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Background. Gastric cancer (GC) is the third leading cause of cancer death worldwide with complicated molecular and cellular
heterogeneity. Iron metabolism and ferroptosis play crucial roles in the pathogenesis of GC. However, the prognostic role and
immunotherapy biomarker potential of ferroptosis-related genes (FRGs) in GC still remains to be clarified. Methods. We
comprehensively analyzed the prognosis of different expression FRGs, based on gastric carcinoma patients in the TCGA
cohort. The functional enrichment and immune microenvironment associated with these genes in gastric cancer were
investigated. The prognostic model was constructed to clarify the relation between FRGs and the prognosis of GC. Meanwhile,
the ceRNA network of FRGs in the prognostic model was performed to explore the regulatory mechanisms. Results. Gastric
carcinoma patients were classified into the A, B, and C FRGClusters with different features based on 19 prognostic ferroptosis-
related differentially expressed genes in the TCGA database. To quantify the FRG characteristics of individual patients,
FRGScore was constructed. And the research shows the GC patients with higher FRGScore had worse survival outcome.
Moreover, thirteen prognostic ferroptosis-related differentially expressed genes (DEGs) were selected to construct a prognostic
model for GC survival outcome with a superior accuracy in this research. And we also found that FRG RiskScore can be an
independent biomarker for the prognosis of GC patients. Interestingly, GC patients with lower RiskScore had less immune
dysfunction and were more likely to respond to immunotherapy according to TIDE value analysis. Finally, a ceRNA network
based on FRGs in the prognostic model was analyzed to show the concrete regulation mechanisms. Conclusions. The
ferroptosis-related gene risk signature has a superior potent in predicting GC prognosis and acts as the biomarkers for
immunotherapy, which may provide a reference in clinic.

1. Introduction

Gastric cancer is the fifth of the most common cancers world-
wide and the third of the most common causes of cancer death
all around the world. With more than 1 million new cases esti-
mated each year and often diagnosed at an advanced stage, gas-
tric cancer owns a high mortality rate, with 784,000 deaths
worldwide in 2018 [1]. With the progress in treatment and
diagnosis, the clinical prognosis of GC patients has been signif-

icantly improved [2]. However, because of the lack of classical
symptoms in early stage, the diagnosis of GC is challengeable,
as clinical symptoms often appear at late stage during GC
development, narrowing the options for GC treatment and
showing the significance of biomarkers. Intratumoral, interpa-
tient, and intrapatient heterogeneity in gastric cancer remains
as a hard barrier to the prognosis of patients with GC. There-
fore, more researches are needed to explore the underlying
mechanism of GC [3]. And the study of the prognostic
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biomarkers and relevant predictive models in clinic becomes
an urgent demand for GC diagnosis and therapy. What is
more, with the development of high technology and the better
knowledge about human body we learn, immunotherapy has
become one of the most popular topics in cancer researches.
Biomarkers are playing a more and more important role in
GC prognosis and GC therapy, including TMB, IFNGR1, and
TNFRSF19L. Nevertheless, the effective biomarkers are still
short today and only a few conventional biomarkers can be
used in clinic such as CEA and CA19-9. In addition, some
existing biomarker still needs more researches to study con-
crete furthermechanism. For example, the efficiency of predict-
ing immunotherapy by TMB still remains controversial [4]. In
this way, it is a great need to do relative studies and find out
new biomarkers of immunotherapy for GC.

