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Background. There is evidence that the immune system plays a key critical role in the pathogenesis of myocardial infarction (MI).
However, the exact mechanisms associated with immunity have not been systematically uncovered. Methods. This study used the
weighted gene coexpression network analysis (WGCNA) and the CIBERSORT algorithm to analyze the MI expression data from
the Gene Expression Omnibus database and then identify the module associated with immune cell infiltration. In addition, we
built the coexpression network and protein-protein interactions network analysis to identify the hub genes. Furthermore, the
relationship between hub genes and NK cell resting was validated by using another dataset GSE123342. Finally, receiver
operating characteristic (ROC) curve analyses were used to assess the diagnostic value of verified hub genes. Results.
Monocytes and neutrophils were markedly increased, and T cell CD8, T cell CD4 naive, T cell CD4 memory resting, and NK
cell resting were significantly decreased in MI groups compared with stable coronary artery disease (CAD) groups. The
WGCNA results showed that the pink model had the highest correlation with the NK cell resting infiltration level. We
identified 11 hub genes whose expression correlated to the NK cell resting infiltration level, among which, 7 hub genes (NKG7,
TBX21, PRF1, CD247, KLRD1, FASLG, and EOMES) were successfully validated in GSE123342. And these 7 genes had
diagnostic value to distinguish MI and stable CAD. Conclusions. NKG7, TBX21, PRF1, CD247, KLRD1, FASLG, and EOMES
may be a diagnostic biomarker and therapeutic target associated with NK cell resting infiltration in MI.

1. Introduction

Myocardial infarction (MI) is the most severe manifestations
cardiac event and remains the leading cause of mortality world-
wide [1]. It can lead to loss of cardiomyocytes, left ventricular
remodeling, decreased cardiac function, and potentially heart
failure. MI is associated with a variety of factors, including gen-
der, age, smoking, hypertension, and diabetes complications
[2]. Microarray analysis is a widely used strategy for detecting
novel biomarkers for diagnosis, prediction of disease severity,
and identification of new drug targets [3]. At present, many
studies have identified biomarkers that distinguish MI from
normal controls based on the microarray analysis and RNA
sequencing. For instance, several circulating genes (MAX,
BCL3, NCOA7, CCL5, GTF3C2, etc.) are potential biomarkers

that distinguish MI from normal controls and may play impor-
tant roles in MI development [4]. Zhao et al. find that eight
genes, IFIT3, MX1, HLA-DQA1, RORA, PTGDS, CRIP2,
COL6A2, and S100P, may be considered biomarkers between
MI and normal controls. Coronary artery disease (CAD) is
the main type of cardiovascular disease, which causes heavy
economic and social burden worldwide [5]. MI is one of the
most severe manifestations of stable CAD and the leading cause
of death from noninfectious diseases worldwide. As far as we
know, few studies have explored biomarkers that distinguish
MI from stable CAD. Thence, it is an urgent need for new bio-
markers with high sensitivity and specificity to achieve early
diagnosis between MI and stable CAD.

Infiltrating cells exhibit specific spatial and temporal dis-
tribution and activity patterns, while simultaneously engaging
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Figure 1: (a) The expression matrix from 199 samples in the training dataset. (b) The landscape of tumor-infiltrating immune cells. The
difference of the proportions of tumor-infiltrating immune cells between MI and stable CAD sample.
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in active, continuous cross talk with each other and with other
cardiac cells cardiomyocytes [6]. This forms a highly complex
regulatory pattern, which plays a crucial role in the normal
healing of the heart after MI [7, 8]. Inflammatory processes
can also lead to hypertrophy, fibrosis, and other types of heart
damage which can then cause heart failure [9]. MI causes
aseptic inflammation, manifested as recruitment and activa-
tion of innate and adaptive immune system cells [6]. There-
fore, immunoregulatory therapy has great potential in
accelerating cardiac repair and improving left ventricular
remodeling after MI. In order to find the optimal immunoreg-
ulatory therapy, it is necessary to uncover the temporal
dynamics of immune cell accumulation after MI. In previous
studies, immunohistochemical methods used to examine
immune cells relied on a single marker to identify a specific
subset of immune cells but acquired poor immunohistochem-
ical results when a small number of cells or cell types were
detected may be misleading [10–12]. Therefore, a comprehen-
sive understanding of the immune response between MI and
stable CAD is necessary.

