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Background. To further understand the development of the spinal cord, an exploration of the patterns and transcriptional features
of spinal cord development in newborn mice at the cellular transcriptome level was carried out. Methods. The mouse single-cell
sequencing (scRNA-seq) dataset was downloaded from the GSE108788 dataset. Single-cell RNA-Seq (scRNA-Seq) was conducted
on cervical and lumbar spinal V2a interneurons from 2 P0 neonates. Single-cell analysis using the Seurat package was completed,
and marker mRNAs were identified for each cluster. Then, pseudotemporal analysis was used to analyze the transcription
changes of marker mRNAs in different clusters over time. Finally, the functions of these marker mRNAs were assessed by
enrichment analysis and protein-protein interaction (PPI) networks. A transcriptional regulatory network was then
constructed using the TRRUST dataset. Results. A total of 949 cells were screened. Single-cell analysis was conducted based on
marker mRNAs of each cluster, which revealed the heterogeneity of neonatal mouse spinal cord neuronal cells. Functional
analysis of pseudotemporal trajectory-related marker mRNAs suggested that pregnancy-specific glycoproteins (PSGs) and
carcinoembryonic antigen cell adhesion molecules (CEACAMs) were the core mRNAs in cluster 3. GSVA analysis then
demonstrated that the different clusters had differences in pathway activity. By constructing a transcriptional regulatory
network, USF2 was identified to be a transcriptional regulator of CEACAM1 and CEACAM5, while KLF6 was identified to
be a transcriptional regulator of PSG3 and PSG5. This conclusion was then validated using the Genotype-Tissue
Expression (GTEx) spinal cord transcriptome dataset. Conclusions. This study completed an integrated analysis of a single-
cell dataset with the utilization of marker mRNAs. USF2/CEACAM1&5 and KLF6/PSG3&5 transcriptional regulatory
networks were identified by spinal cord single-cell analysis.

1. Introduction

The nervous system is composed of the central nervous sys-
tem (CNS) and the peripheral nervous system (PNS).
Included in the central nervous system is the spinal cord,
which plays a vital role in our perception of the environment
and its interactions. The spinal cord is composed of gray
matter and white matter. In the center of the spinal cord,
there is a thin lumen called the central canal surrounded
by the ventricular epithelium. The ventricular epithelium is
then surrounded by an H-shaped gray matter followed by
the white matter. The gray matter is composed of two parts,
the anterior horn and the posterior horn. The anterior part

of the gray matter is the anterior horn, which is larger com-
pared to the posterior horn. There are numerous multipolar
motor neurons within the anterior horn, while neurons
within the posterior horn form synaptic connections with
sensory ganglion cells. These neurons form a neural circuit
that utilizes sensory input and converts the commands from
the brain into the body’s response to the environment, such
as muscle contractions [1].

The discovery of the developmental trajectory of the
central nervous system facilitated the exploration of the
pathological process of neuronal repair; the pathogenesis of
central nervous system injures and neurodegenerative dis-
eases set the foundation for the translation of clinical
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Figure 1: Continued.
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treatment [1, 2]. In the early stages of mouse embryonic
development, the central nervous system first develops in
the ectoderm. Thereafter, stem cells differentiate into a vari-

ety of different cell types. However, the exact processes and
steps involved in the differentiation of these cells are still
controversial and have yet to be further investigated. These
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Figure 1: Quality control and clustering of the GSE108788 dataset. (a) Quality control process for the GSE108788 dataset. (b) ANOVA
plot showing 2000 highly variable genes in mouse neuronal cells. Red indicates highly variable mRNAs; black indicates nonvariable
mRNAs. (c, d) PCA analysis identified 20 clusters with p values less than 0.001. (e) The UMAP diagram shows the distribution of
nerve cells into five clusters. (f) The singleR package was used to annotate the clusters, confirming that all of them belonged to neural cells.
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controversies revolve around whether neural development is
induced or transformed [3, 4]. Recent studies now include
the single-cell transcriptome that provides a way to precisely
map the transcriptional heterogeneity of cells across time [5,
6]. As a result, CNS research has made tremendous progress
in recent years due to the rapid advances in single-cell histol-
ogy techniques [7].

