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At present, laser surgery is one of the effective ways to treat the chronic central serous chorioretinopathy (CSCR), in which the
location of the leakage area is of great importance. In order to alleviate the pressure on ophthalmologists to manually label the
biomarkers as well as elevate the biomarker segmentation quality, a semiautomatic biomarker segmentation method is proposed
in this paper, aiming to facilitate the accurate and rapid acquisition of biomarker location information. Firstly, the multimodal
fundus images are introduced into the biomarker segmentation task, which can effectively weaken the interference of
highlighted vessels in the angiography images to the location of biomarkers. Secondly, a semiautomatic localization technique is
adopted to reduce the search range of biomarkers, thus enabling the improvement of segmentation efficiency. On the basis of
the above, the low-rank and sparse decomposition (LRSD) theory is introduced to construct the baseline segmentation scheme
for segmentation of the CSCR biomarkers. Moreover, a joint segmentation framework consisting of the above method and
region growing (RG) method is further designed to improve the performance of the baseline scheme. On the one hand, the
LRSD is applied to offer the initial location information of biomarkers for the RG method, so as to ensure that the RG method
can capture effective biomarkers. On the other hand, the biomarkers obtained by RG are fused with those gained by LRSD to
make up for the defect of undersegmentation of the baseline scheme. Finally, the quantitative and qualitative ablation
experiments have been carried out to demonstrate that the joint segmentation framework performs well than the baseline
scheme in most cases, especially in the sensitivity and F1-score indicators, which not only confirms the effectiveness of the
framework in the CSCR biomarker segmentation scene but also implies its potential application value in CSCR laser surgery.

1. Introduction

CSCR is a macular disease which is characterized by neuro-
sensory retinal detachment (NRD) with or without pigment
epithelium detachment (PED) [1–3] and may result in
blurred vision, central scotoma, deformed vision, and even
permanent visual loss in serious cases. In general, the CSCR
can be divided into acute and chronic types [4, 5], among
which most acute CSCR patients can be self-healing within
3-4 months without any treatment [6]. However, the chronic
cases are difficult to automatically return to normal and have
to rely on surgery or drug intervention to block the deteriora-
tion of the course. In recent years, the laser surgery interven-
tion has become one of the important means of CSCR

therapy, which plays an effective role in inhibiting the devel-
opment of CSCR. The traditional laser photocoagulation and
micropulse laser photocoagulation are commonly used in
CSCR laser surgery. The former employs a laser spot with a
diameter of 50 to 100μm to directly act on the leakage area
(i.e., the biomarkers), which can block the leakage outlet
smoothly. Compared with the former, the latter has a wider
range of work, which covers the entire CSCR edema area
based on the multipoint scanning mode. In this paper, we
mainly focus on the former laser surgery scheme, where the
fast and accurate segmentation of biomarkers is the most
critical step. Usually, before the traditional laser photocoagu-
lation, the ophthalmologists either manually mark the posi-
tion of biomarkers on the color fundus image by referring
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to the angiography image or mark the position of biomarkers
directly on the angiography image (refer to Figure 1) and
then make the real-time determination of the laser photoco-
agulation position according to the marking position and the
real fundus field of view during the operation. The time-
consuming and laborious situation of manual labeling of bio-
markers in the above process is an important factor to drive
the related research in this paper. In addition, the exploration
of automatic segmentation of biomarkers can also lay a foun-
dation for automatic laser photocoagulation.