Ferroptosis is a form of regulated cell death, which was
newly discovered and has become more and more popular
in cancer research field because of the involvement in devel-
opment, immunity, senescence, and a variety of pathological
situations. Ferroptosis is defined as an oxidative, iron-
dependent form of “regulated cell death” (RCD) which has
the characters of reactive oxygen species (ROS) accumula-
tion and lipid peroxidation product accumulation to lethal
level [5, 6]. Nowadays, ferroptosis has received a lot of inter-
ests, especially in consideration of the downregulation and
gene silencing involved in the initiation and execution of
necroptosis of cancers. In spite of the important roles of fer-

roptosis in sustaining normal cells and tissue survival, it has
been increasingly recognized that some oncogenic pathways
are associated with ferroptosis, causing cancer cells
extremely vulnerable to ferroptosis death [7]. Some studies
have also confirmed the essential importance of ferroptosis
for GC treatment and prognosis, such as the facilitation of
perilipin2 in regulating the proliferation and apoptosis of
gastric carcinoma cells by modification in the ferroptosis
pathway [8]. On the other hand, CAF-secreted miR-522
suppresses ferroptosis and ultimately results in decreased
chemosensitivity in gastric cancer [9]. However, whether
these genes related to ferroptosis can be identified as effec-
tive potential diagnostic biomarkers and therapeutic targets
to combat GC, thereby helping to improve the survival prog-
nosis of patients with GC, needs further researches.

In this research, we comprehensively analyzed the differ-
ent expressions and prognoses of FRGs in GC patients based
on public databases and constructed a prognostic model
based on thirteen FRGs. The different sensitivity of immu-
notherapy in gastric cancer patients provided potent clinical
reference. Besides, ceRNA network has been proved playing
an important role in cancer process. Loads of studies have
demonstrated that long noncoding RNAs (lncRNAs) can
bind to microRNA (miRNA) sites as competing endogenous
RNAs (ceRNAs) to regulate the expression of mRNA and
target genes [10]. We also analyzed the relationship between
ferroptosis-related gene signatures and ceRNA network, and
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Figure 1: Identification of the candidate ferroptosis-related genes in the TCGA cohort. (a) Venn diagram to identify differentially expressed
genes between tumor and adjacent normal tissue that were correlated with OS. (b) The expression of the 19 overlapping genes in normal and
tumor tissues. (c) Forest plots showing the results of the univariate Cox regression analysis between gene expression and OS. (d) The PPI
network downloaded from the STRING database indicated the interactions among the candidate genes. (e) The correlation network of
candidate genes. The correlation coefficients are represented by different colors.
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the circRNA-miRNA-lncRNA-mRNA network was created
to reveal the mechanism of GC.

2. Materials and Methods

2.1. Acquisition of Gastric Cancer Datasets and Ferroptosis-
Related Genes. The RNA-seq data and corresponding clinical
information were acquired from the TCGA database
(https://portal.gdc.cancer; including 375 GC samples and
32 normal tissue samples). And circRNA expression profile
data in GC patients were downloaded from the GEO data-
base (GSE174237, including 6 GC samples and 6 corre-
sponding normal tissue samples). Ferroptosis-related genes
were obtained from the FerrDb database (http://www
.zhounan.org/ferrdb/index.html). These data are available
in public, and the approval of the local ethics committee is
not required. In the course of our research, we strictly abided
by the rules for the use of these databases.

2.2. Identified DEGs Associated with GC Prognosis.Matching
the mRNA-sequencing data with FRGs and the differentially
expressed genes (DEGs) between GC tissues and adjacent
nontumorous tissues was identified by the “limma” R pack-
age with a false discovery rate of P < 0:05. Univariate Cox

analysis of overall survival (OS) was performed using the
“survival” R package to screen FRGs with prognostic poten-
tial. An interaction network for the overlapping prognostic
DEGs was generated by the STRING database (https://
www.string-db.org/).