This study is aimed at exploring the patterns and tran-
scriptional features of spinal cord development in newborn
mice at the single-cell transcriptome level, thereby further-
ing our current understanding of the developmental pro-
cesses of the spinal cord and its underlying mechanisms.
This understanding will allow the further investigation of

the developmental trajectory of mouse neurons and the
cell biology of this disease.

2. Materials and Methods

2.1. Data Collection and Computational Analysis of scRNA-
Seq Datasets. The mouse scRNA-seq dataset was down-
loaded from the GEO database (GSE108788) [8]. The data
from the scRNA-seq dataset was collected from neonatal
mouse cervical and lumbar spine interneurons, which were
sorted via flow cytometry. Quality control was carried out
as described previously [8]. Similar to previous studies, the
single-cell analysis was completed using the Seurat package
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Figure 2: Single-cell analysis was used to reveal the heterogeneity of neonatal mouse spinal cord neuronal cells. (a) UMAP plots were used
to demonstrate the expression of the markers NFIB, ZFHX3, SHOX2, NEUROD2, SP3, and LHX3. (b) These cells were divided into five cell
types by PCA and UMAP analysis. (c) The top ten marker mRNAs for each cell population are shown in the heat map. (d) The proposed
chronological analysis of spinal cord neuronal cells from these newborn mice.
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[5, 9]. Briefly, the “Find neighbors” and “Find Clusters”
functions from R software were utilized to perform princi-
pal component analysis and cell clustering [10]. The
marker mRNAs between each cluster were identified using
the FindAllMarkers function. Then, based on these marker
mRNAs, the UMAP method was used to perform nonlin-
ear dimensionality reduction. Initial annotation of the cells
was done using the singleR package [11]. A pseudotem-
poral analysis was then performed using the Monocle 3
package, and the differences in expression of marker
mRNAs on pseudotemporal trajectories were obtained for
each cluster.

2.2. Protein-Protein Interaction (PPI) Network Analysis. The
initial analysis of the PPI network was done by the STRING
v11 database (http://string-db.org) (feasibility of 0.40,
medium confidence level). Then, based on the obtained
results, the PPI network was constructed using the R soft-
ware [12].

2.3. Enrichment Analysis. As described in the previous study,
the clusterProfiler package of the R software was utilized to
complete the GO and KEGG enrichment analysis of the
marker mRNAs in each cluster [13, 14]. Pathway enrich-
ment analysis was performed with ReactomePA to identify
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Figure 3: The UMAP plot of the markers in neonatal mouse spinal cord neuronal cells.
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gene sets from the Reactome database with a false discovery
rate of <0.05 in the marker sets [15, 16].

2.4. Prediction of Transcription Factors. The TRRUST data-
base, which contains data on the regulatory relationship
between 800 human transcription factors and 828 mouse
transcription factors, was used for transcription factor pre-
diction analysis. All TF-target gene pairs included were
experimentally validated [17].

2.5. Statistical Analysis. Data analysis and plotting of the
results were done using R software (version 4.0.2). The
results of the intersection analysis were visualized through
a Venn diagram. An unpaired t-test was conducted to distin-

guish differences between two groups, and a p value of <0.05
was defined as a significant difference.

