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Uterine carcinosarcoma (UCS) is a highly invasive malignant tumor that originated from the uterine epithelium. Many studies
suggested that the abnormal changes of alternative splicing (AS) of pre-mRNA are related to the occurrence and metastasis of
the tumor. This study investigates the mechanism of alternative splicing events (ASEs) in the tumorigenesis and metastasis
of UCS. RNA-seq of UCS samples and alternative splicing event (ASE) data of UCS samples were downloaded from The
Cancer Genome Atlas (TCGA) and TCGASpliceSeq databases, several times. Firstly, we performed the Cox regression
analysis to identify the overall survival-related alternative splicing events (OSRASEs). Secondly, a multivariate model was
applied to approach the prognostic values of the risk score. Afterwards, a coexpressed network between splicing factors
(SFs) and OSRASEs was constructed. In order to explore the relationship between the potential prognostic signaling
pathways and OSRASEs, we fabricated a network between these pathways and OSRASEs. Finally, validations from
multidimension platforms were used to explain the results unambiguously. 1,040 OSRASEs were identified by Cox
regression. Then, 6 OSRASEs were incorporated in a multivariable model by Lasso regression. The area under the curve
(AUC) of the receiver operator characteristic (ROC) curve was 0.957. The risk score rendered from the multivariate model
was corroborated to be an independent prognostic factor (P < 0:001). In the network of SFs and ASEs, junction
plakoglobin (JUP) noteworthily regulated RALGPS1-87608-AT (P < 0:001, R = 0:455). Additionally, RALGPS1-87608-AT
(P = 0:006) showed a prominent relationship with distant metastasis. KEGG pathways related to prognosis of UCS were
selected by gene set variation analysis (GSVA). The pyrimidine metabolism (P < 0:001, R = −0:470) was the key pathway
coexpressed with RALGPS1. We considered that aberrant JUP significantly regulated RALGPS1-87608-AT and the
pyrimidine metabolism pathway might play a significant part in the metastasis and prognosis of UCS.
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1. Introduction

Uterine carcinosarcoma (UCS) is an aggressive variant of
endometrial carcinoma characterized by unusual histologic
features, including discrete malignant epithelial and mesen-
chymal components (carcinoma and sarcoma) [1]. Most of
the managements for UCS had been extrapolated from
researches of endometrial carcinomas and sarcomas [2]. It
is a kind of hyperplasia with high invasiveness and distant
metastasis of endometrial carcinoma, accounting for about
3% of endometrial cancer.

The prognosis of uterine carcinosarcoma is not optimis-
tic, the 5-year survival rate is estimated to be only 30%, and
the mortality rate is 16% of endometrial cancer. In terms of
treatment, surgery is the primary treatment for uterine car-
cinosarcoma (UCS) [3]. Trastuzumab is supposed to be
effective for HER2-positive uterine carcinosarcoma patients,
whereas anti-HER2 therapy in other gynecological malig-
nancy does not have enough evidence to be efficacious which
is under evaluation [4]. Chemotherapy with carboplatin-
paclitaxel has no significant effect on the progression sur-
vival rate of patients with UCS [5]. Early diagnoses for
malignant tumors are essential for the overall survival (OS)
of patients. Although confined to the corpus, the recurrence
rate of UCS still remains very high, the development and
recurrence of which might aggravate the tumor and lead to
a poor prognosis [6]. Several studies explored potential
prognosis-related genes of UCS [6, 7], and a novel study
classified UCS into different subtypes with distinct molecu-
lar and clinicopathologic features to improve subtype-
specific therapeutic regimens [8]. Nevertheless, the compli-
cated heterogeneity and low frequency of UCS indicate that
related researches are insufficient and further study on the
pathogenesis of UCS and exploration of novel biomarkers
for the improvement of the prognostic prediction of patients
with UCS are urgently required. In this context, the role of
AS in distant metastasis and prognosis of UCS was explored
in this study, which will not only aid in the interpretations of
invasion and metastasis mechanisms but in the amelioration
of individualized therapeutic methods for UCS.

At present, the researches of UCS mainly focus on the
level of gene transcription events and their posttranscription
processes and mechanisms have not got enough attention [6,
9]. Genes are transcribed to form precursor mRNAs, which
are then alternatively spliced to transform into mature
mRNAs. And it leads to the formation of different mRNA
subtypes, which are then translated into different pro-
teins [10].

The splicing factors (SFs) dominate the alternative splic-
ing events (ASEs) in these processes, thus constructing com-
plex regulatory networks, leading to the complex and diverse
expression products. Cell differentiation, tissue-specific
acquisition, and genealogy are closely related to these mech-
anisms [11].

Abnormal alternative splicing events of some genes lead
to the disorder of regulatory networks and the dedifferentia-
tion of somatic cells. It reports that this may cause cell
malignant transformation and carcinosarcoma formation
[12]. Therefore, the discovery of regulation networks may

be helpful to find molecular markers for UCS, so as to find
new therapeutic methods and thus improve the prognosis
and survival time of patients with UCS.

