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Background. Our study aims to develop a lncRNA-based classifier and a nomogram incorporating the genomic signature and
clinicopathologic factors to help to improve the accuracy of recurrence prediction for hepatocellular carcinoma (HCC) patients.
Methods. The lncRNA profiling data of 374 HCC patients and 50 normal healthy controls were downloaded from The Cancer
Genome Atlas (TCGA). Using univariable Cox regression and least absolute shrinkage and selection operator (LASSO) analysis,
we developed a 15-lncRNA-based classifier and compared our classifier to the existing six-lncRNA signature. Besides, a
nomogram incorporating the genomic classifier and clinicopathologic factors was also developed. The predictive accuracy and
discriminative ability of the genomic-clinicopathologic nomogram were determined by a concordance index (C-index) and
calibration curve and were compared with the TNM staging system by the C-index and receiver operating characteristic (ROC)
analysis. Decision curve analysis (DCA) was performed to estimate the clinical value of our nomogram. Results. Fifteen relapse-
free survival (RFS-) related lncRNAs were identified, and the classifier, consisting of the identified 15 lncRNAs, could effectively
classify patients into the high-risk and low-risk subgroups. The prediction accuracy of the 15-lncRNA-based classifier for
predicting 2-year and 5-year RFS was 0.791 and 0.834 in the training set and 0.684 and 0.747 in the validation set, respectively,
which was better than the existing six-lncRNA signature. Moreover, the AUC of genomic-clinicopathologic nomogram in
predicting RFS were 0.837 in the training set and 0.753 in the validation set, and the C-index of the genomic-clinicopathologic
nomogram was 0.78 (0.72-0.83) in the training set and 0.71 (0.65-0.76) in the validation set, which was better than the
traditional TNM stage and 15-lncRNA-based classifier. The decision curve analysis further demonstrated that our nomogram
had a larger net benefit than the TNM stage and 15-lncRNA-based classifier. The results were confirmed externally. Conclusion.
Compared to the TNM stage, the 15-lncRNAs-based classifier-clinicopathologic nomogram is a more effective and valuable tool
to identify HCC recurrence and may aid in clinical decision-making.
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1. Introduction

Hepatocellular carcinoma (HCC) is one of the most malig-
nant cancers which represents the fourth leading cause of
cancer-related death and the most common cause of mortal-
ity of cirrhotic patients. Every year, there are 841,000 patients
developed HCC and 782,000 HCC patients died [1]. Till now,
only two therapeutic treatments, including surgical resection
and liver transplantation, are recommended as the first-line
therapy to potentially cure HCC [2]. However, surgical resec-
tion is hampered as more than 70% of HCC patients experi-
ence disease recurrence approximately at 5 years after
resection [3], and donor organ shortages render the large-
scale application of liver transplantation. Therefore, identify-
ing reliable and accurate predictive markers/models to screen
out which subset of patients with HCC is vulnerable to
develop recurrence is urgently needed.

Long noncoding RNAs (lncRNAs) are newly discovered
RNA transcripts which were found to play an important role
in cell differentiation and development by transcriptionally
or posttranscriptionally regulating biological processes [4, 5,
6]. Besides, an increasing number of studies have reported
the association of lncRNAs with the development and pro-
gression of cancers, including HCC [7, 8]. These studies sug-
gested that lncRNAs may be developed as potentially useful
biomarkers in the diagnosis and prognosis of HCC. For
example, overexpression of lncRNA LOC90784, RUSC1-
AS-N, and RNA AWPPH has been associated with poor clin-
ical features and poorer overall survival in HCC patients [9,
10, 11]. Moreover, a prognostic signature based on lncRNAs
has also been found to improve the prognosis prediction of
HCC [12, 13], but the predictive value of lncRNA-based sig-
nature in the recurrence of HCC remains poorly evaluated.

In the present study, we aimed to develop a lncRNA-
based classifier and a nomogram incorporating the genomic
signature and clinicopathologic factors to help improve the
accuracy of recurrence for HCC patients after surgery. We
identified lncRNAs that were significantly associated with
relapse-free survival (RFS) of HCC patients from The Cancer
Genome Atlas (TCGA) and then used them to construct a
lncRNA-based classifier in the training set. A nomogram
incorporating the lncRNA-based classifier and clinicopatho-
logic factors was also developed for predicting RFS. Finally,
the predictive ability of the nomogram was evaluated and val-
idated in an internal and external validation set.

2. Materials and Methods

2.1. Ethics Statement. All the data was obtained from TCGA
and GEO, and the informed consent had been attained from
the patients before our study.

2.2. Collection of lncRNA Data and Clinical Characteristics of
HCC Patients from TCGA. The lncRNA profiling data of 374
HCC patients and 50 normal healthy controls were down-
loaded from TCGA. Then, clinical parameters, such as age,
gender, family history, alcohol consumption, mutation
count, fraction genome altered, BMI, APF, platelet, albumin,
creatinine, cirrhosis, histologic grade, T stage, TNM stage,
Eastern Cooperative Oncology Group (ECOG), and RFS

time, were also downloaded from TCGA. Eighty-one HCC
patients were excluded due to RFS time < 1month or the
unavailability of lncRNA data. So, 293 HCC patients with
available lncRNA data and clinical characteristics were finally
included in our study. Subsequently, 293 HCC patients were
randomly assigned to a training set (N = 147) and a valida-
tion set (N = 146) by the R software. Moreover, the
GSE76427 dataset (115 HNC tissue samples, 52 adjacent
nontumor tissue samples, and 108 tumor samples had com-
plete information of recurrence status and recurrence-free
survival time information) from the Gene Expression Omni-
bus(GEO) (https://www.ncbi.nlm.nih.gov/geo/) was used for
external validation.