2.3. Consensus Clustering Analysis and Construction of
FRGScore. The prognostic DEGs were incorporated to divide
GC patients in the TCGA cohort into different clusters with
“ConsensusClusterPlus” R package. Kaplan-Meier analysis
was used to evaluate the differences of OS between different
clusters. Thereafter, principal component analysis (PCA)
was used to validate the reliability of clustering. We per-
formed GSVA enrichment analysis to investigate the differ-
ence of biological process between different clusters. Then,
we constructed a set of scoring system to evaluate the FRG
pattern of individual GC patients based on principal compo-
nent analysis, termed as FRGScore. Both principal compo-
nents 1 and 2 were selected to act as scores. Time-
dependent receiver operating characteristic (ROC) curve
analysis was performed to evaluate the predictive power of
FRGScore and other clinical factors. The infiltration of
immune cells was assessed between patients with different

KEGG_PROTEASOME
KEGG_NON_HOMOLOGOUS_END_JOINING
KEGG_AMINOACYL_TRNA_BIOSYNTHESIS
KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_BIOSYNTHESIS
KEGG_BASAL_TRANSCRIPTION_FACTORS
KEGG_SPLICEOSOME
KEGG_RNA_DEGRADATION
KEGG_NUCLEOTIDE_EXCISION_REPAIR
KEGG_HOMOLOGOUS_RECOMBINATION
KEGG_DNA_REPLICATION
KEGG_MISMATCH_REPAIR
KEGG_ONE_CARBON_POOL_BY_FOLATE
KEGG_BASE_EXCISION_REPAIR
KEGG_RNA_POLYMERASE
KEGG_PYRIMIDINE_METABOLISM
KEGG_CIRCADIAN_RHYTHM_MAMMAL
KEGG_ALDOSTERONE_REGULATED_SODIUM_REABSORPTION
KEGG_JAK_STAT_SIGNALING_PATHWAY
KEGG_HEMATOPOIETIC_CELL_LINEAGE
KEGG_CELL_ADHESION_MOLECULES_CAMS
KEGG_ARRHYTHMOGENIC_RIGHT_VENTRICULAR_CARDIOMYOPATHY_ARVC
KEGG_DILATED_CARDIOMYOPATHY
KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM
KEGG_MAPK_SIGNALING_PATHWAY
KEGG_FOCAL_ADHESION
KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION
KEGG_CALCIUM_SIGNALING_PATHWAY
KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION
KEGG_COMPLEMENT_AND_COAGULATION_CASCADES
KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_GANGLIO_SERIES

FRGCluster

FRG Cluster

A

C

−2

−1

0

1

2

(d)

Figure 2: Clusters of FRG expression in GC patients and biological characteristics. (a) Three distinct FRGClusters were identified using
unsupervised clustering. (b) Survival analyses for the three FRGClusters based on patients with gastric cancer. (c) Principal component
analysis for the transcriptome profiles of three FRGClusters. (d) GSVA enrichment analysis showing the activation states of biological
pathways in cluster A vs. cluster C. The heat map was used to visualize these biological processes, and red represented activated
pathways and blue represented inhibited pathways.
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FRGScores through the CIBERSORT computational
method.

2.4. Correlation between FRGScore and Tumor Mutational
Burden (TMB). The somatic mutation data was acquired
from the TCGA database. We analyzed the distribution dif-
ferences of somatic mutation using the maftools package. A
correlation analysis was performed then, to further reveal
the association between FRGScore and tumor mutation.

2.5. Development of Prognostic Signatures Based on FRGs.
With expression profiles of the identified survival-
associated FRGs, least absolute shrinkage and selection oper-
ator (LASSO) regression analysis was conducted through the
“glmnet” R package. The RiskScore of the FRG model for
each patient was calculated as follows:

RiskScore = 〠
n

i=1
Expi ∗ βið Þ, ð1Þ

where n is the number of selected FRGs, Expi is the expres-
sion value of gene i, and βi is the coefficient of gene i gener-
ated from LASSO regression analysis. To determine whether
the RiskScore was an independent prognostic predictor for
OS compared to other clinical features, univariate and mul-
tivariate Cox regression analyses were performed.

2.6. Immunotherapy Response Predictions. TIDE (http://tide
.dfci.harvard.edu/) is a computational method which inte-
grates the expression signatures of T cell dysfunction and
exclusion to model tumor immune evasion. The TIDE algo-
rithm was used to predict the clinical response to immune
checkpoint blockade (ICB) in GC patients on the basis of
pretreatment genomics.