In this study, to identify overall survival-related ASEs
(OSRASEs) of UCS, we comprehensively analyzed AS profil-
ing. On this basis, we built a prognosis prediction model.
Significant SFs and ASEs related to metastasis of uterine car-
cinosarcoma were determined using Pearson analysis, which
revealed the possible mechanisms of metastasis of UCS. In
addition, we also found feasible targets for UCS metastasis.

2. Materials and Methods

2.1. Data Collection. Firstly, we collected RNA transcription
data, clinical information, and SFs of UCS samples from
TCGA Data Portal (https://tcga-data.nci.nih.gov/tcga/)
[13]. Then, we downloaded alternative splicing events
(ASEs) from the TCGASpliceSeq database (https://
bioinformatics.mdanderson.org/TCGASpliceSeq/) [14].
There are seven types of ASEs, including the alternative pro-
moter (AP), exon skip (ES), alternative acceptor site (AA),
mutex exon (ME), alternative terminator (AT), reserved
intron (RI), and alternative donor site (AD) [15]. Samples
were excluded if their percent-spliced-in (PSI) value > 25%.
Through data collation and ID conversion, the result matri-
ces of ASEs were composed of the ID number, gene name,
and alternative splicing type. Clinical data included the sur-
vival time, survival state, age, gender, grade stage, and TMN
classification of cancer.

2.2. Identification of the OSRASEs. Due to the undetected
sample information in the data, we applied the K-nearest
neighbor algorithm to minimize the bias. Samples of ASEs
with standard deviations < 0:01 were excluded, as well as
samples with no follow-up information. Univariate Cox
regression analysis was performed to assess prognosis corre-
lation and the value of every sample by integrating clinical
data and ASEs. ASE with a P value < 0.05 is related to the
survival of UCS patients. The UpSet plot was formed to
explicate ASEs related to survival and OSRASEs, and the
volcano plot was developed to explain the ASEs which were
related or unrelated to the prognosis of UCS. The bubble
plots were constructed to show expression levels of the top
20 OSRASEs for each type of ASE. Specifically, in bubble
plots, the size and color represented different prognostic
values of ASEs.

2.3. Establishment of the Prognostic Model Related to
OSRASEs. Lasso regression analysis was applied to exclude
the prognostic factors with high correlation and picked out
the top 20 important prognostic OSRASEs, preventing over-
fitting of the prognostic model. The multivariate Cox regres-
sion model was constructed for evaluation of prognostic
OSRASEs with high correlation with prognosis, which sym-
bolized the coefficient of correlation of every OSRASE of this
model.

Based on the median risk score, the cases were separated
into the high-risk group and the low-risk group. In order to
evaluate the accuracy of the prognosis model, we drew a
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ROC curve and calculated the area under it. We also per-
formed the Kaplan-Meier survival analysis to verify the sig-
nificance of the difference between the low-risk group and
the high-risk group. The risk scores were achieved using
the formula as follows:

Risk score = 〠
n

i=1
βn × PSIn: ð1Þ

On the basis of the order of the risk score from low to
high, the samples were sorted and risk graphs were gener-
ated to evaluate prognosis, as well as the expression heat
map and scatter plot. Then, we conducted single-/multifac-
tor independent prognostic analysis to develop two forest
maps to assess the significance in the prognosis of the risk
score, along with the gender, age, clinical stage, grade, and
TNM classification.

2.4. Construction of the Correlation and Interaction Network.
404 splicing factors (SFs) were obtained from the SpliceAid2
database [16]. To identify the correlation and interaction
between OSRASEs and SFs, we performed Pearson correla-
tion analysis. The regulatory network of OSRASEs and SFs
was constructed using Cytoscape (3.7.1) [17]. Significant
regulatory links (∣correlation coefficient ∣ <0:400 and P >
0:001) were extracted to construct this network. OSRASEs
and SFs were illustrated as ellipses and arrows separately in
the network, in which negative and positive regulations were
expressed as green and red lines, respectively, and low- and
high-risk levels of OSRASEs were defined as purple and
red colors, respectively.

2.5. Identification of Stage- and/or Metastasis-Correlated
OSRASEs. Revealed by beeswarm plots, the Kruskal-Wallis
test and Mann-Whitney-Wilcoxon test were manipulated
for the identification of the stage- and/or metastasis-related
OSRASEs. Then, we constructed a network to expound on
regulatory relationships among the OSRASEs related to the
TNM stage and/or metastasis.

2.6. Coexpression Explication between ASEs and Signaling
Pathways. Aforementioned nonparametric tests were per-
formed to evaluate the correlations between the UCS status
and OSRASEs. Beeswarm plots were applied to elaborate
upon the significance of these correlations.

Picked out by gene set variation analysis (GSVA) initially
[18], the signaling pathways which were highly correlated to
prognosis were then analyzed and picked off by performing
the univariate Cox analysis. To determine potential down-
stream functional mechanisms of key OSRASEs, we com-
bined KEGG pathways which were related to prognosis
and OSRASEs and then performed the coexpression
analysis.