With the wide application and continuous development
of bioinformatics technology, many algorithms have been
developed to discover novel biomarkers [13]. Weighted gene
coexpression network analysis (WGCNA) is a system biol-
ogy method that is widely used for building coexpression
gene modules and searching for biomarkers at the transcrip-
tion level [14, 15]. Lately, a novel deconvolution algorithm,
known as Cell-type Identification by Estimating Relative
Subsets of RNA Transcripts (CIBERSORT), is established
and used to approximate the cellular composition of
immune cells. This analytical tool has been applied to quan-
tify the level of immune cell infiltration in several cancers
like prostate cancer, colorectal cancer, gastric cancer, and
renal cell carcinoma [12, 16–18].

Currently, it is an urgent problem to find diagnostic bio-
markers between MI and stable CAD and to comprehen-
sively understand the immune response between MI and
CAD. The goal of this study was to reveal immune-related
biomarkers for the diagnosis of MI and stable CAD through
gene expression data from Gene Expression Omnibus
(GEO) datasets. To explore the role of immune cells and
identify potential biomarkers MI and stable CAD, we used
WGCNA to process gene expression data of MI and stable
CAD. Then, immune cell infiltration of samples was calcu-
lated applying the CIBERSORT. In addition, we identified
key modules and hub genes associated with the level of NK
cell resting infiltration and finally validated the immunolog-
ical and clinical characteristics of these genes through data-
base analysis. To our knowledge, this is the first time that
WGCNA has been used to identify NK cell resting-related
biomarkers in MI. This study provides a theoretical basis
for finding biomarkers for early diagnosis and immunother-
apy targets of MI and CAD in the future.

2. Results

2.1. Data Preprocessing. The expression matrix of 2 GEO
datasets (GSE59867 and GSE62646) containing 139 MI
patients and 60 CAD control samples was downloaded.

Samples of 2 GEO datasets were combined into a training
dataset containing 18,837 genes. After batch effect correction
with ComBat, we obtained the expression matrix from 199
samples in the training dataset (Figure 1(a)).

2.2. Evaluation of Immune Cell Infiltration. The differential
of immune cell infiltration between MI and stable CAD
groups was evaluated by the CIBERSOFT algorithm. The
distributions of immune infiltration cells in two groups are
displayed in Figure 1(b). We found that monocytes, neutro-
phils, T cell CD8, T cell CD4 naive, T cell CD4 memory rest-
ing, and NK cell resting were obviously altered between MI
and stable CAD groups, while B cell naive, B cell memory,
plasma cells, T cell CD4 memory activated, T cell regulatory
(Tregs), macrophage M0, macrophage M1, macrophage M2,
dendritic cell activated, mast cell resting, mast cell activated,
and eosinophils were not significantly changed between
groups. Among them, monocytes and neutrophils were
markedly increased and T cell CD8, T cell CD4 naive, T cell
CD4 memory resting, and NK cell resting were significantly
decreased in MI groups compared with stable CAD groups.
These results indicate that the occurrence and development
of MI may be closely related to immune cells.

