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A connection exists between hypertension (HTN) and cognitive impairment (CI) or gut microbiota (GM) and neuropsychiatric
disease. However, the link between GM and HTNCI has not been illustrated. This study endeavoured to profile the landscape of
GM in HTNCI patients and evaluate the value of GM as HTNCI biomarkers. We recruited 128 patients with hypertension and
assigned them to two groups of different MoCA scores. Clinical and biological data were recorded. GM composition was
illustrated with 16S ribosomal RNA sequencing, and the dominant species were identified by linear discriminant analysis Effect
Size (LEfSe). It showed higher abundance of TM7 and lower abundances of Veillonella and Peptoniphilus in the HTNCI group
than in the HTN without cognitive impairment (HTNnCI) group. We next clarified the link between GM and MoCA scores or
HTNCI factors. KEGG analysis revealed the involvement of decreased bile secretion. An evident correlation showed up
between HTNCI and Veillonella abundance (P = 0:0340). We concluded that some representative GM species, especially
Veillonella, could predict cognitive impairment in hypertension patients, making them potential benchmarks of HTNCI.

1. Introduction

Dementia, often aging-related, features progressive and
irreversible cognitive decline severe enough to impair the
quality of life [1]. About 50 million people are suffering
worldwide, with an expected annual increase of 9.9 million
cases [2]. Hypertension (HTN), a culprit of cognitive
impairment, is confirmed in many studies [3–7]. According
to the plan of the World Health Organization, a 25% reduc-
tion in HTN prevalence by 2025 is a key effort to control
cognitive decline [2]. Hypertension boosts arteriosclerotic
progression in the brain, facilitating the atheroma formation
and arteriolar tortuosity [8, 9]. Hypoperfusion can bring

with infarction and diffuse ischemia in the periventricular
and deep white matter, which favours the development of
Alzheimer’s disease (AD) [9]. As two leading causes of
cognitive impairment, AD is manifested by early loss of
episodic memory and vascular cognitive impairment (VCI)
by impairment inattention, information processing, and
executive function [10].

The human gastrointestinal tract populates a colony of
symbiotic bacteria with abundant species and a dynamic
balance. Gut microbiota (GM) is tightly involved in the
physiology and pathology of humans [11]. In recent years,
the imbalance of GM and its products is importantly related
to the occurrence of diseases such as obesity, diabetes,
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hyperlipidemia, and hypertension [12–14]. In patients with
blood pressure and cognitive impairment, the GM affects the
human blood pressure level, brain function, and host behavior,
which is related to hypertension with cognitive impairment.
Studies have shown that regulating the GM can improve
hypertension [15], becoming a potential key target for improv-
ing hypertension with cognitive impairment.

GM dysbiosis has a link with neuropsychiatric disorders
in human and animal studies. Studies have shown character-
istics of fecal microbial diversity and composition in AD
patients: more bacteria eliciting proinflammatory response
and less bacteria synthesizing short-chain fatty acids
(SCFAs) [16, 17]. In an AD mouse model, Verrucomicrobia
and Proteobacteria increase, and Ruminococcus and Butyrici-
coccus decrease [18]. Moreover, the tie between GM and
cognitive impairment has been clarified in other diseases
[19–22]. However, the profile of GM in HTNCI patients
has not been elucidated. The association between GM and
brain function has been explored in models using germ-
free mice or animals treated with probiotics. In these studies,
germ-free mice demonstrated aberrant social behaviors [23,
24] and alterations in the amygdala and prefrontal cortex
[25, 26]. Other experiments based on germ-free animals
found that GM was closely implicated in neurogenesis, a
process critical to learning and memory [27]. Probiotics alle-
viated anxiety and depression in rats and mice [28]. Oral
SCFAs also inhibited the decline in the function of microglia
in germ-free animals [29]. Fecal microbiota transplantation
could produce behavioral phenotypes [30]. However, it is a
question whether these outcomes in animal experiments
can be achieved in humans.