2.7. Multidimensional Online Validation. To further validate
the relationship between OSRASEs and clinical outcomes of
patients with UCS and reduce the bias caused by pure silico
analysis, we performed external validation based on other
multidimensional online databases. Firstly, by utilizing Path-

way Card (https://pathcards.genecards.org/), 6 key genes
that were closely related to the selected KEGG pathways
were extracted for further analysis. PROGgeneV2 [19],
UCSC Xena [20], UALCAN [21], Gene Expression Profiling
Interactive Analysis (GEPIA) [22], LinkedOmics [23],
Oncomine [24], and cBioPortal [25] demonstrated the
expression levels of key genes at a transcription level in
UCS. Then, Genotype-Tissue Expression (GTEx) [26] was
utilized to show the expression levels of key genes aforemen-
tioned in healthy tissues, and the Human Protein Atlas [27]
was used to compare the expression levels of these genes
between normal tissues and UCS tissues in the protein level.
Furthermore, Cancer Cell Line Encyclopedia (CCLE) [28]
was utilized to describe the gene expression levels in the cel-
lular level in UCS. Last but not least, STRING [29] was uti-
lized to construct the interaction network based on SFs,
OSRASEs, and the potential pathways in this study.

2.8. Immunohistochemistry Analysis. We achieved informa-
tion and slides of IHC from the Human Protein Atlas
(HPA). Two seasoned pathologists identified the immuno-
staining information on every IHC slide to identify the pro-
portion of RALGPS1-positive cancer cells. Then, we
calculated and showed it as histochemistry score (H-score).
The calculation formula is as follows:

H − score = 〠
n

i=1
pi × i + 1ð Þ: ð2Þ

“pi” means the proportion of the cells with relevant
intensity and “i” points to the intensity score.

2.9. Statistics Analysis. All the statistics analyses were carried
out by R version 3.5.2 (https://www.r-project.org). For con-
tinuous variables, mean ± standard deviation was applied
in the normal distribution in descriptive statistics. To regu-
late the data size of the regulatory network in this study, cor-
relation P < 0:001 and ∣coefficient ∣ >0:400 were employed as
screening criteria to extract key coexpression patterns
between OSRASEs and SFs. We utilized percentages and
counts to depict categorical variables. If two-tailed P < 0:05
, we considered it significant and adopted it.

3. Results

3.1. Summary of OSRASEs and ASEs. It showed the analysis
procedure in Figure 1. Baseline information of 57 patients
with UCS was summarized in Table S1. Gene expression
data and clinical information of 57 UCS cases were
obtained from the TCGA database, and the median
survival time was 587 (range, 0–4,269) days. 24 patients
died and 10 got tumor metastases in which there were two
cases of bone metastasis. A pattern was defined to
represent every ASE: the gene name, the TCGASpliceSeq
database AS ID of ASE, and splicing pattern were merged
as RALGPS1-87608-AT. Specifically, RALGPS1 was the
gene name, 87608 was AS ID, and AT was the
corresponding splicing pattern. In total, 40,234 ASEs in
17,859 parent genes were discovered in UCS patients
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which included 3206 AAs in 2,081 genes, 2,817 ADs in 1,
808 genes, 7,612 APs in 2,877 genes, 8, 631 ATs in 3,596
genes, 15,130 ESs in 5,887 genes, 195 MEs in 41 genes, and
2643 RIs in 1,569 genes. Therefore, as can be seen from
the figure, a gene could execute more than four alternative
splicing patterns (Figure 2(a)). ESs were the most frequent
splicing patterns, and the second were ATs. The UpSet
plot indicated that ES was the most prevalent alternative
splicing pattern-related prognosis of UCS (Figure 2(b)).
The Volcano plot demonstrated that the majority of ASEs
were OSRASEs (Figure 2(c)). Bubble plots showed the top
20 OSRASEs in the aforementioned 7 alternative splicing
patterns (Figures 3(a)–3(g)).

3.2. Establishment of the Multivariate Prediction Model.
Lasso regression was used to sift the top 20 OSRASEs for
preventing overfitting of this prediction model. It indicated
that in this multivariate Cox regression analysis, COL1A1-
435598-ES, SEC23B-58801-AP, CNIH4-9954-AA, SEC24C-
12176-ES, SEPT4-42695-RI, and CPPED1-34059-ES were
embraced (Figures 4(a) and 4(b)), with an area under the
curve (AUC) of 0.957 (Figure 4(c)). Correspondingly, by cal-
culating the risk score in each case, we obtained a median of
1.056. Further, the Kaplan-Meier plot showed that the pre-

diction model based on the risk score possessed an excellent
efficacy (Figure 4(d)).

To elaborate on the relationship between the risk score
and vital status of every UCS patient, scatter plot and risk
curve were constructed. It can be seen that patients in the
low-risk group exhibited a lower mortality compared to
those in the high-risk group (Figures 4(e) and 4(f)). The heat
map illustrated the expression levels of OSRASEs identified
by Lasso regression analysis, in which SEC23B-58801-AP,
CNIH4-9954-AA, SEC24C-12176-ES, SEPT4-42695-RI,
and CPPED1-34059-ES were lower and COL1A1-435598-
ES was higher in the high-risk group (Figure 4(g)).