2.7. Construction and Evaluation of the Nomogram. The
“rms” R package was used to construct a predictive nomo-
gram and corresponding calibration maps based on inde-
pendent predictive factors. ROC curves were generated to
determine the sensitivity and specificity of the predictive
nomogram.

2.8. Construction of circRNA–miRNA–lncRNA–mRNA
Network. GDCRNATools were performed to identify miR-
NAs targeting FRGs in prognostic models and lncRNAs
based on differential lncRNAs and miRNAs between tumor-
ous and nontumorous samples of GC patients in TCGA
cohorts. Tumorous and nontumorous samples of
GSE174237 were used to screen for circRNA with abnormal
expression in tumors. The circRNA bound to miRNA was
predicted using the starBase database (http://starbase.sysu
.edu.cn/). Finally, the intersection of circRNA–miRNA,
miRNA-lncRNA, and miRNA–mRNA pair was taken to
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Figure 3: Construction FRGScore. (a) Differences in FRGScore among three FRGClusters. (b) Kaplan-Meier curves indicated FRGScore
were markedly related to overall survival of patients in the TCGA cohort. (c) ROC curves of FRGScore and other clinical factors. (d)
Different immune cell subset infiltration of low and high FRGScore patient groups.
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construct the circRNA–miRNA–lncRNA–mRNA regulatory
network.

2.9. Statistical Analysis. All statistical analyses were per-
formed using the R software (version 4.0.3). Student’s two-
sided t-test was performed to compare gene expression
between GC tissues and adjacent nontumorous tissues. The
OS of different groups was compared by Kaplan-Meier anal-
ysis followed by the log-rank test. All P values were two-
tailed. A P value < 0.05 was considered statistically signifi-
cant if not specified above.

3. Results

3.1. Identification of Ferroptosis-Related Prognostic DEGs in
the TCGA Database. 164 differential expression FRGs
between GC tumor samples and adjacent normal samples
and 27 OS-associated FRGs in GC patients are shown in
Figure 1(a). Therefore, there were 19 DEGs of them
(NOX5, ZFP36, DUSP1, TSC22D3, TXNIP, GABARAPL1,
CDO1, TGFBR1, HAMP, NOX4, NNMT, CXCL2, AIFM2,
SLC1A4, NF2, SP1, GLS2, MYB, and PSAT1) associated
with the prognosis of GC, including 12 upregulated genes
and 7 downregulated genes (Figures 1(b) and 1(c)). The
PPI network among these genes indicated that DUSP1,
NOX4, and SP1 were the hub genes (Figure 1(d)). The cor-
relation between these genes is presented in Figure 1(e).

3.2. FRG Clusters Mediated by Prognostic Differentially
Expressed Genes. Three distinct FRG clusters were eventually
identified using unsupervised clustering based on the expres-

sion of 19 prognostic differentially expressed FRGs. We
termed these clusters as FRG cluster A, B, and C, respectively
(Figure 2(a)). Cluster A showed particularly prominent sur-
vival advantage. As the contrast, cluster C had the worst
overall survival (Figure 2(b)). Principal component analysis
showing a remarkable difference between cluster A and clus-
ter C (Figure 2(c)).

To explore the biological behaviors among clusters A
and C, we performed gene set variation analysis (GSVA).
As shown in (Figure 2(d)), cluster A was enriched in DNA
replication and transcription regulation of RNA compare
with cluster C.

3.3. Generation of FRGScore and Its Related Biological
Processes in GC. To study the individual heterogeneity of fer-
roptosis patterns in GC patients, we constructed FRGScore
which showed significant differences between the FRG clus-
ters. The higher FRGScore was obviously concentrated on
cluster C and showed a worse survival in GC patients, while
the lower FRGScore group was concentrated on cluster A,
which was related to the better survival (Figures 3(a) and
3(b)). We used ROC curves to assess the prognostic value
of FRGScore and other clinical factors, and among them,
FRGScore showed the best prognostic value (Figure 3(c)).