Here, we characterized the GM profile and its link with
MoCA scores and HTNCI risk factors. Our findings may
pluck potential diagnostic biomarkers out of GM for HTNCI.

2. Materials and Methods

2.1. Study Patients. Patients, aged >60 years, confirmed with
hypertension, and treated in the Xin’an community in Wuxi
city from May to October 2018 were enrolled. The exclusion
criteria included the following: severe vision, hearing and
speaking impairments, use of antibiotics or probiotics within
the previous 6 months, diet restriction, gastrointestinal sur-
gery, infection, mental disorders (such as schizophrenia),
and severe life-threatening illnesses. The study protocol
was approved by the Ethics Committee of the Wuxi People’s
Hospital. Each patient provided written informed consent.

2.2. Neuropsychological Assessment. The neuropsychological
function was scored by the Montreal Cognitive Assessment
(MoCA) (https://www.mocatest.org/) at 3 months after
hypertension onset. A score ≥ 26 was defined as normal.
To control the bias in MoCA assessment due to the educa-
tion background of the patient, one point was given to the
patient having education of <12 years, but not if the total
score of this patient exceeded 30 points.

2.3. Clinical Data Collection. Basic information was collected
during the clinical interview, including sex, age, education

level, physique, sleep, smoking and alcohol intake, dietary
habit, body mass index (BMI), and profiles of vitamin B12
and thyroid-stimulating hormone (TSH). We also prepared
128 fecal samples and stored them at -80°C.

2.4. Bioinformatics and Data Analysis. DNA extraction
from fecal samples was performed with the FastDNA
Spin Kit (MP Biomedicals, Santa Ana, CA, USA),
followed by amplification of V3–V4 16S ribosomal RNA
with the primers 5′-CTCCTACGGGAGGCAGCA-3′ and
5′-GGACTACHVGGGTWTCTAAT-3′. Sequencing was
conducted on an Illumina MiSeq PE300 platform (Illumina,
Santiago, CA, USA). After analysis on the QIIME pipeline,
only high-quality sequences were retained (score > 30 and
length ≥ 200 bp). Those with >97% similaritywere concen-
trated into operational taxonomic units (OTUs) by QIIME
1.9.1 (https://qiime.org/), followed by the generation of taxo-
nomic profiles of each OTU at five levels (phylum, class,
order, family, and genus). Principal component analysis
was carried out on SIMCA 14.0 (Umetrics AB, Umeå,
Sweden). Candidate biomarkers were filtered out through
linear discriminant analysis Effect Size (LEfSe). With an
alpha value of 0.05 for both the factorial Kruskal-Wallis test
among classes and the pairwise Wilcoxon-Mann-Whitney
test between subclasses, the threshold on the logarithmic
LDA score for discriminative features was set at 2.0. Phyloge-
netic investigation of communities by reconstruction of
unobserved states (PICRUSt) was employed to predict the
gene function of gut microbiota between groups with and
without cognitive impairment. Related pathways were deter-
mined using Kyoto Encyclopedia of Genes and Genomes
(KEGG) Orthology. The processing of 16S rRNA sequencing
data was implemented in LEfSe and PICRUSt online (https://
huttenhower.sph.harvard.edu/galaxy).

2.5. Statistical Analysis. Data were analyzed with GraphPad
Prism V.7.0.1 (La Jolla, CA, United States), R software
(V.3.4), and Adobe Illustrator CC 2015 (Adobe Systems
Incorporated, California, America). Categorical variables
were subjected to a chi-squared test and continuous
variables to Student’s t-test or Mann-Whitney test. The
Mann-Whitney test was carried out to compare the data of
the HTNCI and HTNnCI groups. Multivariate logistic
regression was to determine the factors, especially represen-
tative microbes, for predicting HTNCI. The probability cut-
off value was 0.05 to put in and 0.1 to put out a variable.
Spearman’s rank correlation was used to demonstrate the
link of GM with MoCA scores and HTNCI risk factors.