3.3. The Risk Score-Forecasted Prognosis. In the integrated
analyses of multivariate and univariate Cox regression, the
risk score together with the gender, age, grade, and stage of
TMN was appraised. Of all the predictors, the risk score
was identified as the most significant and independent one
in univariate Cox regression analysis (HR = 1:020, 95% CI
(1.010–1.031), P < 0:001) (Figure 5(a)), along with multivar-
iate Cox regression analysis (HR = 1:021, 95% CI (1.011–
1.032), P < 0:001) (Figure 5(b)).

According to the RNA-seq data and relevant clinical
information about UCS patients, 390 candidate splicing

Gene expression data of 57 primary UCS
available from the TCGA database

PSI value of 40,234 ASEs in 17,859 parent
gene detected in UCS available from the

TCGASpliceSeq database

Select 404 alternative splicing factors from the
gene expression profiling

Univariate and multivariable Cox regression
screening for the alternative events with

prognostic value

Construct the regulatory network of splicing factors and alternative splicing events which showed
significantly co-expressed

Multidimensional validate the sky gene expression levels at the tissue and cellular levels based on multiply
online database.

Evaluate the associaton between alternative splicing events with prognosis value and cancer status of
primary UCS

Co-express KEGG pathways selected by GSVA with prognostic alternative splicing events which were
remarkable associated with cancer status

Figure 1: The flowchart of the analysis method.
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Figure 2: Continued.
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factors were identified, of which the expression levels were
significantly related to the overall survival of patients with
UCS.

3.4. Construction of the OSRASE and SF Regulatory Network
and Metastasis-Related Analysis. To elaborate on the inter-
actions between the SFs and the OSRASEs, we established
a regulatory network. In this network, arrows indicated SFs

and ellipses indicated OSRASEs with different risk scores.
Furthermore, JUP had a significant regulation effect on
RALGPS1-87608-AT (P < 0:001, R = 0:455) in this network
(Figure 6(a)).

Among these, in the Venn plot, 4 OSRASEs (RALGPS1-
87608-AT, ZNF528-51455-AT, MYEF2-30482-ES, and
RCBTB1-25898-AT) were significantly correlated with dis-
tant metastasis and coexpressed with SFs (Figure 6(b)).

–40
0

2

4

–l
og

10
(p

 v
al

ue
)

6

8

–2 0
z-score

2 4

Prognosis-related AS
No significant

(c)

Figure 2: Identification of OSRASEs in UCS patients. The UpSet plots of ASEs and OSRASEs: (a) the number of ASEs in different types of
splicing patterns; (b) the number of OSRASEs in different types of splicing patterns; (c) the volcano plot of the prognosis-related and no
significant ASEs.
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Specifically, RALGPS1-87608-AT was related to metastasis
(P = 0:006), ZNF528-51454-AT was associated with metas-
tasis (P = 0:019), MYEF2-30482-ES was correlated with
metastasis (P = 0:044), and RCBTB1-25898-AT was related
to metastasis (P = 0:045) (Figures 6(c)–6(f)).

3.5. Coexpression Analysis of Status-Related OSRASEs and
Survival-Related Pathways. In order to quantitatively evalu-
ate the enrichment of OSRASEs in different metabolic path-
ways, we conducted GSVA analysis. By nonparametric and
unsupervised analysis, the concentration of OSRASEs in
related downstream metabolic pathways was quantified
and scored. JUP (SF) was proposed as a remarkable marker
associated with RALGPS1-87608-AT (OSRASE) (P < 0:001),
and the most significantly coexpressed pathways of

RALGPS1-87608-AT were pyrimidine metabolism
(P < 0:001, R = −0:470), oxidative phosphorylation
(P < 0:001, R = −0:410), purine metabolism (P < 0:001, R =
−0:320), and ascorbate and aldarate metabolism (P < 0:001,
R = 0:280) (Figure 7).

To sum up, the most significant SF, OSRASEs, and
downstream pathway were JUP, RALGPS1-87608-AT, and
pyrimidine metabolism, respectively. Finally, the speculative
mechanism diagram illustrating the regulatory relationship
among JUP, RALGPS1-87608-AT, and the pyrimidine
metabolism pathway was summarized in Figure 8.

3.6. Multidimensional Validation. To reduce the bias of
results in this study, multiomics validation was performed
based on various online databases. It showed that ADA,
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HPRT1, IMPDH1, NUDT2, NUDT9, and PDE4A were the
top six genes in pyrimidine metabolism according to the
results from Pathway Card. The detail results of multidi-
mensional validation by the Human Protein Atlas
(Figure S1), PROGgeneV2 (Figure S2), GEPIA (Figure S3),
UCSC Xena (Figure S4), GTEx (Figure S5), UALCAN
(Figure S6), LinkedOmics (Figure S7), cBioPortal
(Figure S8), Oncomine (Figure S9), CCLE (Figure S10),
STRING (Figure S11), and Kaplan-Meier plotter
(Figure S12) were summarized in Supplementary Material.