As far as we know, the automatic segmentation of CSCR
biomarkers in the angiography image has not been widely
studied. To the best of our knowledge, Ferreira has carried
out relevant research so far [7] and achieved certain success.
Specifically, the image processing skills such as image regis-
tration, blood vessel segmentation, optic disc detection,
image inpainting, and image segmentation were combined
to locate the biomarkers based on the angiography image
sequence. Despite all this, some of the existing biomarker
segmentation methods in fundus images and optical coher-
ence tomography (OCT) images or target detection schemes
in natural scenes can provide inspiration for our research
work. The automated detection methods [8, 9] were pre-
sented to quantify the diabetic macular edema (DME) leak-
age area based on the angiography image sequence. With
the help of image registration, image frame subtraction and
vessel segmentation, the interference of normal fundus tissue
such as the optic disc and vessels to segment DME bio-
markers can be effectively weakened, but the difference is that
the Gaussian mixture model is adopted by [9] in the final step
for the biomarker segmentation, while Rabbani [8] employed
the active contour segmentation algorithm to achieve the
above task. Both methods performed well in the segmenta-
tion of DME biomarkers. Martinez-Costa [10] designed a
scheme for leakage detection, the principle of which is to clas-
sify those pixels with a high increment in gray level within the
closest area to the foveal center as the biomarkers due to ret-
inal vein occlusion. However, this method requires manual
location of the macular center. A biomarker detection frame-
work [11] of choroidal neovascularization (CNV) was pro-
posed, which is of great significance for the qualitative
analysis of age-related macular degeneration (AMD), but
more analytical techniques need to be introduced to fully
count biomarker information. For studying the malarial ret-
inopathy, a novel framework [12] was put forward to auto-
matically detect the corresponding biomarkers, the
performance of which was excellent with the introduction
of saliency technique. On this basis, they developed the
saliency detection method based on the intensity and com-
pactness [13], further highlighting the advantages of the
framework in the detection of biomarkers for malaria reti-
nopathy and diabetic retinopathy.

In addition, with the development of machine learning
technology, many methods based on this paradigm have
emerged in the biomarker detection scenarios of various dis-
eases, such as the discovery of biomarkers for early lung can-
cer diagnosis [14], predicting long-term mortality [15], the
exploration of electroencephalography biomarker for Par-
kinson’s disease classification [16], the biomarker localiza-

tion of pectoralis muscle area, subcutaneous fat area and
liver mass area [17], and the detection of biomarkers for mul-
tiple myeloma discrimination [18]. Besides, the machine
learning method also shows its capability in the task of bio-
marker detection of fundus diseases. Based on the Adaboost
algorithm, Tsai [19] developed an automatic biomarker seg-
mentation method for accurate diagnosis of choroidal neo-
vascularization. With the help of the same classifier and
context knowledge, Trucco [20] achieved the localization of
ischemic regions in the angiography images. To realize the
joint segmentation and quantification of chorioretinal bio-
markers, a residual learning-based framework integrating
the atrous spatial pyramid pooling, coherent preprocessing,
and postprocessing mechanisms was established, and 11 bio-
markers were successfully detected [21]. Although the
machine learning based method has achieved remarkable
performance in all kinds of biomarker detection, this scheme
is mostly driven by a large number of the labeled data, which
will cause high cost of data collection and label making.
Moreover, the small proportion of CSCR biomarkers in the
whole image will lead to the imbalance between target pixels
and background pixels, weakening the ability of machine
learning method in the biomarker detection task.

However, the recently popular LRSD theory provides an
effective solution for small target detection. Inspired by this
theory, Gao [22] regarded the small target detection in infra-
red image as an optimization problem of recovering the low-
rank and sparse matrices, and the scheme gained better detec-
tion performance. A LRSD-based method was put forward by
Biondi [23] and able to extrapolate the sparse objects of inter-
est in the synthetic aperture radar images. Meanwhile, the
LRSD theory has also made some achievements in medical
image biomarker segmentation task. Shi [24] developed an
automatic segmentationmethod that leverages the LRSD tech-
niques for accurate and robust detection of pathological organ
from the CT images. To detect several specific types of bio-
markers caused by various retinal diseases, the background
of fundus image was modeled as a low-rank part, followed
by the optimization algorithm and subtraction operation to
achieve the final detection of biomarkers [25]. The application
of the LRSD theory in the above tasks supplies us with a lot of
inspiration for the task of accurate and rapid acquisition of
CSCR biomarkers in this paper. The main contributions of
our research are as follows: (1) we firstly introduce the multi-
modal fundus images into the CSCR biomarker segmentation
task to avoid the interference of highlighted vessels on the
location of biomarkers. (2) A simple yet effective semiauto-
matic localization technique is employed to reduce the search
range of biomarkers, which is conducive to the improvement
of segmentation efficiency. (3) To the best of our knowledge,
the LRSD theory is integrated with the multimodal fundus
images mentioned in (1) and the localization technique men-
tioned in (2) for the first time, which preliminarily realizes the
construction of the baseline segmentation scheme in the CSCR
biomarker segmentation task. (4) To further improve the seg-
mentation performance of the above scheme, a joint segmen-
tation framework consisting of the baseline scheme and RG
method is designed, which is not only beneficial for the effec-
tive segmentation of CSCR biomarkers by RG, but also makes
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up for the defect of undersegmentation of the baseline scheme.
(5) The qualitative and quantitative ablation experiments are
performed to verify the effectiveness of the proposed baseline
segmentation scheme and the joint segmentation framework.