3. Results

3.1. Quality Control and Cluster Analysis of the GSE108788
Dataset. To analyze the transcriptional characteristics of
neonatal mouse neuronal cells at a single-cell level, we fil-
tered the dataset GSE108788 and implemented quality con-
trol using the Seurat package for R software (Figure 1(a)).
The selected 949 mouse neuronal cells were normalized
using the Seurat package. Then, an analysis of variance
(ANOVA) plot showed 2000 highly variable mRNAs
(Figure 1(b)). PCA analysis was first used to screen 20
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Figure 4: Expression of marker mRNAs varies with pseudotiming.
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clusters with p values less than 0.001 (Figures 1(c) and 1(d)).
UMAP analysis was then conducted, where five clusters were
identified for further screening (Figure 1(e)). Ultimately, the
singleR package was used to annotate these five clusters,
confirming that all these cells were neural cells (Figure 1(f)).

3.2. Single-Cell Analysis Reveals the Heterogeneity of Neural
Cells in the Neonatal Mouse Spinal Cord. The data from
the scRNA-seq dataset was collected from neonatal mouse
cervical and lumbar spine interneurons, which were sorted
via flow cytometry. Based on data from previous studies, a
UMAP plot was created to show the expression of the fol-
lowing markers: NFIB, ZFHX3, SHOX2, NEUROD2, SP8,
and LHX3 (Figure 2(a)) [8]. In this study, 949 cells were
screened by Seurat package for R software and were grouped
into 5 clusters (Figure 2(b)). Among these cells, ZFHX3 and
SHOX2 were jointly enriched in clusters 0, 2, and 4, while
NFIB, NEUROD2, and SP8 were jointly enriched in clusters
1 and 3. As shown in the figure, the top 10 marker mRNAs
for each cell cluster are shown in the heat map. Nefl, Zfhx3,
Zfhx4, Vamp1, Nrn1, Vstm2a, Slc8a1, Thy1, Nxph4, and
Slc12a5 are the marker mRNAs for cluster 0; Tcf4, Nfib,
Neurod2, Ebf1, Satb1, Nfix, Zeb2, Hoxb8, Ass1, and Sp8
are the marker mRNAs for cluster 1; Scg2, Glt8d1, Calb2,
Ecel1, Mpped2, Fos, Dlk1, Junb, Dlk1, Junb, Pcdh17, and
Shox2 are the marker mRNAs for cluster 2; Ceacam8, Cea-
cam7, Psg7, Ceacam6, Psg5, Psg1, Ceacam1, Ceacam5,
Psg11, Psg2, Psg8, Psg3, Psg9, Ceacam3, Psg6, and Psg3
are the marker mRNAs for cluster 3; Ppia, Cox5a, Calm1,
Atp5mc3, Rabac1, Mgst3, Ubb, Myl12b, Ndufb6, and Atp6-
voc are the marker mRNAs for cluster 4 (Figure 2(c)). We
identified the Psgs and the Ceacams as important marker
mRNAs for cluster 3. In the present study, spinal cord neu-
ronal cells from newborn mice were subjected to mimetic
chronological analysis on the UMAP map (Figure 2(d)).
Cluster 3 was found to be at the final stage of the proposed
chronological differentiation.

3.3. Psgs and Ceacams Are Specifically Expressed in Cluster 3.
The UMAP plot shows the expression of all marker mRNAs

in neonatal mouse spinal cord neuronal cells (Figure 3). Psgs
and Ceacams were found to be specifically expressed in clus-
ter 3. Marker mRNAs with pseudotiming analysis was
shown in Figure 4. Marker mRNAs in cluster 3 (Ceacam8,
Ceacam7, Psg7, Ceacam6, Psg5, Psg1, Ceacam1, Ceacam5,
Psg11, Psg2, Psg8, Psg3, Psg9, Ceacam3, Psg6, and Psg3)
began only at the tail end of the pseudotemporal differentia-
tion. This observation suggests that Psgs and Ceacams may be
markers of neural maturation. In addition, we also found that
the expression of the genes Atp5mc3, Atp6v0c, Calm1, Cox5a,
Mgst3, Myl12b, Ndufb6, and Ppia increased with increasing
chronology during the process of neuronal differentiation
in mice. These genes may be potential biomarkers for the
degree of differentiation of mouse spinal cord neuronal cells.