Firstly, expression levels of JUP, RALGPS1, ADA,
NUDT9, NUDT2, HPRT1, IMPDH1, and PDE4A in differ-
ent online platforms were shown in Table S2. NUDT2 was
highly expressed, and HPRT1 was less expressed in normal
uterine (Figure S1). JUP, ADA, IMPDH1, and HPRT1
were all highly expressed, while RALGPS1, NUDT9,
NUDT2, and PDE4A were all less expressed in tumors at
the tissue level (Figures S3–S10). RALGPS1, NUDT9,
NUDT2, and PDE4A were less expressed in cancer cell
lines; JUP, ADA, HPRT1, and IMPDH1 were highly
expressed in cancer cell lines in CCLE (Figure S10). A
regulatory network of JUP, RALGPS1, ADA, NUDT9,
NUDT2, HPRT1, IMPDH1, and PDE4A in STRING was
displayed in Figure S11.

Secondly, survival analysis results of JUP, RALGPS1,
ADA, NUDT9, NUDT2, HPRT1, IMPDH1, and PDE4A

were shown in Table S3. RALGPS1 (P = 0:030), NUDT9
(P = 0:024), HPRT11 (P = 0:004), and PDE4A (P = 0:002)
were significantly correlated with UCS patients’ prognosis
in PROGgeneV2 (Figure S2). ADA (P = 0:02), IMPDH1
(P = 0:03), and PDE4A (P < 0:001) were significantly
correlated with the clinical stage (Figure S3). And in
UALCAN, JUP (P = 0:034), ADA (P = 0:018),
HPRT1(P = 0:042), IMPDH1(P = 0:019), and PDE4A
(P < 0:001) were obviously correlated with prognosis
(Figure S6). In addition, RALGPS1 (P = 0:028), NUDT9
(P = 0:024), HPRT1 (P = 0:004), IMPDH1 (P = 0:040), and
PDE4A (P = 0:002) were significantly correlated with
prognosis in LinkedOmics (Figure S7). Furthermore, JUP
(P = 0:006), ADA (P < 0:001), NUDT9 (P < 0:001),
NUDT2 (P = 0:003), HPRT1 (P = 0:030), IMPDH1
(P = 0:029), and PDE4A (P = 0:048) were significant genes
related to the prognosis in the Kaplan-Meier plotter
(Figure S12). Finally, Table S4 summarized the results of
multidimensional external validation.

4. Discussion

UCS is a highly invasive and rare gynecological malignant
tumor. Its prevalence is less than 5% of all malignant uterine
tumors, but its related deaths account for more than 16% of
the deaths caused by uterine malignant tumors [30]. It is a

p value Hazard ratio

0.046Bone metastasis 0.217 (0.048–0.974)

0.359Distant metastasis 0.696 (0.320–1.511)

<0.001Risk score 1.020 (1.010–1.031)

0.
04

4

0.
08

8

0.
17

7

0.
35

4

0.
70

7
1.

00
1.

41
0

Hazard ratio

(a)

p value Hazard ratio

0.066Bone metastasis 0.208 (0.039–1.112)

0.606Distant metastasis 0.797 (0.337–1.888)

<0.001Risk score 1.021 (1.011–1.032)

0.
04

4

0.
06

8

0.
17

7

0.
35

4

0.
70

7

1.
41

0

Hazard ratio

(b)

Figure 5: The Cox regression analysis for evaluation of the independent prognostic value of the risk score. (a) Univariate and (b)
multivariate cox regression analysis. Forest plots. Green for univariate and red for multivariate.
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biphasic tumor consisting of malignant epithelium and
malignant stroma. Most uterine carcinosarcomas have only
one epithelial component; the most common one is poorly
differentiated serous adenocarcinoma, which can also be
endometrial-like carcinoma, clear cell carcinoma, mucinous
carcinoma, squamous cell carcinoma, and undifferentiated
tissue type. Squamous cell carcinoma is rare as a single epi-
thelial component. Metastatic UCS deteriorated from pri-
mary UCS and possesses a variety of subpopulations with
transcription properties, while the molecular mechanisms
hidden in UCS tumor occurrence and distant metastasis
have not yet been confirmed. Furthermore, available diag-
nostic and prognostic targets are still in a state of scarcity.

In previous studies, various parameters including the
clinical stage, epithelial component grade, performance sta-
tus, expression level of CA-125, myometrial invasion, adju-
vant therapy, and residual cancer were considered to be
related to the survival rate of patients with UCS [31]. In
recent years, anomalous ASEs related to SFs were identified
to be significant in researching cancer biology and clinical
treatments as potential factors [10, 32]. ASEs and SFs have
been convinced to manufacture various oncoprotein iso-
forms related to cancer cell proliferation, antiapoptosis,
and clinical metastasis [33]. Interestingly, a recent study

integrated data of ASEs from the SpliceSeq database and
clinical information of HCC from TCGA and a prognostic
prediction model based on ORASEs in hepatocellular carci-
noma (HCC) was established, providing candidate bio-
markers and targets for patients with hepatocellular
carcinoma [34]. In addition, another research also con-
structed a regulation network to elucidate the underlying
mechanisms of ORASEs in HCC [35]. Besides, ASEs varied
among different cancer types; a previous study identified dif-
ferential expressing isoforms and ASEs in adenocarcinoma
and squamous cell lung cancer cells, providing candidate
markers and drug targets for lung cancer [36]. Moreover, a
novel research explored the role of ASEs and filled the
vacancy of underlying tumorigenesis and metastasis mecha-
nisms of kidney renal clear cell carcinoma [37]. Despite
studies regarding prognosis, the relationships among SFs,
OSRASEs, and downstream signaling pathways hidden in
distant metastasis and prognosis of UCS remained unclear
and the ORASE regulatory networks and relative prognostic
models for UCS have not yet been clearly determined.