Moreover, the CIBERSORT computational method was
used to investigate the association between FRGScore and
immune status. The results showed that T cell CD4 memory
activation in higher FRGScore patients was lower than those
of the lower FRGScore group (Figure 3(d)). These results
indicate that FRGScore is related to the immune microenvi-
ronment of GC patients.
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Then, the distribution differences of somatic mutation
between low and high FRGScore groups in the TCGA cohort
were analyzed by the maftools package. As shown in
Figure 4(a), the low FRGScore group presented more exten-
sive tumor mutation burden than the high score group. The
FRGScore and TMB also exhibited a significant negative cor-
relation (Figure 4(b)). Low TMB patients had worse progno-
sis (Figure 4(c)). We specifically examined the relationship
between FRGScore and TMB in prognosis. We found that
patients with high FRGScore and low TMB had the worst
prognosis (Figure 4(d)). Accumulated evidences indicated
that patients with high TMB status presented a durable clin-
ical response to anti-PD-1/PD-L1 immunotherapy. There-
fore, these results indirectly demonstrated the differences

in tumor FRG patterns could be a crucial factor, which can
mediate the clinical response to anti-PD-1/PD-L1
immunotherapy.

3.4. FRG RiskScore Is an Independent Biomarker for
Prognosis of GC Patients. The expression profile of the 19
FRGs was used to establish the risk scoring system using
LASSO Cox regression analysis, and 13 genes were identi-
fied. The RiskScore was calculated as follows: RiskScore =
SUM ð0:221 ∗ expression level of NOX4 + 0:882 ∗
expression level of NOX5 − 0:174 ∗ expression level of GLS2
− 0:004 ∗ expression level of MYB + 0:002 ∗ expression level
of TGFBR1 − 0:058 ∗ expression level of NF2 − 0:027 ∗
expression level of AIFM2 + 0:001 ∗ expression level of ZFP
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Figure 5: Prognostic analysis of the 13-gene signature model in the TCGA cohort. (a) The distribution and median value of the RiskScores
in the TCGA cohort. (b) Kaplan-Meier curves for the OS of patients in the high-risk group and low-risk group in the TCGA cohort. (c) AUC
of time-dependent ROC curves verified the prognostic performance of the RiskScore in the TCGA cohort. (d) Alluvial diagram showing the
changes of FRGClusters, FRGScore, RiskScore, and survival state. (e, f) Results of the univariate (e) and multivariate (f) Cox regression
analyses regarding OS in the TCGA derivation cohort.
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36 − 0:021 ∗ expression level of SLC1A4 + 0:001 ∗
expression level of TXNIP − 0:007 ∗ expression level of
CXCL2 + 0:001 ∗ expression level of HAMP − 0:017 ∗

expression level of SP1 (Figure 5(a)). The Kaplan-Meier
curve revealed that the prognosis of low-risk patients was
significantly better than that of the high-risk group

p = 6.2e−05
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Figure 6: Predictions of the immunotherapy response in GC patients. (a) The violin plots present of immune dysfunction in high and low
RiskScore groups. (b) The likelihood of the clinical response to antiPD1 and anti-CTLA4 therapy for high and low RiskScore patients from
the TCGA cohorts. True represents immunotherapy responders, while false represents immunotherapy nonresponders.
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Figure 7: Continued.
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(Figure 5(b)), suggesting great sensitivity and specificity of
the prognostic signature in predicting OS. Time-dependent
ROC curves was performed to evaluate the predictive perfor-
mance of RiskScore for overall survival outcome. The area
under the curve (AUC) reached 0.692 at 1 year, 0.680 at 2
years, and 0.661 at 3 years, which shows a high accuracy
(Figure 5(c)). To study the relationship of patients in differ-
ent ferroptosis assessment systems, the alluvial diagram was
constructed to showing the variation of FRGClusters,

FRGScore, RiskScore, and survival state (Figure 5(d)). Uni-
variate and multivariate Cox regression analyses were then
performed to determine whether RiskScore was a predictor
for OS independent of other clinical features. We found that
N stage (HR = 1:262) and RiskScore (HR = 3:609) were
independent predictors for OS (Figures 5(e) and 5(f)).