3.4. Acquisition of Markers Related to Pseudotiming Traces.
To further elucidate the cell differentiation trajectories of
various biomarkers, we conducted an intersection analysis.
The general plot of the intersection analysis of marker
mRNAs and time track mRNAs for the different clusters is
shown in Figure 5(a). There are 198, 129, 54, 24, and 570
marker mRNAs associated with pseudotemporal trajectories
in clusters 0, 1, 2, 3, and 4, respectively (Figures 5(b)–5(f)).

3.5. Functional Analysis of Pseudotemporal Trajectory-
Related Marker mRNAs. Enrichment analysis of the 198
marker genes in cluster 0 showed that the functions of these
genes were significantly enriched in the modulation of the
chemical synaptic transmission, regulation of transsynaptic
signaling, neurotransmitter secretion, axon part, presynapse,
postsynaptic specialization, structural constituent of cyto-
skeleton, calmodulin binding, metal ion transmembrane
transporter activity, endocrine and other factor-regulated
calcium, reabsorption axon guidance, and prion disease
(Figure 6(a)). The PPI network for these genes is shown in
Figure 6(b). The enrichment analysis of the 129 marker
genes in cluster 1 showed that the functions of these genes
were enriched in response to the presence of ammonium
ion, embryonic organ morphogenesis, anterior/posterior
pattern specification, regionalization, nuclear transcription

Time_Track_genes Cluster4

3723 570 8

(f)

Figure 5: Intersection analysis of marker mRNAs and time track mRNAs for different clusters. (a) Total plot showing the intersection of
different clustered marker mRNAs and time track mRNAs. Each compartment shows the cluster and the number of mRNAs variably
contained within it (A: cluster 1; B: cluster 2; C: cluster 3; D: cluster 4; E: pseudotime track-related gene cluster). (b–f) Venn diagram of
marker mRNAs and time track mRNAs for the different clusters.
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factor complex, synaptic membrane, dendrite membrane,
postsynaptic membrane, DNA-binding transcription activa-
tor activity, enhancer sequence-specific DNA binding,
enhancer binding, and RNA polymerase II distal enhancer

sequence-specific DNA binding (Figure 6(c)). The PPI
network for these genes is presented in Figure 6(d).

Enrichment analysis of the 54 marker genes in cluster 2
showed that the functions of these genes were significantly
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Figure 7: Enrichment analysis of clusters 3 and 4 and their corresponding PPI network analysis. (a, b) Enrichment analysis and PPI network
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enriched during synaptic membrane adhesion, positive regu-
lation of mRNA splicing-via the spliceosome, cardiac atrium
morphogenesis, synaptic membrane, glutamatergic synapse,
neuronal cell body, transmembrane receptor protein tyro-
sine phosphatase activity, human T-cell leukemia virus 1
infection, Chagas disease, and osteoclast differentiation
(Figure 6(e)). The PPI network for these genes is presented
in Figure 6(f).

Enrichment analysis of the 24 marker genes in cluster 3
showed that these genes were significantly enriched during
female pregnancy, multicellular organism process, leukocyte
migration, and heterophilic cell-cell adhesion via plasma
membrane cell adhesion molecules (Figure 7(a)). The PPI
network for these genes is presented in Figure 7(b). Psgs
and Ceacams were found to be the core genes of this PPI
network.

Enrichment analysis of the 270 marker mRNAs in clus-
ter 4 showed that their functions were significantly enriched
in oxidative phosphorylation, ATP metabolic process, nucle-
oside triphosphate metabolic process, mitochondrial protein
complex, mitochondrial inner membrane, inner mitochon-
drial membrane protein complex, NADH dehydrogenase
activity, Parkinson disease, oxidative phosphorylation, and
Huntington disease (Figure 7(c)). The PPI network for these

genes is shown in Figure 7(d). Finally, GSVA enrichment
analysis demonstrated the differential expression of the dif-
ferent pathways in the Reactome database across the differ-
ent clusters (Figure 8).