In this study, a total of 1,035 OSRASEs were determined
and we established a prognosis predicting model for high-
risk population which was based on 4 significant OSRASEs
(RCBTB1-25898-AT, RALGPS1-87608-AT, MYEF2-30482-
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Figure 6: Identification of key metastasis-related OSRASEs. (a) The network constructed for coexpressed splicing factors and overall
survival-associated splicing events; arrows represented SFs; the red and blue ellipses represented high and low risks of OSRASEs; (b) the
Venn plot showed that there were 35 distant metastasis-associated splicing events and 96 splicing events coexpressed with SFs and their
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ES, and ZNF528-51455-AT) filtered by Lasso regression
analysis. The prediction model in this study had a higher
reliability (AUC: 0.957) and fewer predictors, compared
with prevenient UCS prediction models. Additionally, we
also found that RALGPS1-87608-AT was significantly asso-
ciated with pyrimidine metabolism, oxidative phosphoryla-
tion, purine metabolism, ascorbate, and aldarate
metabolism, which were proposed to be the hidden regula-
tion and impressive function of RALGPS1 in distant metas-
tasis of UCS. It was worth mentioning that the risk score was
confirmed as an independent prognosis-related factor, pre-
dicting remarkable serviceability for patients with UCS.

The junction plakoglobin (JUP) is known to be a desmo-
somal anchor protein gene, the normal function of which is
critical for microtubules and intercellular junctions [38]. It
encodes an important cytoplasmic protein, the only known
component common to submembranous plaques of inter-

mediate junctions and desmosomes. ASEs occur in its down-
stream mechanisms. Membrane-related plaques are
architectural elements in a critical strategic position to act
on the arranging and functional regulation of the cytoskele-
ton and various cell types. It also plays a significant part in
the construction and functional regulation of submembra-
nous plaques, which is also considered as an important
tumor suppressor [38]. At the same time, JUP functions as
a substrate for VE-PTP and is necessary for it to stimulate
VE-cadherin function in endothelial cells. In addition, muta-
tions in JUP and/or changes in its expression levels have
been identified in various cancer types (hepatoma, lung ade-
nocarcinoma, and breast cancer) [38–40] and upregulation
of it may lead to metastasis and recurrence in patients with
squamous cell carcinoma [41]. Thus, we proposed that
abnormal expression of JUP might also play an important
role in the metastasis and recurrence of UCS. Although there
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are several experimental researches of JUP regulation both
in mice [42, 43], the underlying pathological mechanisms
in UCS were revealed, just the tip of the iceberg. Therefore,
this study provided a new insight in candidate splicing fac-
tors and therapeutic targets for UCS.

Ral GEF with the PH domain and SH3 binding motif 1
(RALGPS1), the parent gene of RALGPS1-87608-AT, was
confirmed by various online databases among the identified
OSRASEs associated with metastasis and prognosis of
patients with UCS. RALGPS1 dysfunction might include
abnormalities of biogenesis of GPI dependent on the DPM
complex and, with any decrease in THY-1, might yield pos-
sible clues in pathophysiology of ovarian teratomas [44].
RALGPS1 belongs to a family of RAS guanine nucleotide
exchange factors (GEFs). Activation of it can stimulate sig-
naling pathways which are implicated in the activation a
variety of downstream TFs, upregulating the expression
levels of other genes associated with cellular division and
proliferation. It also corresponds to RALA and RALB, inter-
acting with various downstream effectors and signaling
pathways [45]. RALA could combine with many down-
stream effectors and regulate a variety of cellular activities.
As a scaffold and RhoGAP for other proteins, an effector
of RALA is RAL-binding protein (RALBP1), which influ-
ences receptor-mediated endocytosis actin organization,
mitochondrial division, and autophagy [45]. RALBP1 is an
important effector for several RAL-driven processes, inter-
acting with various proteins which modulated the endocyto-
sis process and signaling transduction. The Eps homology
domain-containing proteins Reps1 and Reps2 were proteins
interacting with RALBP1 C-terminus, which were significant
for receptor tyrosine kinase-regulated endocytosis [46, 47].
RAL effectors and effector functions play an important role
in the occurrence, development, and distant metastasis of
numerous tumors especially in UCS.

Another functional protein related to C-terminus of
RALBP1 is cyclin B1 [48]. RalBP1 interacts with the acti-

vated cyclinB1 enzyme, which is critical for the mitotic
phosphorylation of Epsin. Upon phosphorylation, Epsin is
no longer available to conduct endocytosis [48]. In addition,
the activity was regulated via activation of RALA. Thus, the
aberrant function of these factors may cause the formation
of cancer cells and lead to UCS.