3. Results

3.1. Baseline Patient Information. Recruited were 234
patients with hypertension. Excluded were 36 for unwilling-
ness to join the study, 42 for missing data, and 28 for exclu-
sion criteria. The 128 eligible were assigned to the HTNnCI
group (n = 60) and the HTNCI group (n = 68) (see Figure 1).
As shown in Table 1, significant differences were observed in
sex, education level, MoCA score, stroke, and thyroid-
stimulating hormone between two groups (P = 0:0269,
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0.0161, <0.0001, 0.0191, and 0.0253, respectively), but not in
age, body mass index (BMI), smoking, alcohol use, diabetes
mellitus, coronary heart disease, and vitamin B12.

3.2. GM Profile in HTNCI Patients. A total of 7825 OTUs
were generated by 16S ribosomal RNA sequencing, includ-
ing 14 phyla, 22 classes, 29 orders, 64 families, and 151
genera. Fecal microbiota alpha-diversity columns and the
PCoA scatterplots showed no compositional difference
between groups, but significant differences in the diversity
of some taxa (see Figure 2).

At the phylum level, the HTNCI group showed higher
abundance of TM7 (0.00992647 vs. 0.0142756%, P = 0:014,
see Figure 3(a)) and lower abundance of Synergistetes
(0.0456658 vs. 0.00105054%, P = 0:049, see Figure 3(a)). As

to classes, the HTNCI group showed higher abundance of
TM7-3 (0.009926 vs. 0.014275632%, P = 0:014, see
Figure 3(b)). At the genus level, the HTNCI group showed
higher abundances of 6 genera, including Paludibacter (0.000
vs. 0.033162%, P < 0:0001, see Figure 3(c)), Acidaminococcus
(0.002859 vs. 0.042649%, P < 0:0001, see Figure 3(c)),Morga-
nella (0.003608 vs. 0.026179%, P < 0:0001, see Figure 3(c)),
Eubacterium (0.002758 vs. 0.013626%, P = 0:0032, see
Figure 3(e)), S24-7 unclassified (0.008 vs. 0.00819%, P =
0:0370, see Figure 3(e)), and Peptococcus (0.024134 vs. 0%, P
= 0:0010, see Figure 3(c)), and lower abundances of 17 genera,
including Veillonella (0.186036 vs. 0.05164%, P = 0:0340, see
Figure 3(c)), Christensenellaceae unclassified (0.019928 vs.
0.005697%, P < 0:0001, see Figure 3(c)), Anaerotruncus
(0.006951 vs. 0.020673%, P = 0:0001, see Figure 3(c)), Citro-
bacter (0.011582 vs. 0.017372%, P = 0:0044, see Figure 3(c)),
and TM7-3_unclassified (0.009562 vs. 0.014074%, P = 0:0200,
see Figure 3(c)). In LEfSe analysis, the HTNCI group showed
a higher abundance of Veillonella and a lower abundance of
Bilophila (see Figures 3(d) and 3(e)).

3.3. Predicted Functions of GM. We evaluated the functional
differences of GM between the HTNnCI and HTNCI
groups. As shown in Figure 4, in the HTNCI group, the
GM was enriched in bile secretion (organismal systems,
digestive system), shigellosis (human diseases, infectious
diseases), and G protein-coupled receptors (environmental
information processing, signalling molecules, and interac-
tion). In HTNnCI patients, the enrichments included
photosynthesis-antenna proteins (metabolism, energy
metabolism), betalain biosynthesis (metabolism, biosynthe-
sis of other secondary metabolites), biosynthesis of type II
polyketide products (metabolism, metabolism of terpenoids
and polyketides), and melanogenesis (organismal systems,
endocrine system).

3.4. Correlation between GM and MoCA Score and the Risk
Factors for Cognitive Impairment. According to the results
of Spearman’s rank analysis (see Figure 5), Lachnospira
(P < 0:05), Veillonella (P < 0:05), Firmicutes_Other

Elderly patients with HTN
(n = 234)

Eligible patients
(n = 128)

HTNnCI group
(n = 60)

HTNCI group
(n = 68)

GM profile analysis

Patients excluded
(n = 106)

Refused to participate/Missing data 
/ Exclusion criteria

Yes

MoCA Score≥26

No

Figure 1: Flow chart of patient recruitment.