The rest of the paper is organized as follows. Section 2
presents the materials and detailed methods. Section 3
describes experimental results and discussion. Section 4 con-
cludes this paper.

2. Materials and Methods

2.1. Materials. A total of 32 multimodal CSCR fundus image
pairs are employed in the experiment of CSCR biomarker
segmentation task, and the patient information involved in
these images is processed to prevent the disclosure of privacy
content. In addition, in order to utilize the multimodal infor-
mation, we employ the method [26] to achieve the consis-
tency of the spatial position between the angiography and
color fundus images. Moreover, the ground truth of the
CSCR biomarkers used in the experiment is annotated by
three ophthalmologists to objectively test and evaluate the
effectiveness of the proposed methods in the scene of CSCR
biomarker segmentation.

2.2. Related Methods. This section focuses on the application
and principle analysis of LRSD theory and RG method,
which can lay the foundation for the segmentation task of
CSCR biomarkers in this paper. To begin with, the LRSD-
based method not only performs well in the task of target
detection in natural scenes [22, 23, 27] but also has been suc-
cessfully applied to the segmentation of lesions and organs in
medical images [24, 25]. In general, target detection in natu-
ral scenes is realized by optimizing a paradigm in which the
image background and the object to be detected are repre-
sented as L (i.e., low-rank matrix) and S (i.e., sparse matrix),
respectively. In this way, target detection is cleverly trans-
formed into the problem of solving low-rank matrix and
sparse matrix in the mathematical field. The optimization
problem can be expressed as follows:

L, Sð Þ = arg min
L,S

rank Lð Þ + λ Sk k0, subject toM = L + S,

ð1Þ

where M is the observation matrix (i.e., the image matrix),
and λ is the positive regularization parameter. kSk0 repre-
sents the l0-norm (i.e., the number of nonzero entries in S).
However, the solution of Eq. (1) is a NP-hard problem due
to the nonconvexity of the matrix rank and the l0-norm. In
this case, a relaxation scheme can replace (1), which can be
written as follows:

L, Sð Þ = arg min
L,S

Lk k∗ + λ Sk k1, subject toM = L + S, ð2Þ

where kLk∗denotes the nuclear norm of the matrix L (i.e., the
sum of singular values of L), and kSk1 is the l1-norm that rep-
resents the sum of the absolute values of S (i.e., kSk1 =∑i,j ∣
Sij ∣ ).Under certain assumptions, L and S can be obtained
based on the robust principal component analysis (RPCA)
[28].

Furthermore, as a simple yet effective image segmenta-
tion technique, the RG method has been extensively utilized
in the field of medical image processing and analysis, such
as the segmentation of chondroblastoma in the X-ray image
[29] and the brain segmentation in the CT and MRI images
[30, 31]. The basic principles of the algorithms in the above
applications are consistent, which divide the image into dif-
ferent regions according to the similarity between pixels,
and the specific implementation steps involve the selection
of seed points, the construction of growth rules, and the
design of termination conditions. Although the RG method
has a good performance in the medical image segmentation
task, its accurate and fast seed point selection operation is still
an issue to be overcome, which is of great significance to
improve its segmentation quality and efficiency. In view of
this situation, we propose a joint segmentation framework
to make the RGmethod performmore remarkable in the seg-
mentation task of CSCR biomarkers.

