
Research Article
Machine Learning Classification of Mild Traumatic Brain Injury
Using Whole-Brain Functional Activity: A Radiomics Analysis

Xiaoping Luo ,1 Dezhao Lin,2 Shengwei Xia,1 Dongyu Wang,1 Xinmang Weng,1

Wenming Huang,1 and Hongda Ye1

1Department of Radiology, Wenzhou Chinese Medicine Hospital, Wenzhou, 325000 Zhejiang, China
2Department of Emergency, Wenzhou Chinese Medicine Hospital, Wenzhou, 325000 Zhejiang, China

Correspondence should be addressed to Xiaoping Luo; wzluoxp@163.com

Received 9 September 2021; Accepted 2 November 2021; Published 18 November 2021

Academic Editor: Ting Su

Copyright © 2021 Xiaoping Luo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objectives. To investigate the classification performance of support vector machine in mild traumatic brain injury (mTBI) from normal
controls. Methods. Twenty-four mTBI patients (15 males and 9 females; mean age, 38:88 ± 13:33 years) and 24 age and sex-matched
normal controls (13 males and 11 females; mean age, 40:46 ± 11:4 years) underwent resting-state functional MRI examination. Seven
imaging parameters, including amplitude of low-frequency fluctuation (ALFF), fractional amplitude of low-frequency fluctuation
(fALFF), regional homogeneity (ReHo), degree centrality (DC), voxel-mirrored homotopic connectivity (VMHC), long-range
functional connectivity density (FCD), and short-range FCD, were entered into the classification model to distinguish the mTBI
from normal controls. Results. The ability for any single imaging parameters to distinguish the two groups is lower than
multiparameter combinations. The combination of ALFF, fALFF, DC, VMHC, and short-range FCD showed the best classification
performance for distinguishing the two groups with optimal AUC value of 0.778, accuracy rate of 81.11%, sensitivity of 88%, and
specificity of 75%. The brain regions with the highest contributions to this classification mainly include bilateral cerebellum, left
orbitofrontal cortex, left cuneus, left temporal pole, right inferior occipital cortex, bilateral parietal lobe, and left supplementary
motor area. Conclusions. Multiparameter combinations could improve the classification performance of mTBI from normal controls
by using the brain regions associated with emotion and cognition.

1. Introduction

Traumatic brain injury (TBI), a major public health problem
and a leading cause of disability, affects half the world’s pop-
ulation [1]. Approximately 70%-90% of TBI patients are
mild TBI (mTBI), and 30-40% of whom cannot fully recover
even at 6 months postinjury [1, 2]. Patients with mild head
injury often manifest as dizziness, headache, and memory
and attention deficit, which was considered to be associated
with abnormal changes of brain networks [3]. Recently,
functional and structural neuroimaging methods have been
widely used to address the functional and morphological
changes of mTBI [4–11]. Zhou et al. found abnormal func-
tional connectivity within the default mode network in
mTBI patients, which was associated with cognitive neuro-
logical dysfunction and posttraumatic symptoms (i.e.,
depression, anxiety, fatigue, and postconcussion syndrome)

[12]. Nakamura et al. found that mTBI was associated with
changes in the “small world” networks [13]. Zhan et al.
found decreased ReHo value in the left insula, left pre-/post-
central gyrus, and left supramarginal gyrus in mTBI patients
[14]. However, the potential neurobiological mechanism of
the mTBI left unclear.

Most current studies focus attentions on investigating
group differences between two different labels (knowing
the classes of all subject before statistics); however, group-
based methods cannot classify different types for individual
classification and are not sensitive for feature selection
[15]. Support vector machine (SVM) classifier is an efficient
and sensitive neuroimaging biological indicator for feature
selection and classification. There is a growing application
of the SVM algorithm into several diseases, such as insomnia
[16, 17], epilepsy [15], and autistic spectrum disorder [18].
However, the mTBI has not been studied. Differences in
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brain regions in mTBI were not the same when we analyzed
the between-group differences by different neuroimaging
methods, which may be associated with the sensitivity of dif-
ferent methods in searching features (brain areas). There-
fore, we hypothesized that the combination of different
neuroimaging methods may improve the sensitivity for fea-
ture selection. To address these hypotheses, the present
study is the first to apply the SVM algorithm to perform
the classification for mTBI.