3.6. Identification of Transcriptional Regulatory Networks
Associated with USF2/CEACAM1&5 and KLF6/PSG3&5.
Psgs and Ceacames were found to be the core genes for
cluster 3 in this study. The TRRUST database was then used
to find upstream transcriptional regulatory targets for Psgs
and Ceacams. The transcriptional network of PSGs and
CEACAMs were shown in Figure 9(a), wherein the
upstream transcriptional regulatory targets of CEACAM1,
CEACAM5, PSG1, PSG3, PSG5, and PSG7 were predicted.
HNF4A, IRF1, NFKB1, RELA, SOX9, SP2, USF1, and USF2
were predicted to be transcriptional regulators of CEACAM1
and CEACAM5. FOXF2, KLF6, and MYBL2 were predicted
to be transcriptional regulators of PSGs such as PSG1,
PSG3, PSG5, and PSG7. Correlation analysis suggested a sig-
nificant correlation between PSGs and CEACAMs in the
GSE108788 dataset (Figure 9(a)). It was also observed that
CEACAM1 and CEACAM5 were significantly positively cor-
related with the expression of USF2 (Figure 9(b)). Similarly,
PSG3 and PSG5 were significantly positively correlated with
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the expression of KLF6 (Figure 9(b)). However, GSE108788-
based correlation analysis of scRNA-seq dataset found that
the results for FOXF2, HNF4A, IRF1, and MYBL2 did not
match the results expected in Figure 9(a). The Genotype-

Tissue Expression (GTEx) project is a dataset that reflects
the relationship between genetic variants and gene expres-
sion in human tissues. In spinal cord samples from the
GTEx dataset, KLF6 expression was found to have a positive
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correlation with the expression of PSG1 and PSG3, whileUSF2
expression was found to have a significant positive correlation
with the expression of CEACAM5. The binding sites of the
motifs of KLF6 and USF2 are shown in Figure 9(d) based on
the TRRUST database. Based on these results, USF2 was pre-
sumed to be a transcriptional regulator of CEACAM1 and
CEACAM5 while KLF6 is presumed to be a transcriptional
regulator of PSG3 and PSG5 (Figure 9(e)). The spinal cord
developmental marker NPY was positively correlated with
CEACAM1, CEACAM5, and USF2 (Figures 10(a)–10(d)).

4. Discussion

In this study, single-cell analysis was utilized to reveal the
heterogeneity and pseudotemporal differentiation trajectory

analysis of the neonatal mouse spinal cord neuronal cells.
Psgs and Ceacams were found to be the core genes for cluster
3, where the marker genes in these cell subpopulations
characterize the transcriptional profile of mouse spinal cord
neuronal cells.

Our results show that the molecular diversity of cell
types plays an important role in the development of the
mouse spinal cord, similar to previous studies that con-
ducted large-scale molecular profiling [18–21]. The spinal
cord nerve cells of mice were divided into five clusters. These
results provide new insights into the temporal patterns of
gene expression, thus establishing a new framework for the
analysis of the mouse spinal cord.

This study provides a clustering map for the clustering of
different cells correlated to their function. The cluster 0
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Figure 10: The spinal cord developmental marker NPY and its association with CEACAM1, CEACAM5, and USF2. (a) Correlation analysis
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marker genes were functionally enriched mainly in synapses
with signaling; the marker genes in cluster 1 are mainly
enriched in gene transcription; the marker genes in cluster
2 are mainly enriched in transmembrane transport and cel-
lular communication in neuronal cells; the marker genes in
cluster 3 are remarkably enriched in female pregnancy and
multicellular organism processes; and the marker genes in
cluster 4 are mainly related to energy metabolism and some
disease pathways including Parkinson’s disease, oxidative
phosphorylation, and Huntington’s disease. These results
suggest that the differential enrichment of genes in different
cells implies the functional differences in the corresponding
regional tissues [22].

