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Objectives. Radiosensitivity Index (RSI) can predict intrinsic radiotherapy sensitivity. We analyzed multiomics characteristics in
lung squamous cell carcinoma between high and low RSI groups, which may help understand the underlying molecular
mechanism of radiosensitivity and guide optional treatment for patients in the future. Methods. The Cancer Genome Atlas
(TCGA) and the Gene Expression Omnibus (GEO) data were used to download clinical data, mRNA, microRNA, and lncRNA
expression. Differential analyses, including mRNA, miRNA, lncRNA, and G.O. and KEGG, and GSVA analyses, were
performed with R. Gene set enrichment analysis was done by GSEA. miRNA-differentially expressed gene network and ceRNA
network were analyzed and graphed by the Cytoscape software. Results. In TCGA data, 542 patients were obtained, including
171 in the low RSI group (LRSI) and 371 in the high RSI group (HRSI). In RNAseq, 558 significantly differentially expressed
genes (DEGs) were obtained. KRT6A was the most significantly upregulated gene and IDO1 was the most significantly
downregulated gene. In miRNAseq, miR-1269a was the most significantly upregulated. In lncRNAseq, LINC01871 was the
most upregulated. A 66-pair interaction between differentially expressed genes and miRNAs and an 11-pair interaction
between differential lncRNAs and miRNAs consisted of a ceRNA network, of which miR-184 and miR-490-3p were located in
the center. In the GEO data, there were 40 DEGs. A total of 17 genes were founded in both databases, such as ADAM23,
AHNAK2, BST2, COL11A1, CXCL13, FBN2, IFI27, IFI44L, MAGEA6, and PTGR1. GSVA analysis revealed 31 significant
pathways. GSEA found 87 gene sets enriched in HRSI and 91 gene sets in LRSI. G.O. and KEGG of RNA expression levels
revealed that these genes were most enriched in T cell activation and cytokine−cytokine receptor interaction. Conclusions.
Patients with lung squamous cell carcinoma have different multiomics characteristics between two groups. These differences
may have an essential significance with radiotherapy effect.

1. Introduction

Lung cancer, the first killer globally, was estimated at 131,880
deaths in 2021 [1]. Lung squamous cell carcinoma (LUSC)
accounts for 20–30% of NSCLCs [2].

Radiotherapy is one of the effective cancer treatments.
Radiosensitivity Index (RSI) is a novel model of tumor
radiosensitivity. Based on the expression of 10 genes (JUN,
STAT1, SUMO1, IRF1, HDAC9, ABL1, CDK1, RELA,
PRRT2, and AR), RSI could predict intrinsic radiotherapy
sensitivity and treatment response [3]. This model is widely
used in cancer, such as breast cancer and NSCLCs [4–6].

Our study analyzed mRNA, miRNA, lncRNA, methyla-
tion, somatic mutations, copy number variations, and clini-
cal data between high RSI and low RSI groups in LUSC
patients. This research may reference precision radiotherapy
research and help build personalized precision management
of patients in clinical applications.

2. Material

2.1. TCGA Data. The data were downloaded from The
Cancer Genome Atlas (TCGA) data portal (https://portal.gd
c.cancer.gov/)(TCGA-LUSC) through https://xenabrowser.
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net/datapages/, including mRNA and miRNA expression
data, methylation array, mutation profiles, copy number var-
iation, and clinical data [7]. After matching clinical data, 363
cases of mRNA, 542 instances of miRNA, 542 cases of
lncRNA, 362 cases of DNAmethylation, 480 cases of somatic
mutation, and 490 cases of copy number variation were
selected for further analysis between the RSI high score group
(HRSI) and the low score group (LRSI).

2.2. GEO Data. mRNA data was downloaded from the Gene
Expression Omnibus (GEO) database (http://www.ncbi.nlm.
nih.gov/geo/).

GSE73403 and GSE37745 datasets were collected for the
differential gene expression analysis. GSE73403 dataset con-
tains 69 samples from the LUSC patients, published on Sep
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Figure 1: (a) Survival analysis of high and low RSI groups in TCGA dataset. (b) Survival analysis of high and low RSI groups in the GEO
dataset.

Table 1: Clinical characteristics of TCGA samples.

Characteristics

RSI high
expression
group

(n = 368)

RSI low
expression
group

(n = 170)

p value

Age 67.44 67.08 0.65

Sex

Female 95 (25.8) 46 (27.1) 0.842

Male 273 (74.2) 124 (72.9)

Anatomic location

Bronchial 6 (1.6) 4 (2.4) 0.755

Left 155 (42.1) 68 (40.0)

Right 197 (53.5) 91 (53.5)

Other (please specify) 7 (1.9) 3 (1.8)

NA 2 (0.5) 3 (1.8)

Discrepancy

Stage

Stage I 180 (48.9) 85 (50.0) 0.252

Stage II 125 (34.0) 48 (28.2)

Stage III 57 (15.5) 31 (18.2)

Stage IV 5 (1.4) 3 (1.8)

Discrepancy 1 (0.3) 3 (1.8)

Histological type

LUSC 349 (94.8) 165 (97.1) 0.325

Basaloid LUSC 12 (3.3) 4 (2.4)

Papillary LUSC 6 (1.6) 0 (0.0)

Small cell LUSC 1 (0.3) 1 (0.6)

Table 2: Clinical characteristics of the GEO samples.