3.5. RiskScore Is a Biomarker for Immune Checkpoint
Therapy in GC Patients. Afterwards, the tumor immune
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Figure 7: Construction of a predictive nomogram. (a) The nomogram for predicting the OS of patients with GC at 1, 2, and 3 years. (b)
Calibration curves of the nomogram for OS prediction at 1, 2, and 3 years. (c) ROC curves to evaluate the predictive ability of the
nomogram.

AC093157.1

hsa-miR-7-5p

KCNQ1OT1

hsa-miR-144-3p

NORAD

hsa-miR-155-5p

hsa-miR-361-5p

AF117829.1

hsa-miR-320b

hsa-let-7a-5p

OIP5-AS1

AC074117.1

TGFBR1

hsa-let-7c-5p

SLC1A4

hsa-let-7b-5p

ZFP36

hsa-miR-181b-5p

MYB

LINC00667

SP1

hsa-miR-181a-5p

hsa_circ_0001667

hsa-miR-34c-5p

hsa_circ_0001819

hsa-miR-16-5p

hsa_circ_0001306

AC004656.1

hsa_circ_0001676

hsa-miR-15a-5p

hsa_circ_0006820

hsa-miR-195-5p

hsa_circ_0000462

hsa-miR-497-5p

hsa_circ_0001640

hsa-miR-424-5p

hsa_circ_0001546

hsa-miR-107

hsa_circ_0001308

SVIL-AS1

hsa_circ_0000722

hsa-miR-103a-3p

hsa_circ_0000705

hsa-miR-21-5p hsa_circ_0001451

SNHG1

hsa_circ_0001946

HCG18

C1RL-AS1

RASAL2-AS1

hsa-miR-27b-3p

Figure 8: Construction of the circRNA–miRNA–lncRNA–mRNA regulatory network.

15Disease Markers



dysfunction and exclusion (TIDE) algorithm analysis was
used to predict the immune checkpoint therapy response
based on RiskScore in GC patients. Interestingly, according
to the results shown in Figures 6(a) and 6(b), GC patients
with lower RiskScore had less immune dysfunction and were
more likely to respond to immunotherapy, suggesting that
RiskScore can be used as reference index for clinical treat-
ment of gastric cancer patients, as whether use immunother-
apy for these patients.

3.6. Construction and Validation of the Predictive Nomogram
in GC. A nomogram was developed to quantify the predic-
tion of individual survival probability for 1, 2, and 3 years
(Figure 7(a)). The C-index of the nomogram was 0.72
(95% CI: 0.67–0.76). The calibration curves indicated great
consistency between predicted OS and actual observation
at 1, 2, and 3 years (Figure 7(b)). Then, ROC curves were
generated to verify the predictive value of the nomogram.
The AUCs for 1-, 2-, and 3-year OS were 0.766, 0.789, and
0.745, respectively, in the TCGA database (Figure 7(c)).

3.7. Construction of the ceRNA Network. To inquiry about
the regulatory network of FRGs in gastric carcinoma, we
used GDCRNATools to find 38 miRNA target 6 FRGs in
the prognosis model, and 23 lncRNAs bind to the miRNAs.
Then, we find 13 different expressed circRNAs which had a
spongy effect to the miRNAs in starBase. Finally, we con-
structed the circRNA–miRNA–lncRNA–mRNA regulatory
network based on 15 circRNA, 20 miRNA, 13 lncRNA,
and mRNA (Figure 8). This is a kind of complicated ceRNA
network rather than single RNA molecule [11], which can
induce the relative phenotype of malignant tumor such as
gastric cancer and colorectal cancer, including proliferation,
inhibition, indeterminate growth, inducing angiogenesis,
and immune escape [12–16]. Therefore, constructing this
ceRNA network can provide an essential reference to the
process of relative malignant tumor including gastric cancer
and it may provide a novel diagnosis biomarker and immu-
notherapy biomarker for the therapy of associated cancer in
clinic.