Table 1: Baseline information of the HTNCI and HTNnCI groups.

Parameters
HTNnCI group

(n = 60)
HTNCI group

(n = 68) P value

Age (years) 68.23 69.56 0.1233

Gender (male/
total%)

51.67 32.35 0.0269

Low education 2.43 2.15 0.0161

BMI (kg/m2) 24.75 25.40 0.2179

Smoking (still
smoking/total%)

30.00 25.00 0.6908

Alcohol (still
drinking/total%)

25.00 16.18 0.3591

MoCA score 27.27 19.16 <0.0001
Diabetes mellitus 0.30 0.29 0.9426

Coronary heart
disease

0.083 0.18 0.1232

Stroke 0.10 0.26 0.0191

Vitamin B12 (pg/
mL)

263.00 230.50 0.3288

TSH (mU/L) 4.91 10.02 0.0253

TSH: thyroid-stimulating hormone.
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(P < 0:01), and Peptoniphilus (P < 0:05) levels were posi-
tively associated with the MoCA score. Moreover, Paludi-
bacter demonstrated a positive correlation with TSH
(P < 0:05) and stroke (P < 0:05), but a negative correlation
with vitamin B (P < 0:05). Prevotella was negatively corre-
lated with TSH (P < 0:05) and hypertension (P < 0:05). In
addition, Methanobrevibacter was negatively associated with
diabetes (P < 0:05) and hypertension (P < 0:05). Prevotella
was negatively correlated with TSH (P < 0:05), while
Clostridium (P < 0:01), Paludibacter (P < 0:05), Oscillospira
(P < 0:05), and Sutterella (P < 0:05) were all positively
associated with TSH. Taken together, GM might harbor bio-
markers sensitive to HTNCI.

4. Discussion

We drew a profile of GM in HTNCI patients in the present
study. GM exhibited no significant difference in GM diver-
sity in HTNCI patients, but in abundances of various GM
components. The low abundance of Veillonella was detected
in the HTNCI group, and its potential to predict cognitive

impairment was verified in LEfSe analysis. Moreover, we
associated GM profile with MoCA score and HTNCI risk
factors, such as education, sex, stroke, hypertension, diabe-
tes, vitamin B12, and TSH. Interestingly, Veillonella also
showed an ability to discriminate HTNCI. It is suggested
that GM might contain efficient biomarkers for HTNCI.

In this study, sex, education, stroke, and TSH showed
between-group differences and close associations with GM.
Positive correlations between hypertension and cognitive
impairment and GM dysbiosis have been determined [31,
32]. Besides, high TSH may increase blood pressure to facil-
itate cognitive impairment [33]. This mechanism may
involve the upregulation of proinflammatory cytokines,
endothelial damage, and subsequent neurotoxic effects
[34]. Thyroid diseases, either subclinical or clinical, interact
with cardiovascular disease. A connection has showed up
between thyroid function and AD [35–38]. As a typical
feature of AD, β-amyloid mediates neurotoxicity through
various mechanisms, such as inhibiting acetylcholine activity
in the cortex and hippocampus [39, 40]. It also shows that
thyroid function changes with systemic oxidative stress
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Figure 2: Comparison of GM components between groups’ hypertension without cognitive impairment (HTNnCI) and hypertension with
cognitive impairment (HTNCI). The Shannon (a) and Simpson (b) indexes were used to assess the alpha-diversity between the two groups.
P values were determined using Mann-Whitney U-test. (c) Scatterplot from principal coordinates analysis showed the similar distribution
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[41]. Our results supported some epidemiological studies in
which multiple factors associated with HTNCI had been
identified, including TSH, stroke, and education.