2.3. Weighted Gene Coexpression Network Construction and
Hub Module Identification. To explore the relationship
between functional modules and immune cell infiltration
in patients with MI, we selected the top 25% variance genes,
including 4709 genes for WGCNA. The sample dendrogram
and trait heatmap of 139 samples in this study are presented
in Figure 2(a). To construct a scale-free network, the power
of β = 12 was selected the soft-thresholding cut-off standard
power (Figure 2(b)). The dynamic tree cutting method was
used to merge the modules with dissimilarity of <25%, and
finally, 15 modules were determined (Figures 3(a) and
3(b)). Correlation analysis was performed between the
eigengenes of each module and immune cell (Figure 3(c)).
Compared with other modules, lightcyan module was highly
associated with plasma cells infiltration level. (R2 = 0:68, P
= 7E − 20), pink module was significantly correlated with
NK cell resting infiltration level. (R2 = 0:84, P = 6E − 39),
green module was highly correlated with monocyte infiltra-
tion level (R2 = 0:77, P = 2E − 28), and cyan module was
related to monocyte (R2 = 0:83, P = 3E − 36) and neutrophil
(R2 = 0:71, P = 9E − 23) infiltration levels, respectively.
Among which, the pink model state had the highest correla-
tion with the NK cell resting infiltration level. We therefore
selected the pink model for subsequent analysis. We per-
formed an intramodular analysis for the pink module, and
the module membership and gene significance showed a
very meaningful correlation (cor = 0:76 and P value = 2:2E
− 31), indicating that the 160 genes in the pink module tend
to be remarkably correlated with NK cells resting infiltration
level (Figure 3(d)). Thence, the pink module was identified
as the hub module associated with MI. To uncover the
affected functions of the genes clustered in the pink module,
we carried out the GO and KEGG pathways using the
Metascape tool. The 20 highest enrichment terms were all
immune-related terms and are presented in Figure 4(a),
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and the three most highly enriched terms were immunoreg-
ulatory interactions between a lymphoid and a nonlymphoid
cell, PID IL12 2PATHWAY, and natural killer cell-mediated
cytotoxicity.

2.4. Identification and Validation of Hub Genes. The genes
that were highly linked to the pink module associated with
the level of NK cell resting infiltration were studied. Accord-
ing to the cut-off threshold (modulemembership > 0:8 and
gene significance > 0:6), a total of 43 genes were defined as
candidate hub genes (Figure 3(d)). Based on the PPI net-
work of the pink module, the gene with degree > 10 was
identified to be the central node, and we obtained 23 central
nodes and visualized these results using Cytoscape
(Figure 4(b)). A total of 11 genes were selected in both anal-
yses designated as hub genes (Figure 4(c); Table 1). To vali-
date the relationship between these 11 hub genes and NK
cell resting, we downloaded GSE123342 to analyze the level
of NK cell resting infiltration, and the results indicated that
the NK cell resting infiltration level was significantly reduced
between the MI and stable CAD groups, which is consistent
with our previous analysis (Figure 5(a)). The correlation
analysis results displayed a positive correlation of the expres-
sion values of the 11 genes with the infiltration levels of NK
cell resting (correlation coefficient of >0.6 for all genes
except GZMA, GZMB, KLRF1, and NCR1; Figure 5(b)).
For example, in Figure 5(c), we exhibited a scatter plot of
NKG7 expression and NK cell resting infiltration level. The
results verified the identified hub genes as highly correlated

with the NK cell resting infiltration level, playing key roles
in the development of MI.

2.5. Hierarchical Clustering and Receiver Operating
Characteristic (ROC) Curve Analyses of Verified Hub Genes.
The hierarchical clustering analysis of 7 verified genes
(NKG7, TBX21, PRF1, CD247, KLRD1, FASLG, and
EOMES) is presented in Figure 5(d). We also evaluated the
diagnostic value of NKG7, TBX21, PRF1, CD247, KLRD1,
FASLG, and EOMES in MI. The results indicated that
NKG7 (AUC = 0:687), TBX21 (AUC = 0:681), PRF1
(AUC = 0:711), CD247 (AUC = 0:700), KLRD1
(AUC = 0:853), FASLG (AUC = 0:658), and EOMES
(AUC = 0718) were capable of discriminating MI and stable
CAD (Figure 6).