2.3. Construction and Validation of lncRNA-Based Classifier
for RFS. First, the moderated t-statistics method and the Ben-
jamini–Hochberg procedure were used to identify distinct
differential lncRNAs between normal tissues and HCC tis-
sues. The cutoff criteria of distinct differential lncRNAs were
P < 0:05 and the false discovery rate ðFDRÞ < 0:05. Next, the
univariable Cox regression analysis was used to select RFS-
related lncRNAs in the training set. The least absolute
shrinkage and selection operator (LASSO) analysis was used
to further narrow down the RFS-related lncRNAs, and a sig-
nature consisting these well-selected lncRNAs was developed
[14]. The LASSO analysis is a popular estimation procedure
in multiple linear regression when an underlying design has
a sparse structure, as it could set some regression coefficients
exactly equal to 0. In our study, we developed a perturbation
bootstrap method and established its validity in approximat-
ing the distribution of the LASSO in heteroscedastic linear
regression. The underlying covariates were allowed to be
either random or nonrandom, and the proposed bootstrap
method was proved to work irrespective of the nature of the
covariates. The simulation study also justified our method in
finite samples. In order to obtain the accurate estimate stability
of our model, cross-validation was performed, as it could pro-
vide unbiased estimation [15]. In the present study, a 5-fold
cross-validation was carried out; the 293 HCC patients were
divided into 5 subsets of equal size and trained for 5 times,
each time leaving out subsets as validation data. The accuracy
were 90.3%, 91.1%, 90.8%, 90.4%, and 91%, respectively, indi-
cating the good stability of our 15-lncRNA-based classifier. By
this classifier, we calculated the risk scores of HCC patients
and then divided patients into the high-risk patients and
low-risk subgroup based on the best cutoff value, which was
a point when the Youden index (sensitivity + specificity − 1)
reached the maximum value in the training set. The RSF dif-
ference between the high-risk patients and low-risk patients
was further compared by the Kaplan-Meier analysis. The
log-rank test was used to compare subgroups. The flowchart
of the present study is shown in Figure 1.

2.4. Receiver Operating Characteristic (ROC). To further eval-
uate the predictive accuracy of the lncRNA-based classifier,
an ROC analysis was performed in the training set and vali-
dation set. We calculated the area under the ROC curve
(AUC) of the lncRNA-based classifier for predicting the 2-
year and 5-year RFS and compared the predictive ability of
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our lncRNA-based signature with other published lncRNA
signature [16] for RFS which also developed from the HCC
patients of TCGA.

2.5. Genomic-Clinicopathologic Nomogram. In order to make
the lncRNA-based classifier to be more applicable for clini-
cians, a lncRNA-based classifier-related nomogram was con-
structed. First, univariate and multivariate Cox regression
analyses were used to identify the clinical risk parameters
associated with RFS in the training set. Next, the lncRNA-
based classifier, together with the risk parameters, was used
to develop a genomic-clinicopathologic nomogram in the
training set.

Model performance was evaluated by determining the
calibration and discrimination. Discrimination is the model’s
ability to differentiate between patients who recur from HCC
and patients who will not. Discrimination was calculated
through the concordance index (C-index). We also illus-
trated discrimination by dividing the dataset into three
groups based on the score generated by the nomogram. We
plotted a Kaplan–Meier curve for all three groups.

Calibration of the nomogramwas assessed by plotting the
observed RFS rate (the mean Kaplan-Meier estimate for
patients in each octile) against the nomogram 2- and 5-year

predicted RFS probability (i.e., the mean nomogram pre-
dicted probability for patients in each octile). A perfectly
accurate nomogram prediction model would result in a plot
in which the observed and predicted probabilities for the
given groups would fall along the 45-degree line. The dis-
tance between the pairs and the 45-degree line was a measure
of the absolute error of the nomogram’s prediction.

The ROC analysis was used to evaluate and compare the
discrimination ability of the nomogram with lncRNA-based
classifier and TNM stage. Then, the decision curve analysis
(DCA) was performed to evaluate the clinical usefulness of
the genomic-clinicopathologic nomogram [17, 18]. DCA
was performed by calculating the net benefit for a range of
threshold probabilities, which place benefits and harms on
the same scale. This analysis determined whether clinical
decision-making based on a model would do more good than
harm. DCA provided straightforward information about the
clinical value of a model, in contrast to traditional measures
such as sensitivity or specificity, which were abstract statisti-
cal concepts.