The Psg family genes and the Ceacam family genes were
found to be the core genes for cluster 3 in this study. Cluster
3 were found to be remarkably enriched in female pregnancy
and multicellular organism processes. The pregnancy-
specific glycoprotein (PSG) gene is a member of the carcino-
embryonic antigen cell adhesion molecule (CEACAM) fam-
ily genes [23]. Both Psg and Ceacam family genes play a key
role in tumor progression [24]. In mammals, CEACAMs
and PSGs are involved in feto-maternal interactions. How-
ever, previous studies have not systematically investigated
the developmental trajectories of these two groups of genes
in humans [25]. In addition, CEACAMs and PSGs have
been found play a prominent role in the study of species evo-
lution [25, 26], as the expression of PSG may imply the
adaptive evolution of species [27]. Our study revealed that
PSGs and CEACAMs are potentially involved in neural
development.

KLF6, a zinc-finger transcription factor of the KLF fam-
ily, is involved in several processes including cell develop-
ment, differentiation, and regulation [28]. KLF6 was found
to be a key transcription factor involved in the central
neuro-mediated apoptosis with the function of reducing
neurological damage after cerebral hemorrhage [29]. Based
on bioinformatic analysis, KLF6 was found to be a potential
transcriptional regulator for PSG3 and PSG5 in this study.
The upstream stimulatory factors (USFs) USF1 and USF2
all belong to the helix-loop-helix leucine zipper transcription
factor family and function as homodimers or heterodimers
by binding to the e-box of the target DNA core sequence
(5′-CANNTG-3′) [30, 31]. USFs play an important role in
stress, the immune response, energy metabolism, and cell
development [32–34]. The role of USF2 seems to be more
critical than that of USF1 [35, 36]. In this study, USF2 was
hypothesized to be a transcriptional regulator of CEACAM1
and CEACAM5.

Neuropeptide Y (NPY) was discovered by Tatemoto
et al. in 1982 and was found to be localized in the nervous
system; its functional role has been intensively investigated
[37]. Previous studies suggested that NPY may function as
a neurotransmitter, has a neuromodulatory function, or
has neuroendocrine function [36, 38–40]. Although the
morphology and distribution of NPY in the adult spinal cord
have been reported, the development of NPY during the for-
mation of the human fetal spinal cord and its patterns have
not yet been reported in the literature [36, 38, 39]. In this
study, the spinal cord developmental marker NPY was

found to be positively correlated with CEACAM1, CEA-
CAM5, and USF2.

Advances in single-cell transcriptomics have allowed us
to gain groundbreaking insights into the heterogeneous pat-
terns of gene expression over time in the development of spi-
nal nerves. The heterogeneity of neonatal mouse spinal
nerve cells was revealed in this study through single-cell
analysis. The spinal cord nerve cells of mice were divided
into five clusters, giving an initial indication of the complex-
ity of the differential expression of the genes of these cells
over time. These results provide new insights into the tem-
poral patterns of gene expression, thus establishing a new
framework for the analysis of the mouse spinal cord. Psgs
and Ceacams were also defined for the first time in this study
as marker mRNAs clustered within the same cell. The
upstream transcriptional regulators of the Psg and Ceacam
genes were also identified. In future studies, immunohisto-
chemical experiments, as well as in vivo and in vitro studies
will still be needed to validate our results.

5. Conclusions

In summary, we analyzed recently published single-cell data-
sets and defined five subgroups of marker mRNAs that can
be used for future single-cell transcriptome analyses. This
study also revealed that PSGs and CEACAMs are potentially
involved in neural development. Identifying these transcrip-
tional regulatory networks will allow us to investigate further
the developmental trajectory of mouse neurons and the cell
biology of diseases.
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