3. Discussion

MI is a serious disease with high morbidity and mortality
worldwide and affects patient’s health and life [19]. During
the past years, the number of MI patients increased year by
year. Early diagnosis of MI is urgently needed for the effective
management of patients and selection of appropriate treat-
ment. Although traditionally available biomarkers have been
available to help in the diagnosis of MI, they still lack high
specificity. Therefore, it is very urgent to identify new diagnos-
tic biomarkers and therapeutic targets with the smallest risk of
adverse reactions and greatest sensitivity and specificity.
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Figure 3: Continued.
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MI is an inflammatory disease with multifactorial inter-
actions, including immunization, environmental influences,
and genetic factors. The search for biomarkers in the serum,
saliva, tissues, and peripheral blood released in inflamma-
tory state has attracted the attention of researchers. For
example, the expression of galectin-3 in serum and saliva
in patients with periodontitis and periodontitis + coronary
heart disease is significantly higher than that in patients with
coronary heart disease and healthy controls, indicating that
galectin-3 in the serum and saliva may be used as a marker
for predicting periodontitis and periodontitis and coronary
heart disease [20]. The concentrations of NLRP3 in serum
and saliva of patients with periodontitis and periodontitis
+ type II diabetes mellitus were higher than those of healthy
controls and type II diabetes mellitus patients [21]. The con-
centrations of IL-6 in the saliva of periodontitis patients
were significantly higher than that of healthy subjects, and
the level of IL-6 in saliva was related to the clinical parame-
ters of periodontitis patients [22]. Th2 cell markers in the
peripheral blood have been reported to be sensitive measures
of exacerbation of symptoms in patients with asthma and
may be used as a biomarker for asthma exacerbation [23].
Since MI is a key cause of myocardial cell injury, cardiac tro-
ponin has become one of the important factors of MI diag-
nosis [24]. Detection of cardiac troponin in peripheral
blood suggests myocardial cell injury. At present, peripheral
blood biomarkers have been reported as biomarkers for the

diagnosis of MI. The combination of microRNA-1291,
microRNA-217, microRNA-455-3p, and microRNA-566 in
peripheral blood of patients with MI may serve as a new
and potential biomarker for the early diagnosis of MI [25].
Circulating microRNA-19a in the peripheral blood is upreg-
ulated in the MI patients compared with controls, which
may act as a new biomarker for diagnosis of MI [26]. In
the current study, we used three datasets of gene expression
from peripheral the blood and peripheral monocytes of
patients with MI to find immune-related early diagnostic
markers between MI and stable CAD.

Here, we identified 11 hub genes whose expression cor-
related to NK cell resting infiltration level, indicating a
potential mechanism through which these genes may be
involved in MI development. Of the identified 11 genes, 7
hub genes (NKG7, TBX21, PRF1, CD247, KLRD1, FASLG,
and EOMES) were successfully validated in GSE123342.
And these 7 genes had a diagnostic value to distinguish MI
and stable CAD.

Natural killer cell granule protein 7 (NKG7) is a 17 kDa
type III integral membrane protein localized to vesicles con-
taining cytotoxic particles [27]. NKG7 is first found in NK
cells and T cell 16, but the molecule has been studied a little
so far [28]. A recent study showed that NKG7 is a regulator
of lymphocyte granule exocytosis and downstream inflam-
mation in many diseases, and the NKG7 expression of natu-
ral killer cells is essential for the control of tumor initiation,
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Figure 3: Identification of gene modules associated with the immune cell infiltration of MI. (a) The horizontal line defines the threshold, so
15 distinct genes modules were identified. (b) The dendrogram of all genes is clustered based on a dissimilarity measure. (c) The heatmap
shows the correlation between MEs and the immune cell infiltration of MI. (d) The scatter plot shows the correlation between gene
significance for MI and module membership in pink module.
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progression, and metastasis [29]. Chen et al. have found that
NKG7 is downregulated between the MI group and control
group [30]. Here, our results indicated that NKG7 expres-
sion positively correlated with the NK cell resting infiltration
level. In addition, the ROC analysis results showed that
NKG7 had a diagnostic value and could distinguish between
MI and stable CAD. Thence, we inferred that NKG7 may be
considered diagnostic biomarkers for MI.