A previous study has hinted that GM may be associated
with hypertension [32, 42–44]. In this study, higher abun-
dances of TM7 and TM7-3 were found in HTNCI patients
than in HTNnCI patients. Another study has indicated that
the enrichment of TM7 occurs with gut dysbiosis and con-
tributes to inflammation [45]. Moreover, TM7 is associated
with a compromised intestinal barrier and elevated intestinal
immune infiltration [46]. Evidence supports that TM7 phyla
and Proteobacteria participate in the pathogenesis of cogni-
tive impairment [47, 48]. Genera Paludibacter are positively
associated with the course of Parkinson’s disease [49], which
is consistent with our study. Thus, all the evidences suggest
the interplay between GM and HTNCI.

Besides, we presented that HTNCI involved several
KEGG pathways. Bile secretion is progressively reduced in
HTNCI patients. Cholesterol metabolism in the liver is
closely linked with AD [50]. In fact, many genes responsible
for cholesterol metabolism (e.g., BIN1 and CLU) contain
susceptibility loci of AD [51, 52]. Cholesterol is decomposed
by bile acids (BAs). Mounting evidence has associated
immune dysregulation with AD pathology. Some immune-
related genes have been discovered as risk genetic variants
in AD [51, 53]. These immune-related genes may drive AD
through regulating BA metabolism or GM. For example,
ABI3 and MEF2C act in immune reaction upon proinflam-
matory stimuli from microbes [54, 55]. There is growing
evidence supporting the tight connection of intestinal
microbiota with the performance of the central nervous
system. The central and enteric nervous systems
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communicate through the “gut-brain metabolic axis,” but
the mechanisms hide to be clarified [56–58]. This axis is
indispensable for metabolic pathways through which GM
regulates metabolic activities [59]. Intestinal bacterial
composition is associated with a gallery of neurological
disorders [60–62]. Liver disease may aggravate cognitive
dysfunctions, even leading to AD [63].

A link was set up between GM and MoCA scores or
HTNCI factors. Spearman’s analysis showed that Veillonella
abundance rose as the MoCA score dropped. Previous stud-
ies have revealed that the abundance of Veillonella decreases
in the case of cognitive impairment [64]. Veillonella species,
as a harmless or even beneficial gram-negative anaerobic
coccus, colonizes the mouth after one’s birth [65]. Veillonella
is also the main species in the gut to produce propionic acid
in human GM [66]. In animal models of AD, SCFAs have
shown abilities to enhance learning and memory function
[67], exert neuroprotection and guard neuroplasticity,
shrink β-amyloid plaques, and inactivate microglia [68].
Chen et al. have uncovered that fecal microbiota transplan-
tation (FMT) could cure infarct and cerebral edema and res-
cue cognitive function in rats with ischemic stroke [69].
FMT can also raise the level of SCFAs, making it a potential
treatment for AD [70]. However, more studies should be
conducted to answer whether HTNCI arises from the scar-
city of SCFAs-producing bacteria. Bilophila belongs to
Desulfovibrionaceae, a type of proinflammatory bacteria that
induce LPS accumulation during inflammatory response
[71]. High-level Desulfovibrionaceae is also implicated in
psychiatric disorders [72, 73], hinting at the association of
Bilophila with HTNCI. This study provided that some spe-
cies in GM could predict HTNCI, with an accuracy expected
higher if combined with other valuable biomarkers.

Several limitations also exist in this study. Our results
might be biased by some unstandardized variables, and
the significance of the MoCA score might be overempha-
sized. Clinical scales should be employed to testify our
results. In addition, we did not evaluate the GM profiles
over a long period. Besides, the sample size was still not
enough. Future experiments with larger gender-matched
samples are needed.

The study has also its strengths. First, this is the first that
reports the profile of the GM in HTNCI patients. Second, we
constructed broader connections between GM and HTNCI
risk factors. Third, this study laid a roadmap to explore
reliable predictive biomarkers for HTNCI.

5. Conclusion

In summary, the abnormal structure of GM is associated
with HTNCI. Some species in GM, especially Veillonella,
might be adopted to predict HTNCI.
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