2.6. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Analyses of the 15-lncRNA-Based
Classifier. To explore the biological function and pathways

lncRNA data collected from TCGA database

Distinct lncRNA (n = 1292) between adjacent nontumor
tissues and HCC

lncRNA-clinicopathologic data collected from TCGA
database (n = 293)

Training set (n = 147) Validation set (n = 146) GEO set (n = 108)

Validation Validation

Univariate Cox regression model to evaluate survival analysis

30-lncRNA related recurrence-free survival

LASSO

15-lncRNA classifier related recurrence-free survival

Survival analysis and ROC

Incorporated clinicopathologic data

Nomogram, calibration curve and DCA

Figure 1: The flowchart of study design. LASSO: least absolute shrinkage and selection operator.
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of the 15-lncRNA-based classifier, GO and KEGG analyses
were conducted. First, the Pearson correlation algorithm
was performed between these 15 lncRNAs and the protein-
coding genes (mRNAs), and the correlation coefficient > 0:4
, P < 0:001 was considered as significant correlation. Then,
the potential biological processes of these lncRNA target
genes were further investigated by the Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses in DAVID, a common bioinformatics tool (http://
david.abcc.ncifcrf.gov/, version 6.8) [19].

2.7. Statistical Analysis. The SPSS statistics 22.0 and R soft-
ware (R version 3.5.2) were used to conduct the statistical
analysis. Univariate and multivariate Cox regression analysis
was performed to identify potential predictors associated
with RFS. If there were missed data in some of the potential
predictors, these missing data would be imputed, as full case
analysis would improve the statistical power and reduce
potentially biased results. Multiple imputation was used to
imput the missing data as the missing data were considered
missing at random after analyzing the patterns of them. Mul-
tiple imputation was performed MI with the Markov Chain
Monte Carlo function, and 5 iterations were used to account
for possible simulation errors.

The LASSO analysis was performed with the “glmnet”
packages, cross-validation was conducted with the “caret”
packages, and ROC analysis was done with the “survival-
ROC” packages. The nomogram and calibration plots were
generated with the “rms” packages, and DCA was performed
with the “stdca.R.”A two-sided P < 0:05 would be recognized
as statistically significant.

3. Results

3.1. Demographic Parameters and RFS Outcome of HCC
Patients. In the present study, 293 HCC patients with avail-
able lncRNA data and clinical characteristics were included.
The basic clinical characteristics of these HCC patients are
summarized in Table 1. The median RFS was 20.99 months
(range: 1.22-120.73 months). Of all the 293 HCC patients,
170 (57.9%) patients developed recurrence during follow-
up, and the 2-year and 5-year RSF rates were 46.4% and
29.1%, respectively. It was also of note that among the recur-
rent patients, 143 patients (84.1%) experienced recurrence
during the first two years after resection.

3.2. Development and Validation of lncRNA-Based Classifier.
First, 1292 distinct differential lncRNAs between normal tis-
sues and HCC tissues were got basing on the filter criteria
described in the section of Methods (supplementary material
1). Then, the top 30 RFS-related lncRNAs were identified by
univariable Cox regression analysis in the training set (sup-
plementary material 2). Next, the LASSO analysis was used
to further narrow down the RFS-related lncRNAs
(Figure 2), and we finally selected 15 RFS-related lncRNAs,
which were AC012625.1, AC068481.1, AC092675.1,
AC093772.1, AC109779.1, AC118653.1, AC246785.3,
AL121985.1, AL121985.1, AP002478.1, ARHGEF7.AS1,

GACAT3, LINC00462, LINC01700, and LINC02429
(Table 2).

On the basis of the coefficients weighted by the LASSO
analysis, a classifier was developed, and the risk score was
as follows: risk score = (0.05174×AC012625.1) + (0.10870×A-
C068481.1) + (0.05747×AC092675.1) + (0.05770×A-
C093772.1) + (-0.32522×AC109779.1) + (0.06050×A-
C118653.1)+(0.05021×AC246785.3) + (0.03112×A-
L121985.1) + (0.12532×AL512604.2) + (0.06333×A-
P002478.1) + (0.10057×ARHGEF7.AS1) + (0.26230×GACA
T3)+ (0.25478×LINC00462)+ (0.21032×LIN-
C01700)+ (0.12948×LINC02429). With this classifier, the
risk score for every HCC patient would be calculated, and
then, they were classified into high-risk patients and low-
risk patients according to the best cutoff (described in Mate-
rials and Method). As was shown in Figure 3, patients with a
high risk score were more likely to develop recurrence and
had shorter RFS than those with a low risk score in the train-
ing set (9.89 vs. 67.58 months, HR = 3:96, 95% CI: 2.5-6.3,
P ≤ 0:001). Verification analysis was further performed in
the validation set, in the total cohort, and external validation
set. Similarly, the 15-lncRNA-based classifier could also clas-
sify patients into the high-risk and the low-risk subgroups by
the same cutoff value. The median RFS time of the high-risk
patients was shorter than that of the low-risk patients in the
validation set (14.22 vs. 27.2 months, HR = 1:941, 95% CI:
1.28-2.94, P ≤ 0:001), in the total cohort (P < 0:001, Figure
S1A), and external validation set (P ≤ 0:001, Figure S2C).
Besides, the 15-lncRNA-based classifier could also classify
patients into the high-risk subgroup with shorter overall sur-
vival (OS) time and the low-risk subgroup with longer OS
time no matter in the training set, the validation set, or the
total cohort (all P < 0:001, Figure S3A, Figure S3C, Figure
S1C). Taken together, these results suggested that the 15-
lncRNA-based classifier could effectively classify HCC
patients into two distinct subgroups with high risk or low risk
of recurrence or OS.