2.3. The Proposed Methodology. The successful application of
the LRSD theory and RG method provides inspiration for us
to carry out the CSCR biomarker segmentation task. On this
basis, we further extend the above methods from the perspec-
tive of technique integration and apply the proposed
methods to the segmentation of CSCR biomarkers. In gen-
eral, a baseline segmentation scheme integrating multimodal
fundus images, semiautomatic localization technique, and

BiomarkerBiomarker

Figure 1: The biomarkers on the angiography and color fundus images.
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LRSD theory is presented, which initially achieves the goal of
rapid acquisition of biomarker location information. The
specific steps are shown in Figure 2.

Step one: this step consists of the man-machine interac-
tive and preprocessing operations. In order to speed up the
location of biomarkers, the man-machine interactive opera-
tion (i.e., semiautomatic localization technique) is imple-
mented on the angiography images, which is to initially
lock the biomarker area through manual box selection mode
and can thus avoid the mathematical operation on the whole
image matrix. The location information of the box will be
transferred to the color fundus image synchronously to
ensure that the same area can be extracted. After that, the
preprocessing operation composed of the green channel sep-
aration and contrast limited adaptive histogram equalization
(CLAHE) is applied to the color fundus image block to obtain
the preprocessed image block Ic for facilitating the subse-
quent vessel segmentation.

Step two: in this procedure, the vessel segmentation oper-
ation and the image inpainting operation are performed con-
tinuously. Firstly, the Laplacian of Gaussian (LoG) operation
is performed on the preprocessed image block Ic in the previ-
ous step to obtain the blood vessels. The specific formulas can
be expressed as follows:

LoG r, cð Þ = −
1

πσ4
1 −

r2 + c2

2σ2

� �
e−

r2+c2
2σ2 , ð3Þ

G x, yð Þ = 〠
k

r=−k
〠
l

c=−l
LoG r, cð ÞIc x + r, y + cð Þ, ð4Þ

where σ denotes the standard deviation with a value of 3, and
ðr, cÞ is the coordinate of the element in the LoG filter. k and l
are the nonnegative integers that are both set to 3 in this
paper. Gðx, yÞ represents the spatial filtering result of image
Ic , and ðx, yÞ is the coordinate of the corresponding element.
Then, the final vessel mask can be acquired though a simple
postprocessing mainly consisting of the binarization and
small area removal processes. On this basis, the image
inpainting technique [32] is adopted to weaken the
highlighted vessel area in the angiography image block Ia
and fill it with the surrounding background pixels.

Step three: after the image inpainting operation, the
CSCR biomarker segmentation model is then established
based on the LRSD theory and the inpainting imageGP. Con-
sidering that the fundus image is not absolutely pure, the
noise in the image needs to be taken into account in the
modeling process. Thus, the image GP can be represented
as Eq. (5).

Gp = L + S +N , ð5Þ

where N is the noise part of the image GP (i.e., the observa-
tion matrix M) and is assumed to be independent and iden-
tically distributed(i.e., i.i.d.) in this paper. According to the
conditions in [33], L and S can be achieved with the
assumption kNkF ≤ δ for some δ > 0, and then Eq. (2) can

be converted into the following relaxed version:

L, Sð Þ = arg min
L,S

Lk k∗ + λ Sk k1, subject to Gp − L − Sk kF ≤ δ:

ð6Þ

The dual form of Eq. (6) can be expressed as follows:

L, S,Nð Þ = arg min
L,S,N

Lk k∗ + λ Sk k1 +
1
2μ

Nk k2F , subject toGp

= L + S +N ,
ð7Þ

where kNkF denotes the Frobenius norm (i.e., kNkF =ffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i,jN

2
ij

q
). μ is a positive weight parameter. As usual, the

Accelerated Proximal Gradient (APG) [34] is applied to
recover L and S in this paper. Besides, in order to solve Eq.
(7) more effectively, the patch-image model [22] is employ
to reconstruct GP, and the corresponding patch size and slid-
ing step are set to 50 × 50 and 10, respectively. In view of the
stability and accuracy of the APG method in the infrared tar-
get detection task, the experimental setup of this part is con-
sistent with [22] in which the detailed parameters can be
found. Then, the postprocessing operations mainly including
the searching and sorting of connected regions are performed
on S to promote the generation of the final CSCR biomarker
block SP.