Perforin (PRF1) belongs to the membrane attack com-
plex/PR (FMACPF) superfamily, a highly conserved glycopro-
tein that can be secreted by NK cells, CTL cells, and
regulatory T cells [30, 31]. Based on its key role in immune
monitoring and regulation, PRF1 malfunctions have been
reported to be associated with many diseases [32]. A previous
study indicated that PRF1 can induce clathrin- and dynein-
dependent endocytosis, and suppressing this endocytosis
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Figure 4: Key modules and identification of hub genes. (a) The first 20 enriched terms are shown as a bar chart on the left. The network
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pathway may lead to apoptosis cell death [33]. PRF1 is down-
regulated in the MI group compared with the control group,
and the abnormal expression of PRF1 may be the main reason
for the progression of left ventricular dysfunction in MI [30].
The present study found that the PRF1 expression level was
positively correlated with the NK cell resting infiltration level,
and PRF1 had a diagnostic value and could distinguish between
MI and stable CAD.We speculate that PRF1may be involved in
the development ofMI, whichmay be a novel biomarker for the
diagnosis of MI. Therefore, further experiments are needed to
confirm it.

Fas ligand (FASLG) is a member of the tumor necrosis
factor superfamily and major activator of apoptotic path-
ways binding to tumor necrosis factor receptors during
myocardial infarction [34]. Wu et al. have reported that
FASLG is downregulated in the MI group compared with
the normal group [35]. T-box 21 variant (TBX21) encodes
a transcription factor called T-bet, whose primary function
is to block Th1 to Th2 cell differentiation [36]. Decreased
T-bet changes the drifting Th1/Th2 cells, resulting in the
immune imbalance of myocardial tissue after cardiopulmo-
nary resuscitation in a porcine model of cardiac arrest [37].
Killer cell lectin-like receptor D1 (KLRD1), also named
CD94, is an antigen preferentially expressed on NK cells.
KLRD1 expression is negatively correlated with symptom
severity [38]. Chen et al. have reported that TBX21 and
KLRD1 are downregulated in the MI group compared with
the normal group [30].

Herein, our results displayed that FASLG, TBX21, and
KLRD1 expressions positively correlated with the NK cell
resting infiltration level. Moreover, FASLG, TBX21, and
KLRD1 had a diagnostic value and could distinguish
between MI and stable CAD. Therefore, we suspected that
FASLG, TBX21, and KLRD1 may be a novel biomarker for
the diagnosis of MI.

4. Conclusion

In summary, our study is the first time to identify NK cell
resting-related biomarkers of MI using the WGCNA and

CIBERSORT algorithm. Eleven hub genes were identified
which were associated with the level of NK cell resting infil-
tration. Through the verification of bioinformatics, NKG7,
TBX21, PRF1, CD247, KLRD1, FASLG, and EOMES were
identified as a potential diagnostic biomarker and target
for MI immunotherapy. However, our study has some limi-
tations. Additional sample data is required to validate the
present findings, and the specific mechanism of these genes
in MI needs further investigation both in vitro and in vivo.