3.3. Predictive Value of 15-lncRNA-Based Classifier and
Comparison with Other lncRNA-Based Classifier from
TCGA. Recently, a six-lncRNA-based signature was devel-
oped and validated by Gu et al. to predict RFS with the data
of HCC patients from TCGA [16]. To compare the predictive
value of our 15-lncRNA-based classifier with the six-
lncRNA-based signature, the ROC curve analysis was per-
formed. As was shown in Figure 4, the AUC of the 15-
lncRNA-based classifier for predicting 2-year and 5-year
RFS in the training set were 0.791 and 0.834, respectively,
while that of the six-lncRNA-based signature were 0.545
and 0.612, respectively (Figures 4(a) and 4(c)). Similar results
were also found in the internal validation set and the external
validation set. The AUC of the 15-lncRNA-based classifier
for predicting the 2-year and 5-year RFS were 0.684 and
0.747 in the internal validation set, respectively, and the
AUC of the six-lncRNA-based signature were 0.65 and
0.624, respectively (Figures 4(b) and 4(d)). The AUC of the
15-lncRNA-based classifier for predicting the 2-year and 5-
year RFS were 0.743 and 0.651 in the external validation set
(Figure S2D). Besides, the 15-lncRNA-based classifier also
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Table 1: Characteristics of the patients in the training set and validation set.

Variable Category
Training set Validation set

(n = 147) % (n = 146) %

Age (years)

Median 60 62

Range(years) 18-82 25-90

NA 0 0 0 0

Sex
Male 101 68.7 103 70.5

NA 0 0 0 0

Race

Asian 69 46.9 63 43.2

White 72 49.0 70 47.9

Black or African American 4 2.7 8 5.5

NA 2 1.4 5 3.4

Family history
Yes 44 29.9 45 30.8

NA 22 15.0 18 12.3

HBV
Yes 49 33.3 44 30.1

NA 7 4.8 7 4.8

HCV
Yes 19 12.9 23 15.8

NA 7 4.8 7 4.8

Alcohol consumption
Yes 46 31.3 55 37.7

NA 7 4.8 7 4.8

Mutation count

Median 79.5 83

Range 12-1323 1-685

NA 7 4.8 2 1.4

Fraction genome altered
Median 0.25 0.24

Range 0-0.85 0 0-0.93

BMI

NA 3 2.0 2 1.4

≤24 60 40.8

>24 74 50.3

NA 13 8.8

AFP (ng/mL)

≤20 59 40.1 71 48.6

>20 59 40.1 42 28.8

NA 29 19.7 33 22.6

Platelet (×109/L)
≤200 57 38.8 56 38.4

>200 74 50.3 65 44.5

NA 16 10.9 25 17.1

Albumin (g/dL)

≤4.0 62 42.2 60 41.1

>4.0 63 42.9 61 41.8

NA 22 15.0 25 17.1

Creatinine (mg/dL)

<1.1 100 68 91 62.3

≥1.1 26 17.7 27 18.5

NA 21 14.3 28 19.2

Liver cirrhosis
Yes 51 34.7 67 45.9

NA 64 43.5 53 36.3

Histological grade

G1-G2 83 56.5 97 66.4

G3-G4 62 42.2 47 32.2

NA 2 1.4 2 1.4

T stage

T1-T2 105 71.4 115 78.8

T3-T4 41 27.9 30 20.5

NA 1 0.7 1 0.7

TNM stage StageI-II 101 68.7 105 71.9
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had a good prognostic value for RFS of the 293 HCC
patients (total cohort) as the AUC of the 15-lncRNA-based
classifier for predicting the 2-year and 5-year RFS were
0.753 and 0.814, respectively (Figure S1B). What is more,
we also examined the prognostic value of the 15-lncRNA-
based classifier for OS. The AUC of the 15-lncRNA-based
classifier for predicting the 2-year and 5-year OS were
0.846 and 0.816 in the training set (Figure S3B), 0.791 and
0.804 in the validation set (Figure S3D), and 0.828 and
0.805 in the total cohort (Figure S1D). These results sug-
gested that the 15-lncRNA-based classifier demonstrated
better performance in predicting RFS than the six-lncRNA-
based signature.

3.4. Development of Genomic-Clinicopathologic Nomogram.
To make the lncRNA-based classifier to be more applicable
for clinicians, a 15-lncRNA-based classifier-
clinicopathologic nomogram was developed to predict the
2-year and 5-year RFS in HCC patients. The potential predic-
tors associated with RFS were identified by univariate and
multivariate Cox regression analysis in the training set. The
univariable Cox regression analysis showed that mutation
count, BMI, APF, liver cirrhosis, tumor stage, TNM stage,

ECOG, and the 15-lncRNA-based classifier were related with
RFS, and the multivariate Cox regression analysis further
showed that mutation count, AFP, T stage, ECOG, and the
15-lncRNA-based classifier were independent predictors of
RFS (Table 3). So, these five predictors were used to develop
the genomic-clinicopathologic nomogram (Figure 5), which
would help clinicians to preoperatively predict the recurrence
risk in HCC patients. The C-index of the genomic-
clinicopathologic nomogram was 0.78 (0.72-0.83) (Table 4),
and the calibration plots exhibited good consistency between
the predicted RFS and the actual RFS (Figures 6(a), 6(c)).
Likewise, consistent results were also found in the validation
set. The C-index of the genomic-clinicopathologic nomo-
gram in the validation set was 0.71 (0.65-0.76) (Table 4)
and also showed good consistency between the predicted
RFS and the actual RFS (Figures 6(b) and 6(d)). Additionally,
the tertiles of all the total points were used to divide the
patients into high-, intermediate-, and low-risk groups with
distinct RFS time or OS time. The Kaplan-Meier analysis
(log-rank P ≤ 0:001) of the three risk subgroups indicated
the great utility of the genomic-clinicopathologic nomogram
in the training set (Figure S4A, Figure S5A), in the validation
set (Figure S4B, Figure S5B), and in the total cohort (Figure

Table 1: Continued.