Final step: although the semiautomatic localization tech-
nique accelerates the segmentation efficiency of CSCR bio-
markers, it will cause the spatial positions of biomarkers
obtained in the previous step to be inconsistent with their
original positions. Therefore, in this step, the initial box posi-
tion information is utilized to restore SP to the original color
fundus and angiography images, which is essential to provide
effective position information of biomarkers for the ophthal-
mologists and automatic laser equipment.

In the above scheme, the introduction of multimodal
fundus images weakens the interference of the highlighted
vessels in the angiography image to the location of bio-
markers, and the utilization of semiautomatic localization
technique improves the efficiency of biomarker localization.
Meanwhile, the LRSD theory transforms the task of bio-
marker segmentation into the problem of low-rank and
sparse matrix decomposition, which is not only conducive
to the effective location locking of biomarkers but also accel-
erates the efficiency of biomarker segmentation to a certain
extent. Nevertheless, this scheme may cause the problem of
undersegmentation, which leads to the inaccurate segmenta-
tion results, and thus stimulates the further design of a joint
segmentation framework (refer to Figure 3 for the frame-
work). Specifically, we combine the RG method with the
above scheme. On the one hand, the LRSD theory is
employed to provide the initial seed points for the RG
method to ensure that it can obtain effective biomarkers.
On the other hand, the segmentation results obtained by
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RG and LRSD are fused to make up for the undersegmenta-
tion defect of the baseline segmentation scheme.

As shown in Figure 3, after the step three of baseline seg-
mentation scheme, the step four is followed closely. Firstly,
the position information of biomarkers in SP is extracted to
provide the initial region growing point for the RG method.
Secondly, the biomarkers are automatically segmented based
on the RG method under the condition of a given threshold.
Then, the segmentation results of the two schemes are fused
to get the final biomarkers. The process can be formulated as
follows:

Sxd , S
y
d

� �
= arg max

Sxd ,S
y
d

Spd 1 : K1, 1 : K2ð Þ, d ∈ 1, K½ �, ð8Þ

Rpd = RG Ia, Sxd , S
y
d , T

� �
, ð9Þ

FS = 〠
K

d=1
Spd + Rpdð Þ, ð10Þ

where K is the number of the biomarkers in the final CSCR
biomarker block SP, and SPd corresponds to the image block
only containing the d-th biomarker. The size of SP is K1 × K2,
and ðSxd , SydÞ denotes the position information of the d -th bio-
marker in SP. T is the threshold that is varied from 0.1 to 0.2
with a step size of 0.02. Rpd represents the segmented result of

the d-th biomarker by the RG method. FS is the fusion result
of the biomarkers acquired by the baseline segmentation
scheme and RG method. Then, the operation in the final step
of the baseline segmentation scheme is also performed on FS
to obtain the final CSCR biomarkers. The pseudocode of step
four is as follows:

3. Results and Discussion

3.1. The Evaluating Indicators and Experimental Settings. In
order to quantitatively evaluate the performance of baseline
scheme and joint scheme in the CSCR biomarker segmenta-
tion task, sensitivity, F1-score, accuracy, and specificity are
introduced as the evaluation indicators. The details are as fol-
lows:

Sensitivity = TP/ TP + FNð Þ, ð11Þ

F1‐score = 2TP/ 2TP + FN + FPð Þ, ð12Þ

Accuracy = TP + TNð Þ/ TP + FN + TN + FPð Þ, ð13Þ

Specificity = TN/ TN + FPð Þ, ð14Þ
where the manually annotated biomarker pixels that are
correctly segmented are defined as true positives (TP) and
those that are wrongly segmented are false negatives(FN).
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Figure 2: The schematic diagram of the baseline segmentation scheme.
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Similarly, the manually annotated nonbiomarker pixels that
are correctly identified are true negatives (TN), and the
wrongly specified nonbiomarker pixels are false positives
(FP). In addition, the ablation experiments are carried out
carefully to show the rationality and effectiveness of the pro-
posed schemes.

For convenience, the baseline segmentation scheme in
this paper is represented by LRM, and the version of this
scheme without the multimodal technique is marked as LR.