5. Materials and Methods

5.1. Raw Data Collection. Gene expression profiles of myo-
cardial infarction (MI) were downloaded from the GEO
database (http://www.ncbi.nlm.nih.gov/geo) in the National
Center of Biotechnology Information (NCBI). This study
samples consisted of MI patients and control group patients
with stable coronary artery disease (CAD). Three datasets
(GSE59867, GSE62646, and GSE123342) were included this
study (Table 2). The dataset GSE59867 was collected from in
peripheral blood mononuclear cells containing 111 MI
patients and 46 stable CAD patients, using the GPL6244
platform of the Affymetrix Human Gene 1.0 ST Array.
GSE62646, based on the GPL6244 platform of Affymetrix
Human Gene 1.0 ST Array, consisted 14 stable CAD patients
and 28 MI patients from peripheral blood mononuclear
cells. GSE123342, previously researched using the
GPL17586 platform of the Affymetrix Human Tran-
scriptome Array 2.0, included 22 patients and 67 MI patients
from the peripheral blood and was used as an independent
validation cohort.

5.2. Data Preprocessing. The raw data were preprocessed
using R language (v.3.6.3). Oligo package in R language
was used to normalize the raw data for data processing.
The probe level data were converted into corresponding
gene expression values. For multiple mapping to a same
gene, we applied the average values to represent the expres-
sion of that gene. The ComBat function of the R language

Table 1: Hub gene in pink module.

Symbol Module color GS NK cells resting P (GS NK cells resting) MM pink P (MM pink) Degree

GZMB Pink 0.820247 4:80E − 35 0.847659 1:55E − 39 27

TBX21 Pink 0.787318 1:45E − 30 0.876234 2:83E − 45 26

GZMA Pink 0.607282 2:27E − 15 0.84347 8:54E − 39 25

KLRD1 Pink 0.747353 4:29E − 26 0.91546 5:13E − 56 25

PRF1 Pink 0.814962 2:88E − 34 0.904279 1:72E − 52 25

NCR1 Pink 0.797583 7:14E − 32 0.85801 1:81E − 41 21

CD247 Pink 0.718785 2:21E − 23 0.849544 7:06E − 40 19

FASLG Pink 0.793318 2:54E − 31 0.810763 1:15E − 33 19

NKG7 Pink 0.765204 5:55E − 28 0.866001 4:55E − 43 16

EOMES Pink 0.627819 1:32E − 16 0.831907 7:42E − 37 15

KLRF1 Pink 0.733463 9:88E − 25 0.815474 2:43E − 34 15
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Figure 5: Validation of hub genes. (a) NK cell resting infiltration level between MI and stable CAD. (b) Relationship between 11 hub genes
expression and NK cell resting infiltration level. P < 0:05 is considered statistically significant. (c) Scatter plot of NKG7 expression and NK
cell resting infiltration level. (d) Hierarchical clustering analysis of 7 verified genes.
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Figure 6: Continued.
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SVA package was subsequently used to eliminate the hetero-
geneity between the gene expression data.

5.3. Evaluation of Immune Cell Infiltration. Cell-type Identi-
fication by Estimating Relative Subsets of RNA Transcripts
(CIBERSORT) is an in silico method that has been con-
firmed by fluorescence-activated cell sorting and can be uti-
lized to evaluate 22 types of immune infiltrating cell
composition of bulk samples [39]. CIBERSORT is superior
to other algorithms in the identification and elaborate divi-
sion of immune cells [40]. The gene expression data were
uploaded to the CIBERSORT web portal (http://cibersort
.stanford.edu/) with the algorithm run using the LM22 sig-
nature and 5000 permutations. The Wilcoxon rank-sum test
was exploited to compare the differential abundances of

immune infiltrates between the MI and stable CAD groups.
The distributions of immune cells in two groups were exhib-
ited by the ggplot2 package in R language. Finally, the per-
centage of immune cells in each sample was selected as the
WGCNA trait data.

5.4. Weighted Gene Coexpression Network Construction.
WGCNA is an approach of clustering genes based on
expression patterns, systematically analyzing the relation-
ship between gene modules and traits, and classifying gene
functions [41]. We selected the top 25% variance genes,
which included 139 MI samples gene expression matrix, to
construct a coexpression network using the WGCNA pack-
age in R language. First, the expression level of a single tran-
script was converted into a similarity matrix based on the
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Figure 6: ROC analysis of 7 verified genes. The AUC was analyzed to evaluate the performance of each hub genes. x-axis indicated 1-
specificity, and y-axis indicated sensitivity.