2. Materials and Methods

2.1. Subjects. This case-control study comprised 170 subjects
from our hospital between May 2014 and May 2021, among
whom a total of 146 subjects were excluded, including 139
subjects unmatched diagnosis with mTBI, 4 mTBI with
more than 1.5mm maximum translation in x, y, or z direc-
tions and/or 1.5 degree of motion rotation, and 3 mTBI with
missing data. Finally, 24 patients with acute mTBI (15 males
and 9 females; mean age, 38:88 ± 13:33 years; mean years of
education, 8:88 ± 3:58 years; and mean time of postinjury,
3:58 ± 3:28 days) and 24 age and sex-matched (13 males
and 11 females; mean age, 40:46 ± 11:4 years; and mean
years of education, 8:54 ± 3:41 years) healthy controls were
included. All subjects were asked to complete the following
questionnaires, including the Glasgow Coma Scale (GCS),
Disability Rating Scale (DRS), Motor Assessment Scale
(MAS), Agitated Behavior Scale (ABS), Hamilton Anxiety
Scale (HAMA), Clinical Dementia Rating (CDR), Mini
Mental State Examination (MMSE), Activates of Daily
Living (ADL), and Beck Depression Inventory (BDI).

Inclusion criteria for patients with acute mTBI were as
follows: (a) have a diagnosis of mTBI within two weeks,
(b) age between 18 and 65 years, (c) time of lack of con-
sciousness less than 30min, and (d) time of posttraumatic
amnesia less than 24 hours. Exclusion criteria for patients
with acute mTBI were as follows: (a) involvement in litiga-
tion, (b) a history of psychiatric disorders, (c) a history of
addiction, and (d) a history of traumatic brain injury. This
study was approved by the Human Research Ethics Com-

mittee in accordance with the Declaration of Helsinki, and
written informed consent was obtained.

2.2. MRI Parameters. MRI data were acquired with a clinical
3-Tesla MRI scanner (Trio Tim, SIEMENS, Erlangen, Ger-
many), including T1WI, T2WI, T2-FLAIR, high-resolution
T1WI, functional MRI, and SWI. A total of 176 three-
dimensional high-resolution anatomical T1-weighted volumes
were acquired in a sagittal orientation (rapid-gradient-echo
sequence, repetition time = 1900ms, echo time = 2:26ms,
thickness = 1:0mm, matrix = 256 × 256, and field of view =
240mm× 240mm). For functional images, a total of 250
volumes (Echo-Planar Imaging pulse sequence, 30 transverse
slices, repetition time = 2000ms, echo time = 40ms, thickness
= 4:0mm, matrix = 64 × 64, field of view = 240mm × 240
mm, and flip angle 90°) were acquired.

2.3. Data Processing. All functional MRI data preprocessing
were performed with DPABI (version 2.1, http://rfmri.org/
DPABI) toolbox. First, the first ten volumes were deleted,
and the remaining volumes were converted their data
format. The following steps of slice timing, head motion
correction, spatial normalization, smooth (Gaussian kernel
of 8 × 8 × 8mm3), linear regression of possible spurious
covariates, linearly detrended, and temporally band-pass fil-
tered (0.01-0.1Hz) were performed for data preprocessing.
After the step of head motion correction, a “head motion
scrubbing regressors” procedure was implemented, and the
subjects who had more than 1.5 degree of motion rotation
and/or 1.5mm maximum translation in x, y, or z directions
were excluded. Furthermore, the head motion effect was
regressed out with Friston 24 head motion parameter model.
During the step of spatial normalization, all data were spa-
tially normalized to Montreal Neurological Institute (MNI)
space and resampled at a resolution of 3 × 3 × 3mm3.

2.4. Feature Selection and Binary Classification. We calcu-
lated seven MRI parameters, including ALFF, fALFF, ReHo,
degree centrality, long-term FCD, short-term FCD, and
VMHC. The maps of MRI parameters were segmented into

Table 1: Demographic and clinical features of patients with acute mTBI and healthy controls.

mTBI Healthy controls t value p value

Age, years 38:88 ± 13:33 40:46 ± 11:40 -0.442 0.66

Sex (male, female) 24 (15, 9) 24 (13, 11) 0.343 0.558

Education, years 8:88 ± 3:58 8:54 ± 3:41 0.330 0.743

Postinjury, days 3:58 ± 3:28 N/A N/A N/A

GCS 14:42 ± 0:88 N/A N/A N/A

DRS 2:58 ± 2:36 N/A N/A N/A

MAS 44:38 ± 5:86 N/A N/A N/A

ABS 14:42 ± 0:78 N/A N/A N/A

HAMA 3:83 ± 3:61 0:08 ± 0:28 5.077 <0.001
MMSE 29:04 ± 1:63 29:83 ± 0:20 -2.284 0.03

ADL 21:71 ± 8:07 14:04 ± 6:06 4.654 <0.001
BDI 1:58 ± 1:91 0:08 ± 0:28 3.808 0.001
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116 regions of interest (ROIs) using the automated anatom-
ical labeling (AAL) atlas. The total of 812 features was
extracted in the following classification with multivariate
pattern analysis (MVPA).