Meanwhile, the proposed joint segmentation framework is
denoted by LRM+R, and its version without the fusion mod-
ule is represented by LRM⟶ R, which means that the
LRSD is only applied to offer the initial seed points for the
RG method.

3.2. The Discussion of Segmentation Results of Baseline
Scheme. This section analyzes the performance of baseline
segmentation scheme LRM. As shown in Figure 4, when
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the multimodal technique is not adopted, LR is signifi-
cantly inferior to LRM in terms of F1-score and sensitiv-
ity indicators, which also implies the effectiveness and
importance of introducing the multimodal fundus images
into the CSCR biomarker segmentation task. Additionally,
it can be clearly found that both LR and LRM have
achieved more than 90% in the other two indicators,
and the difference of the same indicators is not obvious.

This is mainly credited to the introduction of the semiau-
tomatic location technique, which reduces the detection
range of CSCR biomarkers and thus greatly decreases
the false positives.

3.3. The Discussion of Segmentation Results of Joint
Framework. Figure 5 shows the performance of LRM⟶ R
and LRM+R in the CSCR biomarker segmentation scene.
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Figure 7: The overall comparison of the four schemes.
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It should be noted that this figure is the overall performance
of the two schemes on 29 image pairs. The reason is that the
two schemes cannot work well on the other three image pairs
when the threshold is set to 0.2, which also contributes to the
threshold selection of the experiment from one of the per-
spectives. Further, with the threshold increasing from 0.1 to
0.18, the two schemes reveal an increasing trend in terms of
F1-score and sensitivity indicators and obtain the best seg-
mentation results at 0.18. Meanwhile, LRM+R is better than
LRM⟶ R in these two indicators, which conveys the neces-
sity of the fusion technique. For the other two indicators, the
two schemes perform well, the reason of which is consistent
with LR and LRM.

According to the above analysis, 0.2 is not an appro-
priate threshold for the CSCR biomarker segmentation
task. In view of this, we observe the specific performance
of the two schemes on 32 image pairs based on the other
five thresholds. On the whole, it can be seen from Figure 6
that the performance of the two schemes is improved with
the increase of threshold in terms of F1-score and sensitiv-
ity indicators. However, with the participation of the
fusion technique, LRM+R can significantly create a
smaller gap under different threshold conditions compared
with LRM⟶ R, which reveals that the joint segmentation
framework can lower the impact of threshold parameters
on the segmentation performance of the model and thus
alleviates the pressure of threshold selection to a certain
extent. Moreover, the fluctuations of the two indicator
values of each image pair based on the joint segmentation
framework are less than those based on LRM⟶ R in
most cases and show that LRM + R possesses better
robustness in the biomarker segmentation task.

3.4. The Display and Discussion of Ablation Experiment
Results. This section shows and discusses the overall per-
formance of the four schemes. Figure 7 is the statistical
results of four indicators of ablation experiment on 29

images, in which the performance of four schemes can
be clearly displayed. On the one hand, the introduction
of semiautomatic localization technique promotes the four
schemes to obtain higher accuracy and F1-score values.
On the other hand, the segmentation ability of the joint
segmentation framework designed on the basis of LRM is
further enhanced under different thresholds, and the two
indicator values of this framework exceed 80% when the
threshold is greater than 0.12. Simultaneously, the inde-
pendent performance (refer to Figure 8) of the four
schemes on 32 images not only further demonstrates the
effectiveness of the baseline segmentation scheme but also
proves the necessity of further upgrading it to obtain
LRM + R.

Furthermore, in order to convey the ablation experiment
results more intuitively, some of the CSCR biomarker seg-
mentation results achieved by the four schemes with the
threshold of 0.18 are shown in Figure 9. It can be found that
LRM is better than LR in most cases, but it has the defect of

Ground
truth

LRM+R

LRM→R

LRM

LR

Figure 9: The segmentation results of CSCR biomarkers.

Table 1: The average values of F1-score and accuracy indicators.