4. Discussion

Gastric tumorigenesis is a multifactorial, multicellular, and
multistep process. Helicobacter pylori infection, environ-
mental factors (salted food intake, alcohol consumption,
and low socioeconomic status), and population-specific
genetic risk factors can induce the occurrence of GC. How-
ever, the detailed mechanism for GC still remains not clear.
Nowadays, the major GC diagnosis methods include imag-
ing examination, serum tumor marker examination, and tis-
sue biopsy. But as a gold standard method, tissue biopsy can
cause obvious surgical trauma and hysteresis. In addition,
many of the GC patients are diagnosed in the later stage with
worse prognosis because of the lack of specific symptoms of
early stage in GC. What is more, the main available treat-
ments, including radiotherapy and chemotherapy, have
intense side effects on patients. Sometimes, the effect of che-
motherapy is obvious, but it cannot be sustained for a long

time due to drug resistance. In that case, it is necessary to
learn more practical and effective methods to improve GC
diagnosis and treatment, and indispensable to figure out
key molecular markers that can predict the prognosis of GC.

Although in the past few years, the mechanism of tumor
susceptibility to ferroptosis disorder has been the focus of
research, the potential regulatory role between tumor immu-
nity and ferroptosis disorder remains unclear. Here, we
revealed three distinct ferroptosis clusters in GC patients
based on 19 prognostic differentially expressed FRGs. These
three patterns had significantly distinct overall survival.
Cluster A was characterized by the activation of DNA repli-
cation and transcription regulation of RNA. Since most
patients in cluster A had lower FRGScore and FRGScore
was negatively correlated with TMB, the active DNA replica-
tion in cluster A may be related to the TMB. Some evidences
demonstrated patients with high TMB status can present a
durable clinical response to anti-PD-1/PD-L1 immunother-
apy. The programmed cell death protein 1 (PD-1) pathway
can elicit the immune checkpoint response of T cells, caus-
ing tumor cells capable to evade immune surveillance and
become highly refractory to conventional chemotherapy
[17]. In our study, CD4+ memory T cells in the lower
FRGScore group were more active, and CD4+ helper T cells
provide an opportunity to enhance T cell response to tumor-
associated antigens without deleterious autoimmunity [18].
In that case, these results indirectly demonstrated that the
ferroptosis patterns of gastric cancer could be a crucial factor
mediating the clinical response to anti-PD-1/PD-L1
immunotherapy.