We used a LIBSVM toolbox (http://www.csie.ntu.edu
.tw/~cjlin/libsvm/) to perform the classification, and a
5-fold cross-validation was used to validate the classification
performance of the classifier. Permutation test was used to
evaluate the probability of the classification performance for
5000 times randomly. The clusters of brain regions with
higher than 70% of classification accuracy were considered
as accuracies. The area under curve (AUC), sensitivity, and
specificity of the classifier were quantified.

2.5. Statistical Analyses. Comparisons of demographic fac-
tors were performed using two-sample t-tests. Chi-square
(χ2) test was used for categorical data. Statistical analysis

was performed using IBM SPSS 21.0 version. Data are pre-
sented as mean ± standard deviation. All the quoted results
are two-tailed values, and p < 0:05 was considered as statisti-
cally significant.

3. Results

3.1. Sample Characteristics. There were no significant differ-
ences in mean age (t = −0:442, p = 0:66), sex (χ2 = 0:343,
p = 0:558), and educational level (t = 0:33, p = 0:743)
between the healthy controls and patients with mTBI.
Compared with healthy controls, patients with mTBI had
higher HAMA score (t = 5:077, p < 0:001), ADL score
(t = 4:654, p < 0:001), and BDI score (t = 3:808, p = 0:001),
and a lower MMSE score (t = −2:284, p = 0:03). The mean
time between injury and MRI examination of patients with
mTBI was 3:58 ± 3:28 days. The mean GCS score, DRS score,
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Figure 1: Schematic diagram overview of machine learning classification framework. Note: this figure shows the classification of the
combination of ALFF, fALFF, DC, VMHC, and short-term FCD in distinguishing the mTBI from the normal controls. The classification
received the highest (a) AUC value, (b) classification accuracy, (c) sensitivity, and (d) specificity among all combination.
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Table 2: Weight ranking of the 116 brain regions to the
classification of the combination with ALFF, fALFF, DC, VMHC,
and short-term FCD.

ROI weight Voxel size

Vermis_10 1.948 34

Cerebellum_9_R 1.470 156

Cerebellum_10_L 1.465 40

Cerebellum_9_L 1.455 158

Frontal_Mid_Orb_L 1.417 224

Frontal_Sup_Orb_L 1.398 280

Cuneus_L 1.353 472

Cerebellum_Crus2_R 1.329 539

Cerebellum_7b_L 1.265 98

Cerebellum_Crus2_L 1.257 543

Frontal_Mid_Orb_L 1.256 273

Temporal_pole_Mid_L 1.222 177

Occipital_Inf_R 1.220 316

Parietal_Sup_L 1.136 575

Paracentral_lobule_R 1.134 221

Frontal_Sup_R 1.118 1120

Cuneus_R 1.117 416

Cerebellum_Crus1_R 1.103 723

Occipital_Inf_L 1.103 263

Vermis_7 1.102 54

Calcarine_L 1.076 649

Occipital_Sup_R 1.074 407

Rectus_L 1.070 258

Postcentral_R 1.055 1050

Paracentral_lobule_L 1.053 340

Precentral_R 1.009 941

Parietal_Inf_R 1.008 397

Occipital_Sup_L 0.998 373

Cerebellum_10_R 0.997 37

Cerebellum_7b_R 0.975 78

Cerebellum_8_L 0.961 303

Cerebellum_6_L 0.960 524

Vermis_9 0.959 50

Temporal_Inf_R 0.959 1076

Occipital_Mid_L 0.954 947

Cerebellum_Crus1_L 0.950 725

Lingual_L 0.945 662

Supp_motor_area_L 0.937 630

Frontal_Mid_R 0.931 1448

Calcarine_R 0.925 528

Temporal_Mid_L 0.922 1437

Parietal_Sup_R 0.921 569

Cerebellum_4_5_L 0.919 352

Frontal_Sup_medial_L 0.918 847

Lingual_R 0.916 683

Angular_R 0.916 511

Temporal_pole_Sup_R 0.918 325

Table 2: Continued.