Variable Category
Training set Validation set

(n = 147) % (n = 146) %

StageIII-IV 39 26.5 30 20.5

NA 7 4.8 11 7.5

ECOG

0 79 53.7 68 46.6

>0 44 29.9 54 37.0

NA 24 16.3 24 16.4

Abbreviations: NA: not available; AFP: alpha-fetoprotein.
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Figure 2: Selection of RFS-associated lncRNAs by the LASSO analysis in the training set. (a) LASSO coefficient profiles of the 30 lncRNAs. A
vertical line is drawn at the optimal value by the minimum criteria and results in fifteen nonzero coefficients. The fifteen
lncRNAs—AC012625.1, AC068481.1, AC092675.1, AC093772.1, AC109779.1, AC118653.1, AC246785.3, AL121985.1, AL121985.1,
AP002478.1, ARHGEF7.AS1, GACAT3, LINC00462, LINC01700, and LINC02429, respectively—were selected in the LASSO Cox
regression model. (b) The fifteen lncRNAs selected by the LASSO Cox regression analysis. The two dotted vertical lines are drawn at the
optimal values by minimum criteria (left) and 1 - s.e. criteria (right).
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S6A, S6B). All these results indicated the perfect performance
of our genomic-clinicopathologic nomogram.

To further evaluate the predictive ability of the genomic-
clinicopathologic nomogram, we compared the C-index and
ROC analysis results of the genomic-clinicopathologic
nomogram with the AJCC TNM stage and the 15-lncRNA-
based classifier in the training set and validation set. As was
shown in Table 4, the C-index of the genomic-
clinicopathologic nomogram was higher than that of the
TNM stage (0.64 (0.58-0.69) in the training set and 0.56
(0.51-0.60) in the validation set) and the 15-lncRNA-based
classifier (0.74 (0.68-0.80) in the training set and 0.61 (0.55-
0.68) in the validation set). The likelihood ratio test, the lin-
ear trend χ2 test, and the Akaike information criterion all
demonstrated that the genomic-clinicopathologic nomo-
gram had higher prediction efficiency than the TNM stage
or 15-lncRNA-based classifier alone. Similar to C-index, the
ROC analysis also indicated that the genomic-
clinicopathologic nomogram (AUC 0.837 for the training
set and 0.753 for the validation set) was better than the
TNM stage (AUC 0.661 for the training set and 0.585 for
the validation set) or 15-lncRNA-based classifier (AUC
0.791 for the training set and 0.684 for the validation set)
alone in predicting RFS (Figures 7(a) and 7(b)).

Finally, the clinical usefulness of the genomic-
clinicopathologic nomogram was assessed by the DCA, an
abstract statistical concept, which gave visualized informa-
tion on the clinical value of a model. As were presented in
Figures 8(a) and 8(b), the DCA results showed that the
HCC recurrence-associated treatment decision based on the
genomic-clinicopathologic nomogram resulted in more net
benefit than the treatment decision based on the TNM stage
or 15-lncRNA-based classifier, or treating either all patients
or none in the training set and the validation set.

3.5. Biological Function and Pathways of 15-lncRNA-Based
Classifier. To explore the biological function and pathways
of the 15-lncRNA-based classifier, the GO and KEGG analy-
ses were performed. As is shown in Figure S6, biological pro-
cesses such as GO:0048037 (cofactor binding), GO:0050662
(coenzyme binding), GO:0016614 (oxidoreductase activity,
acting on CH-OH group of donors), GO:0009055 (electron
transfer activity), and GO:0016616 (oxidoreductase activity,
acting on the CH-OH group of donors, NAD or NADP as
acceptor) were mainly regulated by the 15-lncRNA-based
classifier (Figure S7A). The KEGG analysis also showed that
carbon metabolism, peroxisome, fatty acid degradation,
valine, leucine, and PPAR signaling pathway were mainly
affected by the 15-lncRNA-based classifier (Figure S7B).
These results suggested an important role played by abnor-
mal metabolism in hepatocellular carcinogenesis. Our find-
ings were in accordance with the well-known viewpoint
that alterations in cellular metabolism were hallmarks of can-
cer, and various works suggested that lipid and glucose
metabolism took an active role in hepatocellular carcinogen-
esis [20], which provided evidence for the rationality and
molecular thesis of the 15-lncRNA-based classifier.

4. Discussion

Basing on the lncRNA profiling data and clinical parameter
of 293 HCC patients from TCGA, we identified 15 lncRNAs
related to RFS. On the basis of these lncRNAs, we developed
and validated a classifier, which could effectively classify
patients into high-risk patients with shorter RFS and low-
risk patients with longer RFS. The 15-lncRNA-based classi-
fier is significantly associated with tumor recurrence and pro-
vides accurate prediction in predicting the 2-year and 5-year
RFS of HCC patients. More importantly, we also construct
and validate the lncRNAs–clinicopathologic nomogram
incorporating the clinicopathologic parameter of mutation
count, AFP, T stage, and ECOG, which might contribute to
the individual evaluation of RFS in HCC patients after surgi-
cal resection.