Table 2: Gene expression datasets used in this study.

GEO ID Samples (CAD :MI) Platform Year Author Type

Training set

GSE59867 46 : 111 GPL6244 2015 Gora M Peripheral blood mononuclear cells

GSE62646 14 : 28 GPL6244 2014 Kiliszek M Peripheral blood mononuclear cells

Validation set

GSE123342 22 : 67 GPL17586 2019 Vanhaverbeke M Whole blood
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Pearson correlation value between the paired genes. Next,
the similarity matrix was transformed into an adjacency
matrix. When the β value was 12, the adjacency matrix
was then converted to a topological overlap matrix. In order
to classify genes with similar expression patterns into differ-
ent module eigengenes, a dynamic hybrid cutting method
was performed, and the minimum module size cut-off value
was 30. A hierarchical clustering tree was used to display the
result.

5.5. Identification of Clinical Significant Modules and
Enrichment Analysis. The principal component analysis of
all genes was performed in each module and used the value
of principal component one as module eigengenes. Then,
Pearson’s correlation analysis was calculated the correlation
between module eigengenes and the infiltration level of T
cells and identify the significance of the module. The mod-
ules with absolute value of P < 0:05 were considered signifi-
cantly correlated with T cells. In addition, we further
calculated and visualized the difference of the module char-
acteristic genes, selected a cutting line for the module tree
diagram, and merged some modules. Furthermore, we
selected the immune cells of interest and the module with
the highest correlation coefficient and identified it as a hub
module. To further explore the biological function of genes
in the hub module, we used the online tool Metascape
(http://metascape.org) to perform Gene Ontology (GO)
analysis and the Kyoto Encyclopedia of Genes and Geno-
mics (KEGG) pathway enrichment analysis.

5.6. Identification of Hub Genes.We identified candidate hub
genes according to the modular connectivity and clinical
trait relationship of each gene in the hub module. Module
connectivity was measured by the absolute value of the Pear-
son’s correlation (module membership (MM)). Clinical trait
relationship is defined as the absolute value of Pearson’s cor-
relation between each gene and the trait (gene significance
(GS)). The MM> 0:8 and GS > 0:6 were selected as the
cut-of criteria for the identification of hub genes. Moreover,
all genes in the hub module were selected and used to build
the protein-protein interactions (PPI) network using the
Search Tool for the Retrieval of Interacting Gene (String)
database (https://string-db.org/), and Cytoscape (v 3.7.2)
was used to visualize the network. The gene with degree >
10 was considered the central node. We used an online tool
(http://www.bioinformatics.com.cn/) to conduct a Venn
analysis on the candidate hub genes and the central nodes
in the PPI network, and the intersection genes were consid-
ered hub genes.

5.7. Confirmation of Hub Gene. The GSE123342 dataset was
used to verify the correlation between hub gene and immune
cells. First, we applied CIBERSORT to assess the content of
NK cells in each MI sample. Then, the Spearman correlation
between hub gene and NK cells resting immune cells was
calculated, and the ggplot2 package (v 3.1.1) in R language
was used to visualize the results.

5.8. Hierarchical Clustering and Receiver Operating
Characteristic (ROC) Curve Analyses of Verified Hub Genes.

The hierarchical clustering analysis of the verified hub genes
were produced using R language. In order to evaluate the
diagnostic value of hub genes, the “pROC” package was per-
formed to generate ROC, and the area under the ROC curve
(AUC) represents the diagnostic value. When the AUC value
was greater than 0.6, the hub genes were thought to be able
to distinguish between MI and stable CAD with good speci-
ficity and sensitivity.
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