Methods T F1-score/% Sensitivity/%

LRM+R

0.10 80.2341 72.2436

0.12 82.4836 75.5831

0.14 85.7589 80.5158

0.16 88.3595 86.9361

0.18 88.3972 91.5447

LRM⟶ R

0.10 69.3491 54.8737

0.12 74.0886 60.8251

0.14 82.6932 71.8034

0.16 86.6628 80.4348

0.18 86.6598 86.0336

LRM 67.0231 58.0845

LR 62.9971 53.3516
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undersegmentation when compared with the ground truth.
Although the LRM⟶ R scheme avoids the tedious matter
of manually selecting seed points and almost exceeds the
LRM in the actual segmentation task, the threshold factor
makes it not always perform well. In this case, the proposed
joint segmentation framework improves LRM⟶ R partly,
in which the fusion technique based on the LRSD theory
and RG method increases the true positives.

Finally, we discuss the CSCR biomarker segmentation
results in the ablation experiments quantitatively. Table 1
records the average indicator values of 32 images segmen-
tation results acquired by the four schemes under five
thresholds (i.e., 0.1, 0.12, 0.14, 0.16 and 0.18). Of note,
since the previous qualitative analysis has shown that the
other two indicators of the four schemes are very high
and lack of significant distinction, only the Accuracy and
F1-score are taken into consideration here. As shown in
Pseudocode 1, the proposed baseline segmentation scheme
exceeds LR by 4.026% and 4.7329%, respectively, in the
two indicators, which is an affirmation of the multi-
modal technique in weakening the interference of
highlighted vessels to the location of CSCR biomarkers
in the angiography images. On this basis, LRM→R works
well under different thresholds and achieves more than
86% of the indicator value when the threshold is set to
0.18, which means that LRSD can provide an effective ini-
tial seed points for the RG method and then promote the
segmentation of real CSCR biomarkers. However, this
scheme may be limited by the thresholds, thus resulting
in insufficient segmentation of the CSCR biomarkers. For-
tunately, experiments show that the joint segmentation
framework can alleviate this problem. It can be found that
LRM+R has made significant progress, and the indicator
values at the maximum threshold are 88.3972% and
91.5447%, respectively, which are 1.7374% and 5.5111%
higher than those of LRM⟶ R and 21.3741% and
33.4602% higher than those of LRM. This demonstrates
the superiority of the proposed joint segmentation
framework.

4. Conclusions

In this paper, two CSCR biomarker segmentation methods
are proposed to locate the leakage area efficiently and accu-
rately, which can assist laser surgery in the treatment of
chronic CSCR. Firstly, a baseline segmentation scheme inte-
grating the multimodal fundus images, semiautomatic local-
ization technique, and LRSD theory is proposed, which is not
only the first attempt of LRSD in locating the CSCR leakage
area, but also the preliminary realization of rapid acquisition
of these biomarkers. Then, a joint segmentation framework is
further designed to improve the above method, aiming at
enabling the LRSD to supply the effective seed points to the
RG method and making up for the defect of undersegmenta-
tion of baseline scheme. Qualitative and quantitative experi-
ments demonstrate the feasibility of the baseline scheme to
obtain the biomarkers and the effectiveness of the joint seg-
mentation framework in improving the segmentation qual-
ity. In the future, the fully automatic CSCR biomarker
segmentation method equipped with high segmentation
quality and efficiency will be further explored based on the
above research to fulfill the requirements of real-time locking
CSCR biomarkers in automatic laser surgery.
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Input:SP, K, K1, K2, Ia, T;
Ford=1:K
Calculate the coordinate of seed point (Sxd , S

y
d) by Eq. (8);

Set the initial value of δ=0;
Set the initial value of pixelnumber Pn=1;
Set the number of neighborhoods Nd=4;
Set the initial average gray value of the segmented region Ra= Ia (S

x
d , S

y
d);

WhilePn < K1×K2.
1: Calculate the δ value of each pixel in the neighborhood of the current seed point (Sxd , S

y
d) by δ = ∣IaðSxdi, SydiÞ − Ra ∣ , i =

1, 2, 3,Nd if δ < T ,add these pixels into RPd;
2: Calculate the average gray value Ra of the current segmentation region RPd;
3: Pn =Pn++; Update the seed point (Sxd , S

y
d);

End.
End.
Calculate FS by Eq. (10).

OutputFS;

Pseudocode 1: The pseudocode.
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