An increasing number of studies have found that
lncRNAs may be exploited as potential effective biomarkers
in the diagnosis and prognosis of HCC [9, 11]. Yan et al.
reported that seven lncRNAs, including AC009005.2, RP11-
363N22.3, RP11-932O9.10, RP11-572O6.1, RP11-190C22.8,
RP11-388C12.8, and ZFPM2-AS1, were associated with OS
of HCC patients, and the seven-lncRNA signature could also
divide patients into the high-risk and low-risk groups with
significantly different OS [13]. Wu et al. found that
MIR22HG, CTC-297N7.9, CTD-2139B15.2, RP11-
589N15.2, RP11-343N15.5, and RP11-479G22.8 were inde-
pendent predictors of HCC patients’OS, and a signature con-
sisted of these six lncRNAs can effectively classify patients
into high-risk patients with shorter survival time and low-
risk patients with longer survival, and the six-lncRNA signa-
ture exhibited superior predictive capacity than the TNM
stage [12]. These studies suggested the potential clinical
implications of lncRNA-based signature in improving the
prognosis prediction of HCC. However, it should be noted
that OS is more likely to be influenced by postrecurrence

Table 2: Multivariable Cox regression analysis of lncRNA with
recurrence-free survival in the training set.

lncRNA Coef
Exp
(coef)

Lower.95 Upper.95 P value

AC012625.1 0.05174 1.0531 0.8952 1.2389 0.5325

AC068481.1 0.10870 1.1148 0.8413 1.4773 0.4492

AC092675.1 0.05747 1.0592 0.8497 1.3202 0.6092

AC093772.1 0.05770 1.0594 0.8869 1.2654 0.5245

AC109779.1 -0.32522 0.7224 0.5408 0.9649 0.0277∗

AC118653.1 0.06050 1.0624 0.7956 1.4187 0.6818

AC246785.3 0.05021 1.0515 0.8937 1.2371 0.5449

AL121985.1 0.03112 1.0316 0.9067 1.1737 0.6364

AL512604.2 0.12532 1.1335 0.9463 1.3577 0.1736

AP002478.1 0.06333 1.0654 0.9115 1.2452 0.4262

ARHGEF7.AS1 0.10057 1.1058 0.9219 1.3264 0.2786

GACAT3 0.26230 1.2999 1.0439 1.6187 0.0191∗

LINC00462 0.25478 1.2902 1.0717 1.5531 0.0071∗∗

LINC01700 0.21032 1.2341 0.9076 1.6779 0.1797

LINC02429 0.12948 1.1382 0.8675 1.4935 0.3503

Signif. codes: 0 “∗∗∗”, 0.001 “∗∗” 0.01 “∗”, 0.05 “.”, and 0.1 “ ” 1.
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Figure 3: Development and validation of the 15-lncRNAs-based classifier for HCC recurrence. (a), (c) Distribution of lncRNA-based
classifier risk score in the training set. (b), (d) Distribution of lncRNA-based classifier risk score in the validation set. (e) The Kaplan-
Meier analysis of RFS time for the high-risk and low-risk patients of the training set. (f) The Kaplan-Meier analysis of the RFS time for
the high-risk and low-risk patients of the validation set.
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treatment and liver function and RFS could more accurately
reflect the biologic behavior for HCC; thus, in the present
study, we tried to identify the RFS-related lncRNAs and
developed and validated a classifier, which may bemore valu-
able for HCC patient management.

Recently, Gu et al. develop and validate a six-lncRNA-
based signature to predict RFS also with the data of HCC
patients from TCGA [16]. They demonstrated that MSC-
AS1, POLR2J4, EIF3J-AS1, SERHL, RMST, and PVT1 were
significantly upregulated in tumor samples compared to
nontumor samples and were significantly associated with

RFS. Different from the abovementioned six lncRNAs, we
identified another 15 RFS-related lncRNAs, including
AC012625.1, AC068481.1, AC092675.1, AC093772.1,
AC109779.1, AC118653.1, AC246785.3, AL121985.1,
AL121985.1, AP002478.1, ARHGEF7.AS1, GACAT3,
LINC00462, LINC01700, and LINC02429 in the present
study. The reason for the differences between our findings
and other studies may be attributable to the difference in
training datasets. TCGA dataset was used as the training
dataset in the present study, while GSE76427 was used in
the study by Gu et al. The training dataset may finally
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Figure 4: Comparison of the predictive value of the 15-lncRNA-based classifier with other lncRNA-based signature from TCGA. The ROC
analysis was performed to assess the predictive value of the 15-lncRNA-based classifier and the 6-lncRNA-based signature. (a) The AUC of
15-lncRNA-based classifier in predicting the 2-year RFS time. (b) The AUC of the 6-lncRNAs-based signature in predicting the 2-year RFS
time. (c) The AUC of the 15-lncRNA-based classifier in predicting the 5-year RFS time. (d) The AUC of 6-lncRNA-based signature in
predicting the 2-year RFS time.
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determine the key RFS-lncRNAs for further investigation.
However, it should be noted that the performance of a classi-
fier lay on its prediction sensitivity and specificity. The pre-
diction accuracy of the 15-lncRNA-based classifier for
predicting 2-year and 5-year RFS were 0.791 and 0.834 in
the training set and 0.684 and 0.747 in the validation set,
while the AUC of the 6-lncRNA-based signature were 0.545
and 0.612 in the training set and 0.65 and 0.624 in the valida-

tion set, suggesting that our 15-lncRNA-based classifier
exhibited better efficiency in predicting RFS.