RALBP1 was identified in screens for proteins, which
combine with activated RALA [49–51]. Two ATP-binding
motifs in RALBP1 were momentous for transport function.
The transport function can promote the export of chemo-
therapeutic drugs, as well as oxidative damage byproducts
induced by radiation therapy [52]. Thus, it shows that
RALBP1 is closely linked to the prognosis and efficacy of
UCS patients. The overexpression of RALBP1 had been
found in various tumors, the inhibition of which can impair
tumorigenic growth [53]. This indicated that it may become
an effective target for the treatment for UCS.

RALA is identified to recruit RALBP1 to mitochondria,
where it plays as a scaffold to stimulate cyclin B phosphory-
lation and facilitates mitochondrial fission. In addition,
mitochondrias can be preserved in each cell equally via a
balance of fission and fusion in the process of mitosis. Dur-
ing mitosis, fission promotes equal distribution of mitochon-
dria to daughter cells. Mitochondrial dynamics were
identified to be reprogrammed in cancer cells by recruiting
mitochondria in cortical cytoskeleton [54]. The mechanisms
could enhance the membrane machinery of cellular move-
ments, cellular motility kinase phosphorylation, invasion,
chemotaxis, and distant metastasis [54, 55]. At the same
time, through GSVA analysis, we found that oxidative phos-
phorylation, the negative regulated signal pathway of
RALGPS1, is closely related to mitochondrial complex I defi-
ciency, mitochondrial complex II deficiency, and mitochon-
drial complex III deficiency. Therefore, suppression of
RALGPS1 may cause mitochondrial fission failure so as to
inhibit tumor invasion, chemotaxis, and metastasis. Surpris-
ingly, RALGPS1 was verified to show low expression in UCS
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patients in our study and various external databases which
provided strong evidence for our scientific hypothesis.

Pyrimidine metabolism, a downstream signaling path-
way significantly related to JUP and RALGPS1 in this study,
is able to encompass various enzymes implicated in synthe-
sis, interconversion, degradation, salvage, and molecule
transport [56]. Pyrimidines are important structural compo-
nents of acids, vitamins, nucleic, nucleotides, folates, and
pterins, each one of them fulfilling crucial roles, and disor-
ders of pyrimidine metabolism pathways may cause various
malignancies [57]. The pyrimidine metabolism had been
widely explored among various organisms. Importantly,
critical participation of pyrimidine metabolism in processes
which include DNA/RNA synthesis, generation of UDP-
sugars for glycosylation of proteins, and generation of pre-
cursors activated by CDP made them attractive for study.
More importantly, actively dividing cells need more pyrimi-
dines than those in quiescent cells, so tumor cells were iden-
tified to overexpress pyrimidine metabolic enzymes
universally [58, 59]. ADA catalyzes the hydrolytic deamina-
tion of adenosine and 2-deoxyadenosine [60, 61] and plays
an important role in purine metabolism and in adenosine
homeostasis. Furthermore, it acts as a positive regulator of
T-cell coactivation by binding DPP4 [62] and stimulates
plasminogen activation [63]. NUDT9 encodes protein which
belong to the Nudix hydrolase family, and alternatively spliced
transcript variants encoding different isoforms have been
found for this gene. NUDT2 asymmetrically hydrolyzes
Ap4A to yield AMP and ATP and thus plays a major role in
maintaining homeostasis. Interestingly, NUDT2 may be a
candidate tumor suppressor gene. Alternative splicing has
been observed at this locus, and four transcript variants, all
encoding the same protein, have been identified. HPRT1 plays
a central role in the generation of purine nucleotides through
the purine salvage pathway by which transfers the 5-
phosphoribosyl group from 5-phosphoribosylpyrophosphate
onto the purine. IMPDH1 catalyzes the conversion of inosine
5′-phosphate (IMP) to xanthosine 5′-phosphate (XMP), the
first committed and rate-limiting step in the de novo synthesis
of guanine nucleotides, and therefore plays an important role
in the regulation of cell growth. It may also play a critical part
in the tumorigenesis and progression of several cancer types.
PDE4A hydrolyzes the second messenger cAMP, which is a
key regulator of many important physiological processes,
besides that alternatively spliced transcript variants encoding
different isoforms had been described for this gene. Therefore,
abnormal metabolism of pyrimidine may play a significant
role in the germination, metastasis, and the prognosis of UCS.

Overall, JUP was the key SF and RALGPS1 was the key
OSRASE related to the status and distant metastasis of
UCS in this study. In addition, pyrimidine metabolism is
the potential signaling pathway in the downstream of JUP
and RALGPS1.

There were still some deficiencies in the present study.
Firstly, the scientific hypothesis in the present study was
mainly based on pure bioinformatics analysis, which had
not been confirmed by further experiments. Secondly,
though the key genes and their regulatory mechanisms were
validated using online databases, sequencing data used in
this study were obtained from only one cohort with limited

sample size. Thirdly, only original data were obtained from
TCGA database and the deficiency of samples of metastatic
sites, including the bladder, colorectum, and liver, resulted
in less integrated results.