ROI weight Voxel size

Cerebellum_6_R 0.908 532

Precuneus_R 0.908 927

Temporal_Sup_R 0.907 942

Frontal_Sup_L 0.890 987

Angular_L 0.860 341

Precuneus_L 0.851 1008

Cingulum_post_L 0.850 111

Frontal_Inf_Tri_L 0.848 675

Frontal_Mid_L 0.847 1323

Temporal_pole_Sup_L 0.828 329

Temporal_Sup_L 0.825 694

Temporal_pole_Mid_R 0.822 264

Cerebellum_8_R 0.810 298

Cerebellum_3_R 0.801 65

Occipital_Mid_R 0.796 578

Supp_motor_area_R 0.790 695

Vermis_4_5 0.788 176

Frontal_Sup_medial_R 0.787 589

Frontal_Inf_Tri_R 0.783 560

Supramarginal_R 0.779 562

Precentral_L 0.764 931

Heschl_R 0.763 60

Frontal_Mid_Orb_R 0.762 296

Frontal_Sup_Orb_R 0.752 296

Frontal_Inf_Orb_L 0.752 504

Cerebellum_3_L 0.750 42

Supramarginal_L 0.750 357

Fusiform_L 0.747 665

Temporal_Inf_L 0.745 948

Vermis_1_2 0.738 9

Rectus_R 0.728 208

Parietal_Inf_L 0.723 687

Cerebellum_4_5_R 0.719 239

Frontal_Inf_Oper_R 0.715 396

Caudate_L 0.703 270

Postcentral_L 0.702 1069

Fusiform_R 0.688 759

Pallidum_L 0.685 76

Vermis_6 0.675 87

Amygdala_L 0.672 63

Putamen_L 0.660 280

Frontal_Inf_Orb_R 0.660 498

Frontal_Mid_Orb_R 0.657 271

Vermis_8 0.652 60

Insula_R 0.646 497

Rolandic_Oper_L 0.645 301

Cingulum_Mid_L 0.635 579

Olfactory_L 0.632 80
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MAS score, and ABS score in patients with mTBI were
14:42 ± 0:88, 2:58 ± 2:36, 44:38 ± 5:86, and 14:42 ± 0:78,
respectively. The details are shown in Table 1.

3.2. Classification Performance. First, we compared the classi-
fication performances of the sevenMRI parameters and found
they could not differentiate well between healthy controls and
patients with mTBI (AUC: 0:66 ± 0:03, range, 0.61~0.69;
accuracy rate: 66:4% ± 3:4%, range, 60.2%~70.9%; sensitivity:
64:1% ± 7:9%, range, 49.0%~75.0%; and specificity: 68:4% ±
5:6%, range, 61.0%~75.0%). Second, we combined these MRI
parameters and found the features with the highest contribu-
tions to the classification to discriminate between mTBI and
healthy controls. We found that the combination with ALFF,
fALFF, DC, VMHC, and short-term FCD significantly
reached up the classification accuracy, sensitivity, and
specificity and received the highest classification performances
among all combination with classification accuracy of 81.1%
(p < 0:001), sensitivity of 88.0% (p < 0:001), and specificity of
75.0% (p < 0:001) (Figure 1).

3.3. Consensus Features and Region Weight. In this study, all
consensus features were mapped to AAL116 template (116
brain regions), and each of the 116 brain regions was given
a weight value which indicates the contribution to classifica-
tion model. For the combination with ALFF, fALFF, DC,
VMHC, and short-term FCD, Table 2 shows the weight
ranking of the 116 brain regions from highest to lowest.

Among the 116 brain regions, a total of 51 brain regions
showed higher contributions to the classification than the

average weight value (contribution), including the bilateral
cerebellum, left orbitofrontal cortex, left cuneus, left tempo-
ral pole, right inferior occipital gyrus, bilateral parietal lobe,
and left supplementary motor area (Table 2).

4. Discussion

In this case-control study, we documented two novel findings.
First, we developed an SVM classifier that was a useful neuro-
imaging biomarker for mTBI classification. We found that the
combination with ALFF, fALFF, DC, VMHC, and short-term
FCD received the highest classification performances among
all combination (accuracy = 81:1%, sensitivity = 88:0%, and
specificity = 75:0%). Second, the consensus brain regions with
the highest contributions to classification were located in the
bilateral cerebellum, left orbitofrontal cortex, left cuneus, left
temporal pole, right inferior occipital gyrus, bilateral parietal
lobe, and left supplementary motor areas (contribution above
the average value among 116 brain regions).