Except for the six-lncRNA-based signature, Gu et al. also
developed another lncRNA-based signature for HCC recur-
rence in patients with small HCC (maximum tumor
diameter ≤ 5 cm) [21]. In his study, a 3-lncRNA-based signa-
ture, which consists of LOC101927051, LINC00667, and
NSUN5P2, was developed and validated for predicting OS

Table 3: Univariable and multivariable Cox regression analysis for prediction of RFS.

Factors Subgroup
Univariable analysis Multivariable analysis

HR (95% CI) P HR (95% CI) P

Age 1.00 (0.99-1.02) 0.673 NA NA

Sex
Female 1

Male 0.89 (0.57-1.39) 0.621 NA NA

Race

Asian 1

White 1.15 (0.75-1.78) 0.522 NA NA

Black or African American 0.96 (0.34-2.70) 0.932 NA NA

Family history
No 1

Yes 0.68 (0.42-1.09) 0.109 NA NA

HBV
No 1

Yes 0.80 (0.51-1.28) 0.359 NA NA

HCV
No 1

Yes 1.64 (0.98-2.64) 0.058 NA NA

Alcohol consumption
No 1

Yes 1.04 (0.67-1.62) 0.863 NA NA

Mutation count 1.02 (1.01-1.03) 0.007∗ 1.02 (1.00-1.03) 0.032∗

Fraction genome altered 2.86 (0.97-8.42) 0.057 NA NA

BMI
≤24 1

>24 0.57 (0.37-0.89) 0.014∗ 0.76 (0.47-1.04) 0.084

AFP
≤20 1 1

>20 1.79 (1.14-2.82) 0.012∗ 1.82 (1.14-2.90) 0.012∗

Platelet
≤200 1

>200 1.26 (0.79-2.00) 0.328 NA NA

Albumin
≤4.0 1

>4.0 0.96 (0.60-1.52) 0.855 NA NA

Creatinine
<1.1 1

≥1.1 0.81 (0.47-1.40) 0.445 NA NA

Liver cirrhosis
No 1

Yes 2.17 (1.14-4.11) 0.018∗ 1.56 (0.87-2.12) 0.122

Histological grade
G1-G2 1

G3-G4 1.07 (0.68-1.67) 0.772 NA NA

T stage
T1-T2 1

T3-T4 3.12 (1.98-4.92) ≤0.001∗ 2.50 (1.54-4.05) ≤0.001∗

TNM stage
Stage I-II 1

Stage III-IV 2.71 (1.71-4.30) ≤0.001∗ 1.12 (0.47-2.69) 0.801

ECOG
0 1

>0 2.41 (1.54-3.77) ≤0.001∗ 2.00 (1.23-3.23) 0.005∗

lncRNA classifier 1.13 (1.09-1.18) ≤0.001∗ 1.13 (1.09-1.18) ≤0.001∗

Abbreviations: HR: hazard ratio; CI: confidence intervals; NA: not available. These variables were eliminated in the multivariate Cox regression model, so the
HR and P values were not available. ∗P < 0:05.
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and RFS in patients with small HCC. This 3-lncRNA-based
signature was more suitable for patients with higher serum
levels of AFP (>20 ng/mL) and relatively lower levels of albu-
min (<4.0 g/dL) or Asian patients with no family history of
HCC or history of alcohol consumption. Similar to our study,
Gu et al. also constructed a lncRNAs–clinicopathologic
nomogram incorporating clinicopathologic parameter of
liver cirrhosis and ECOG for predicting the 1-year and 3-
year RFS with a C-index of 0.633. Compared to the 3-
lncRNA-based clinicopathologic nomogram, our 15-
lncRNAs–clinicopathologic nomogram demonstrated better
predictive ability (C-index of 0.78 in the training set and
0.71 in the validation set). Additionally, the nomogram by
Gu et al. was suitable for patients with small HCC, while
our nomogram was developed for predicting the recurrence
of all HCC patients, potentially contributing to the prediction
of recurrence in broader patients with HCC. Secondly, the
nomogram by Gu et al. was used for predicting the 1-year
and 3-year RFS, while our nomogram was developed for pre-
dicting the 2-year and 5-year RFS, which was more fit with
early recurrence (recurrence within 2 years) and long-term
recurrence (recurrence within 5 years). Finally, we also vali-

dated our nomogram in an internal validation set to validate
the stability of our nomogram, which was not performed in
the study by Gu et al. Moreover, our nomogram appears to
be a favorable predictive model compared to the TNM stage
with a C-index of 0.64 in the training set and 0.56 in the val-
idation set, indicating that our genomic-clinicopathologic
nomogram may represent a reliable and accurate model for
HCC recurrence prediction, which is helpful for individual-
ized therapeutic treatment decision and posttreatment
follow-up decision-making.