To make our hypothesis more reliable and scientific, in
the future, a basic experiment will be carried out based on
various researches of ASEs, including ASEs in pan-cancer
and pancreatic cancer [64, 65]. All genes in our scientific
hypothesis will be identified in various samples (caner vs
healthy and cancer vs adjacent normal tissue) using IHC
for detecting the differential expression. By performing
coimmunoprecipitation and RNA immunoprecipitation, a
direct mechanism between JUP and RALGPS1 will be con-
firmed. Moreover, an engineered SF would be applied to
identify the ASEs producing specific splicing isoforms of
RALGPS1. In addition, immunofluorescence staining will
also be applied for validation of the cellular locations of
JUP and RALGPS1. The pyrimidine metabolism pathway
and distant metastasis of UCS will be further validated using
biological function assays such as rescue assays, which can
provide more evidence for the potential therapeutic targets
and novel prognostic factors in UCS.

In conclusion, we established the prediction model with
excellent performance in external database validation. Based
on the comprehensive bioinformatics analysis, we consid-
ered that aberrant JUP-regulated RALGPS1 might be related
to the tumorigenesis, metastasis, and poor prognosis of UCS
via pyrimidine metabolism.
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all survival and stage of multidimensional external valida-
tion results based on multiple databases. Table S4:
summary of multidimensional external validation. Figure
S1: the Human Protein Atlas database validation. (A) JUP
was medium expressed in normal uterine tissues and highly
expressed in UCS; (B) NUDT9 was moderately expressed in
normal uterine tissues and highly expressed in UCS; (C)
NUDT2 was highly expressed both in normal uterine tissues
and in UCS; (D) the expression of HPRT1 was relatively low
in normal tissues compared to that in tumor tissues; (E)
IMPDH1 was moderately expressed in normal uterine tis-
sues and less expressed in UCS; (F) IMPDH1 was moder-
ately expressed in normal uterine tissues and less expressed
in UCS; (G) PDE4A was not detected in normal uterine tis-
sues and moderately expressed in UCS. Figure S2: PROG-
geneV2 database validation. RALGPS1 (B), NUDT9 (D),
HPRT1 (F), and PDE4A (H) were significantly correlated
with patients’ prognosis. Figure S3: GEPIA database valida-
tion. RALGPS1 (B), NUDT9 (D), NUDT2 (E), and PDE4A
(H) were significantly downregulated in tumor tissues.

ADA (K), IMPDH1 (O), and PDE4A (P) were significantly
correlated with the clinical stage. Figure S4: UCSC Xena
database validation. The expression levels of JUP (A),
RALGPS1 (B), NUDT2 (E), HPRT1 (F), and IMPDH1 (G)
were relatively highly expressed in early-stage UCS patients
compared to advanced UCS patients. ADA (C), NUDT9
(D), and PDE4A (H) were relatively less expressed in
early-stage UCS patients compared to advanced UCS
patients. Figure S5: GTEx database validation. Heat maps
show the expression levels of the genes in different normal
tissues. Figure S6: UALCAN database validation. JUP (A),
ADA (C), NUDT2 (E), IMPDH1 (G), and PDE4A (H) were
all differentially expressed between tumor and normal tis-
sues with significance. Besides, ADA (K), HPRT1 (N),
IMPDH1 (O), and PDE4A (P) were significantly correlated
with patients’ prognosis. Figure S7: LinkedOmics database
validation. K-M curves show that high expression of
RALGPS1 (B), NUDT9 (D), HPRT1 (F), IMPDH1 (G),
and PDE4A (H) was positively related to the negative prog-
nosis in patients with UCS. (I, J) Heat maps show the genes
which have noteworthy correlation coefficient with
RALGPS1. Figure S8: CBioportal database validation.
Expression levels of JUP (A), RALGPS1 (B), ADA (C),
NUDT9 (D), NUDT2 (E), HPRT1 (F), IMPDH1 (G), and
PDE4A (H) in patients with UCS. (I) Integrated genes
(P = 0:0007) were significantly related to prognosis. Figure
S9: Oncomine database validation. JUP (A), ADA (C),
HPRT1 (F), and IMPDH1 (G) were significantly upregu-
lated, while RALGPS1 (B), NUDT9 (D), NUDT2 (E), and
PDE4A (H) were downregulated in different kinds of uterine
cancers. Figure S10: CCLE database validation. RALGPS1
(B), NUDT9 (D), NUDT2 (E), and PDE4A (H) were down-
regulated, while JUP (A), ADA (C), HPRT1 (F), and
IMPDH1 (G) were significantly upregulated in different
kinds of uterine cancers. Figure S11: STRING database vali-
dation. The protein-protein interaction network shows that
JUP, RALGPS1, ADA, NUDT9, NUDT2, HPRT1, IMPDH1,
and PDE4A were closely interacted. Figure S12: K-M Plotter
database validation. JUP (A), ADA (C), NUDT9 (D),
NUDT2 (E), HPRT1 (F), IMPDH1 (G), and PDE4A (H)
were significantly correlated with patients’ prognosis.
(Supplementary Materials)
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