Our research demonstrated that low ferroptosis status is
significantly associated with better outcomes from different
perspectives. And compared to other clinical features,
FRGScore had the best prognostic value. Meanwhile, we
found patients with high FRGScore and low TMB had the
worst prognosis. In this research, transcriptomic data and
the relative clinical information were used to identify key
ferroptosis-related genes, which are significantly valuable in
GC prognostic prediction. Then, we constructed a survival
model with superior accuracy to predict the prognosis for
GC patients through these ferroptosis-related genes.
Through analysis, it can be evaluated that this model is effec-
tive, independent, and robust with high reliability. As far as
we know, this is the first report focusing on the relationship
between iron deposition-related gene markers and prognosis
related to the prognosis of gastric cancer patients. The prog-
nostic model constructed in the present study was composed
of 13 FRGs (NOX4, NOX5, GLS2, MYB, TGFBR1, NF2,
AIFM2, ZFP36, SLC1A4, TXNIP, CXCL2, HAMP, and
SP1). A previous study had reported that erastin-induced
accumulation of lipid ROS is abolished by NOX4 inhibitor
[19]. NOX4 inhibition can reduce the cystine deprivation-
induced cell death and lipid ROS, indicating its essential role
in ferroptosis [20]. Moreover, NOX5 is also a key regulator
of ferroptosis. Enhancing the NOX5 activity on cell mem-
brane cause subsequently concentrates the local ROS oxidi-
zation and activates oncoprotein-Src to promote
malignancy of tumor cells [21]. The high expression of
NOX5 mRNA indicated a poor survival outcome in stage
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III/IV GC patients, but not in stage I/II GC patients. These
observations indicated that NOX5 may be an unfavorable
prognosis indicator for late-stage GC patients [22]. As a
key enzyme for glutamine metabolism, GLS2 can regulate
the biosynthesis of GSH during the ferroptosis process and
serve as a target of the p53 gene [23]. Physcion 8-O-β-gluco-
pyranoside (PG) significantly trigged the GC cell ferroptosis
and suppressed biological behavior through downregulating
the inhibitory effect of miR-103a-3p on GLS2 expression
and promoted ROS level and MDA generation, but the prog-
nosis role of GLS2 in GC is still unclear [24]. Our study
showed that high GLS2 expression is a potential biomarker
for better prognosis of GC. As a tumor suppressor gene,
NF2 can be activated by E-cadherin and inhibits ferroptosis
in endothelial cells [25]. SLC1A4, a Na-dependent neutral
amino acid transporter, is considered to take part in the var-
ious pathobiological processes, including tumorigenesis. But
its role in GC is still not clear enough [26]. ZFP36 overex-
pression can trigger autophagy inactivation, block autopha-
gic ferritin degradation, and eventually confer resistance to
ferroptosis [27]. TXNIP played a role as a potent negative
regulator for glucose uptake and aerobic glycolysis. There-
fore, the aerobic glycolysis will be inhibited and substrate
flux will be decreased through the pentose phosphate path-
way to produce less NADPH and GSH because of the
reduced TXNIP, which results in trigging ferroptosis [28].
Ferroportin (Fpn) worked as a negative regulator of ferrop-
tosis through reducing intracellular iron concentration, and
hepcidin (HAMP) could prevent erastin-induced ferroptosis
by degrading Fpn [29]. At last, such as SP1, ASCT1, and
CXCL2, these genes also play crucial roles in ferroptosis,
but most of these genes are still not clear in the regulation
and mechanism of GC progression. Thus, the immune pro-
cesses can contribute to GC development and prognosis,
which can be proved by the involvement of all the above-
mentioned ferroptosis-related genes, immune cell infiltra-
tion, and related pathways. Therefore, the proposed model
can identify novel biomarkers for further research. And we
also find that the low-risk group is more sensitive to immu-
notherapy while the high-risk group is less sensitive, which
may give the potent reference to clinical treatment.

For the ceRNA network analysis, five of the ferroptosis-
related genes, ZFP36, TGFBR1, MYB, SP1, and SLC1A4, are
associated with ceRNA process. Some researches have
already demonstrated that circNRIP1 sponges miR-149-5p
can regulate the expression level of AKT1 and act as a tumor
promoter in GC [30]. Moreover, Ren et al. found that ILF3-
AS1 can enhance the expression of PTBP3 as an miR-29a
sponge to promote the proliferation and metastasis of GC
cells [31]. However, more and more researches need to be
done to further study the concrete process. Learning the
relationship between GC and relative ceRNA network helps
us understand the concrete mechanisms of development in
GC with different degrees of immune cell infiltration [32].

5. Conclusion

In summary, we had constructed a ferroptosis-related gene
signature model to predict GC prognosis with high accuracy,

which may provide a novel prognostic model in clinic. The
identification of ferroptosis-related genes may provide new
potential biomarkers for research on the molecular mecha-
nisms and personalized treatment decisions for patients with
GC. The sensitivity of immunotherapy for GC is various in
these two groups, and the low-risk group shows a higher
sensitivity, which may provide references to clinic treatment.
Moreover, ceRNA is also strongly associated with some
ferroptosis-related gene signatures. However, more
researches need to be done for further study.
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