Consistent with previous studies, mutation count, AFP, T
stage, and ECOG were found to be significantly associated
with HCC recurrence in the present study [21, 22, 23, 24].
In addition to these clinical factors, as expected, the 15-
lncRNA-based signature was also found to be significantly
related to HCC recurrence in our study. Till now, only a
few validated clinical nomograms for HCC recurrence have
been reported [25, 26, 27]. For example, a nomogram con-
sisting of 7 clinical factors, including age, AFP, PT, magni-
tude of hepatectomy, postoperative complication, number
of tumor nodules, and microvascular invasion, was devel-
oped and validated using the data of 617 HCC patients.
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Figure 5: Development of the 15-lncRNAs-based classifier-clinicopathologic nomogram for predicting the 2-year and 5-year RFS.

Table 4: Assessing the prognostic performance of the AJCC stage and nomogram in the training set and validation set.

Cohort Model
Homogeneity monotonicity and discriminatory ability Akaike information

criterion (AIC)∗∗∗∗Likelihood ratio (LR) test∗ Linear trend χ2 test∗∗ C-index (95% CI)∗∗∗

Training set

TNM stage 16.4 19.6 0.64 (0.58-0.69) 663

Nine lncRNA classifier 25.6 82.7 0.74 (0.68-0.80) 654

Nomogram 62.7 112.1 0.78 (0.72-0.83) 625

Validation set

TNM stage 5.8 6.6 0.56 (0.51-0.60) 765

Nine lncRNA classifier 12.2 21.4 0.61 (0.55-0.68) 758

Nomogram 41.6 59.2 0.71(0.65-0.76) 737
∗The higher homogeneity likelihood ratio indicates a smaller difference within the staging system; it means better homogeneity. ∗∗The higher discriminatory
ability linear trend indicates a higher linear trend between the staging system; it means better discriminatory ability and gradient monotonicity. ∗∗∗A higher C-
index means better discriminatory ability. ∗∗∗∗Smaller AIC values indicate better optimistic prognostic stratification.
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However, the results limited its use for HCC patients beyond
the Milan criteria [26]. Another nomogram incorporating
sex, the log of calculated tumor volume, ALB, platelet count,
and microvascular invasion was well-constructed and vali-
dated by Shim et al. with data from 1085 HCC patients. How-
ever, this model could only be applied for early-stage HCC
patients, and the authors only evaluated the prediction accu-
racy for predicting the 2-year RFS [27]. Different from the
nomogram described above, we developed and validated a
nomogram incorporating the clinicopathologic parameter
and genomic data, which may help to improve the stability
and accuracy of the prediction probability of the nomogram
[28].

Among the 15 RFS-related lncRNAs, AP002478.1,
GACAT3, and LINC00462 have been previously reported
to be related to cancers. AP002478.1 has been reported to
be potential prognostic biomarkers for HCC patients and
gastric cancer patients [29, 30]. GACAT3 is the first to be
found to significantly overexpress in gastric cancer tissues
and gastric cancer cell line MGC-803. The higher expression
of GACAT3 significantly was associated with tumor size, dis-
tant metastasis, TNM stages, and shorter OS [31, 32]. One
mechanism study showed that GACAT3 knockdown could

significantly inhibit proliferation, colony formation, migra-
tion, and invasion of GC cells by regulating miR-497, while
the downregulation of GACAT3 decreased its tumorigenesis
[33]. Moreover, GACAT3 was also found to similar tumori-
genesis in breast cancer, glioma, and colorectal cancer [34,
35, 36]. The upregulation of LINC00462 was found to be
associated with larger tumor size, poorer tumor differentia-
tion, TNM stage, and metastasis of pancreatic cancer
patients. Mechanism study indicated that LINC00462 could
promoted proliferation, migration invasion of pancreatic
cancer cells by regulating miR-665 [37]. Notably, LINC00462
was also significantly overexpressed in HCC tissues, and
knockdown of LINC00462 inhibited the aggressive onco-
genic phenotype in HCC cells by regulating PI3K/AKT the
signaling pathway, suggesting LINC00462 may be a potential
and promising therapeutic target for HCC [38]. Therefore,
further research on the biological function of these identified
lncRNAs may shed light on the HCC recurrence.

Although our genomic-clinicopathologic nomogram
demonstrated impressive performance in the HCC recur-
rence prediction, the limitation of this study should also be
noted. First, our nomogram is limited by the retrospective
collection of data and fails to include some already
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Figure 6: Calibration curve for the 15-lncRNA-based classifier-clinicopathologic nomogram in predicting the 2-year (a) and 5-year (c) RFS
time in the training set and the 2-year (b) and 5-year (d) RFS time in the validation set.
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recognized RFS-related factors (e.g., liver cirrhosis, vascu-
lar invasion) and some important molecular factors (e.g.,
TP53 mutation). Further efforts to incorporate more geo-
graphic and molecular factors will potentially help to
improve the performance of the present model. Second,
there is no eternal or prospective validation for the
genomic-clinicopathologic nomogram in the present study,
so external and multicenter prospective cohorts with large
sample sizes are still needed to validate the clinical appli-
cation of our model. Finally, we do not explore the under-

lying biological function and pathways of the genomic
classifier, so further mechanism studies are needed to
uncover the related mechanisms.

In conclusion, we develop a lncRNAs–clinicopathologic
nomogram and demonstrate that it appears to be a more
effective tool for HCC recurrence prediction, compared to
the TNM stage and other lncRNA-based signature from
TCGA. The lncRNAs–clinicopathologic nomogram may
help clinicians to make more fitly individualized therapeutic
strategies for HCC patients.
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