play an important synergistic role
in tumor growth and invasion; the combination of which
was one of poor independent factors [39]. In operative spec-
imens, generally, the frequency of local Tregs negatively cor-
related with the pathological response and overall patient
survival [40]. However, up to now, there are still no relevant
reports on Tregs and LRP1B, and it remains to be studied
whether the poor prognosis of patients in the high age group
can be considered from the perspective of Treg infiltrating
density.
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Figure 4: Univariate (a) and multivariate (b) cox regression analyses of clinicopathological features and the risk model.
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Additionally, from the results in Figure 2, it was shown
that macrophages M0 and M1 differed greatly in different
tumor stages and histologic types, respectively. Unlike Tregs,
infiltrated macrophages are developed from a precursor of
bone marrowmonocytes that are activated into different sub-
types by stimulation signals in different microenvironments
[41, 42]. Studies have shown that macrophages induced
immune disability through promoting angiogenesis, induc-
ing tumor metastasis, provoking chemotherapy tolerance,
and interacting with the other immune cells or raising other
immune inhibitory cells [43]. Macrophage is one of the
important factors in tumor microenvironments that cause
the poor prognosis of patients. But for the moment, it is rel-
atively frequent on the research about the relationship
between macrophages and ESCC. Compared with adenocar-
cinoma, there is no basic data to support whether the infiltra-
tion of macrophages in ESCC is relatively high. In addition to
macrophages, dendritic cells are also associated with a variety
of clinicopathological features in EC. Dendritic cell is one of
the most potent antigen-presenting cells [44]. It was realized
that the impaired immune function and the decreased num-
ber of dendritic cells were the significant causes for the path-
ogenesis and progression of EC [45]. In EC, a research once
has pointed that LRP1B possessed the recurrent copy-
number variant character, significantly promoting cancer cell
proliferation, migration, and invasion [46]. A deep research

of the relationship between dendritic cells and LRP1B gene
is a great necessity since there are no such reports until now.

Considering the low survival rate of EC patients, subse-
quently, univariate cox regression analysis was performed
in exploring the prognostic value of these immune cell infil-
tration. It was found that one proportion of immune cell
infiltration cannot predict the outcome. According to the
lasso regression model, it was shown that the joint detection
of plasma, T cell follicular helper, monocytes, activated den-
dritic cells, and resting mast cell infiltration exhibited great
performance for its diagnostic. In EC, as indicated above,
for instance, Svensson et al. guessed that the antitumoral
effects on time to recurrence (TTR) and OS were largely
dependent on a functional interplay between T and B lym-
phocytes or plasma cells [47]. In the study by Lu et al., the
higher number of CD1a dendritic cells had a correlation with
significantly improved OS of patients with ESCC [48]. None-
theless, due to the more complexity of TIICs, the full consid-
eration of the link between TIICs and tumor prognosis is still
in the blank stage. In this study, we have not only addressed
the issue but also found that the risk score was an indepen-
dent risk factor for EC. The risk factor presented a great link
with EC prognosis including age, sex, location of tumor, his-
tologic type, tumor stage, and nodal invasion. Overall, in
assessing the EC prognosis, it is necessary to fully evaluate
the above factors. In this regard, while multiple reports in
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Figure 5: Gene ontology and gene set enrichment analyses between low- and high-risk groups stratified by the risk model. (a) The top ten
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the literature have linked the presence of different cases with
its prognosis [49], many others have found no exact assess-
ment for considering all involved factors. Thus, in such cir-
cumstances, the acquisition of an independent risk factor
would favor tumor prognosis assessment. In such later cases,
sometimes, for simple and convenient assessment, the risk
score could be chosen as an independent risk factor.

Additionally, the study found that mRNA binding, the
mRNA metabolic process, and the M phase of mitotic cell
cycle were enriched in the high-risk group, while receptor-
mediated endocytosis, cell substrate adhesion, and integrin
binding were enriched in the low-risk group. Through the
assessment of these differential enrichment signals, 11 upreg-
ulation core genes (LSM3, LSM5, PABPC1, PABPC3,
PABPC4, EIF4A3, SMC3, ESPL1, CDC25B, CCNA2, and
AURKA) and 1 downregulation core gene (THBS3) were
identified. LSM3 was found downregulated in cervical can-
cer, correlating with progression free survival [50, 51]. In

colorectal cancer, LSM3 also was significantly associated with
lymphatic metastasis [52], but in EC, there is still no report.
Similarly, there is just a report in breast cancer that the high
expression of PABPC1 would promote cancer tumorigenesis
and resistance [53] and in lung adenocarcinoma, it might be
involved in tumor development [54]. In follicular thyroid
cancer, it was identified as a mutated cancer driver gene.
Except for PABPC1, PABPC3 was also found as a cancer
driver gene in follicular thyroid cancer [55]. For PABPC4,
it exhibited significant differences in expression in immune
cell-infiltrating breast tumors, hopefully regarding as a candi-
date for its diagnostics and therapy [56]. Besides, Liu et al.
pointed that PABPC4 likely played a role in the pathogenesis
of colorectal cancer [57]. In various types of cancers, numer-
ous studies have now documented a link between EIF4A3,
SMC3, ESPL1, CDC25B, CCNA2, or AURKA and their
response to therapy [58–63]. For the downregulation core
gene THBS3, conversely, it was expressed at significantly
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high levels in osteosarcoma, which was a predictor of worse
OS at diagnosis [64]. All in all, there is few report of the above
genes in EC.

In order to find candidate drugs that may provide novel
insights into tumorigenesis therapeutic advancements for
EC based on immune cell infiltration, we performed CMap
analysis. As a result, we found two compounds Semustine
and Sirolimus that were promising candidates for the treat-
ment of EC. Semustine is a nitrosourea antitumor drug,
which belongs to nonspecific cell cycle drug. Summarizing
the indications, Semustine has a good curative effect on
malignant melanoma, lymphoma, brain tumor, and lung
cancer. However, up to now, there are few clinical studies
of Semustine in patients with EC. The finding thus is
expected to expand the application range of Semustine. In
addition to such chemotherapeutic, the use of immunosup-
pressants is an important change in the way the cancer is
treated. For EC, at present, most immunosuppressants are
still in the clinical research stage. For instance, pembrolizu-
mab is currently in Phase Ib study with PD-L1-positive
esophageal cancer patients, exhibiting tolerable toxicity and
effective antitumor effect [65]. In clinical II phase, nivolumab
monotherapy has achieved good results in patients with
advanced EC of which the objective response rate is 17.2%
and the disease control rate is 42% [66]. Although in this
study, for Sirolimus, we have identified it as a potential can-
didate inhibitor for EC; a large number of trials are needed
to evaluate its antitumor activity and safety.

Finally, we have to admit some limitations of the study.
Owing to the insufficiency of clinical data and independent
validation cohort, we cannot further prove our finding. We
have endeavoured to collect as many samples as possible
from public database. Regretfully, we just found a validation
to preliminarily verify the value of the risk score. Besides, we
set about collecting sample of EC in our own institute. Our
findings would be further validated with basic biology
experiment.

5. Conclusion

In EC, 20 TIICs were identified as having a statistical differ-
ence between normal and tumor tissues. These TIICs had
great links with clinicopathological characters. A five-TIIC
risk score model was built to guide prognosis of EC. Based
on the enrichment analysis of stratification by the risk score,
two candidate compounds Semustine and Sirolimus were
found as therapeutic strategy for EC. In general, the propor-
tions of TIICs are likely to be important to the progression,
prognosis, and treatment of EC.
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