Our study is the first to apply the SVM classifier to find a
promising model for mTBI classification. Although several
previous studies have offered insights into brain functional
and structural abnormalities of mTBI using traditional
group-level statistical differences based on one single imag-
ing method, they could not be translated into predictive or
diagnostic neurobiological biomarkers for mTBI. The
emergence of radiomics has broadened the scope of routine
medical imaging, which carried multimodality medical
information to reflect the development and progression of
diseases [19, 20]. Machine learning classification based on
the radiomics strategy allows detecting subtle, nonstrictly
localized effects that may remain invisible to the conven-
tional analysis with univariate statistics [21, 22], which are
being increasingly used in functional MRI data [15, 16].
These findings could explain the high classification perfor-
mance of the SVM classifier.

Cerebellum is associated with emotion, motor, and
advanced cognitive function [23]. The cerebellum anterior
lobe is associated with sensorimotor function, and the cere-
bellum posterior lobe is associated with the regulation of
coordinating movement, balance and sleep, and emotional
changes [24–28]. Brain volume atrophy and reduction of
metabolism functional activity can be found in subjects after
TBI [29–31]. Peskind et al. found that soldiers with mTBI
showed reduction of glucose metabolism in the cerebellar
vermis, cerebellar hemisphere, and pons and functional def-
icits in attention, language, and working memory [31]. In
addition, cerebellar activation was also significantly reduced
during auditory-related task stimulation [30]. These studies
suggest that the cerebellum plays an important role in the neu-
ropathological basis of mTBI, which supports our findings of
high contributions of the cerebellum to the SVM classifier.

The prefrontal lobe is one of the brain areas that are most
vulnerable to the mTBI. Even minor brain damage can easily
cause a damage of the frontal lobe. Studies have found that
abnormal functional changes in the frontal lobe are one of
the neural mechanisms of emotional numbness, attention,
planning, high alertness, and psychological avoidance in
patients with posttraumatic injury [32–34]. Keightley et al.

Table 2: Continued.

ROI weight Voxel size

Thalamus_R 0.631 296

Frontal_Inf_Oper_L 0.628 309

Parahippocampal_L 0.624 298

Pallidum_R 0.621 67

Cingulum_Ant_R 0.621 385

Temporal_Mid_R 0.619 1311

Cingulum_Ant_L 0.598 425

Thalamus_L 0.596 280

Cingulum_Mid_R 0.574 612

Vermis_3 0.549 62

Rolandic_Oper_R 0.548 404

Heschl_L 0.548 72

Olfactory_R 0.538 88

Cingulum_post_R 0.522 69

Caudate_R 0.511 287

Parahippocampal_R 0.506 318

Hippocampus_L 0.493 279

Amygdala_R 0.474 73

Insula_L 0.465 545

Putamen_R 0.436 309

Hippocampus_R 0.411 282
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found that adolescents with mTBI showed weaker working
memory and language function and reduced brain activity in
supplementary motor areas, dorsolateral prefrontal lobe, and
superior parietal lobe than that of healthy adolescents [35].
Pardini et al. and Jantzen et al. found that parietal lobe and
orbitofrontal cortex are associated with severity of mTBI and
postconcussion symptoms [36, 37]. Our findings support
these studies. Therefore, the abnormal functional changes in
the frontal-parietal lobe may be associated with the posttrau-
matic injury severity and symptoms, which contribute to the
high contributions to the SVM classifier.

Abnormal functional connectivity between temporal
pole and parietal lobe and decreased glucose metabolism in
these two areas were found in mTBI patients relative to nor-
mal controls [31, 38, 39]. The temporal pole is closely related
to the functions such as social interaction, face recognition,
semantic memory, mental speculation, and emotion and is
responsible for the synthesis of complex and finely processed
perceptual input of internal emotions [40]. The abnormal
function of the temporal pole in mTBI patients will help us
understand the biological mechanism of daily life disorders
of mTBI.

5. Conclusions

In this study, we developed an SVM classifier that can be
severed as a promising sensitive neuroimaging biomarker
for mTBI classification based on a combination of multiple
imaging indicators. Our analysis using the model showed
that the bilateral cerebellum, left orbitofrontal cortex, left
cuneus, left temporal pole, right inferior occipital gyrus,
bilateral parietal lobe, and left supplementary motor areas
exhibited the highest contributions to the classification
model. These findings may expand our understanding of
the neurobiological mechanism of mTBI. However, there
are several limitations that should be addressed. First, the
sample size of our study was relatively small. A larger num-
ber of sample sizes and multiple center studies are necessary
to corroborate our findings. Second, the data of subacute
mTBI and follow-up were scarce. Third, this study only used
SVM to perform the classification, and other classification
methods should be introduced to compare their perfor-
mances. Fourth, location and size of the lesion, disease of
severity, and subtype of mild traumatic brain injury were
not considered in the classification.
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