Characteristics

RSI high
expression
group
(n = 50)

RSI low
expression
group
(n = 85)

p value

Age 61.28 63.66 0.166

Sex

Female 1 (2.0) 23 (27.1) 0.001

Male 49 (98.0) 62 (72.9)

Stage

Stage I 7 (14.0) 36 (42.4) 0.001

Stage I or stage II 14 (28.0) 8 (9.4)

Stage II 16 (32.0) 20 (23.5)

Stage III 13 (26.0) 21 (24.7)
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25, 2015, and GSE37745 includes 66 samples, released on
Oct 12, 2012.

3. Statistical Methods

3.1. Statistics of Group. According to previous studies, ten
genes (JUN, STAT1, SUMO1, IRF1, HDAC9, ABL1,
CDK1, RELA, PRRT2, and AR) were picked out for each
sample to calculate RSI (Radiosensitivity Index). The equa-
tion is as follows:

RSI = −0:0098009 ∗AR + 0:0128283 ∗ JUN + 0:0254552
∗ STAT1 − 0:0017589 ∗ PRRT2 − 0:0038171 ∗ RELA +
0:1070213 ∗ABL1 − 0:0002509 ∗ SUMO1 − 0:0092431 ∗
CDK1 − 0:0204469 ∗HDAC9 − 0:0441683 ∗ IRF1.

The R software (version 4.0.0) was applied to statistical
analyses. Cutpoint of RSI was performed by the survminer

package of R with the function of surv_cutpoint, which
was design to determine the optimal cutpoint for continuous
variables.

3.2. Differential mRNA, miRNAs, lncRNAs, and ceRNA
Analysis. In TCGA dataset, after normalization, differential
gene analyses, including mRNAseq, miRNAseq, and lncRNA-
seq, were done by the R limma package. For mRNAseq,
the absolute logfoldchange ð∣logFC ∣ Þ > 0:5 and the adjusted
p < 0:05 were considered to be significant. For miRNAseq,
∣logFC ∣ >0:5 and p < 0:05were significant in statistics science.
As for lncRNAseq, ∣logFC ∣ >0:25 and adjusted p < 0:05 were
statistically significant. For mRNAseq from the GEO dataset,
∣logFC ∣ >0:5 and the p < 0:05 were statistically significant.

Differential lncRNAs targeted miRNAs were achieved
through http://mircode.org/index.php.
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Figure 2: (a) Volcano map of differential expression mRNAs, (b) volcano map of differential expression miRNAs, and (c) volcano map of
differential expression lncRNAs.
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Differential miRNAs targeted mRNAs were achieved
through http://mirwalk.umm.uni-heidelberg.de/search_mir
nas. These data and differential mRNAs were intersected,
consisting of a ceRNA network. The Cytoscape software
(version 3.7.1) was used to analyze and graph a miRNA-
differentially expressed gene network and ceRNA network.

Gene Ontology (G.O.) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) were performed by the ClusterProfi-
ler package for the mRNAs, miRNAs, and lncRNAs between
HRSI and LRSI patients. Gene set variation analysis was
done by the GSVA package. Gene set enrichment (GSEA)
was carried out by GSEA (version 4.0.0).

3.3. Copy Number Variation and Somatic Mutation Analysis.
Significantly mutated genes, pfamDomains were done by the
maftools package of R. The threshold for significant mutated
genes, pfamDomains was p < 0:05.

3.4. DNA Methylation Analysis. Differentially methylated
regions, differentially methylated positions, and differentially
methylated gene analyses were performed by the minif pack-

age. p < 0:05 was considered statistically significant for
methylated genes, while adjusted p < 0:05 was for methylated
regions. In differentially methylated positions, the adjusted
p < 0:05 was considered to be statistically significant.

Differentiallymethylated genes and differentially expressed
genes were jointly analyzed to find methylation driver genes.

4. Results

4.1. Clinical Characteristics and Survival Analyses. In TCGA
data, based on RSI scores (0.50 tangents), 542 LUSC patients
were divided into RSI high grouping (HRSI) and low group-
ing (LRSI), of which 171 were in LRSI and 371 were in HRSI.
The results showed that there was an obvious survival differ-
ence between HRSI and LRSI (p = 0:029). In two GEO data-
sets, the cutpoint of RSI was 0.54 and 0.55. We merged two
GEO datasets and found the survival of patients with high
RSI scores in the GEO database was still better than those
with low scores, though not significant (p = 0:17) but possi-
bly due to the small number of the patients (50 patients in
HRSI vs. 85 patients in LRSI) (Figures 1(a) and 1(b)).

(a)

(b)

Figure 3: (a) MicroRNAs-differentially expressed gene (miRNA-DEG) pairs. (b) ceRNA network of differential lncRNA-differential
miRNA-differentially expressed gene (miRNA-DEG and lncRNA-DEG) pairs.
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Figure 4: Continued.
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Clinical characteristics of patients in the HRSI and LRSI
groups are shown in Tables 1 and 2.

4.2. Differentially Expressed Genes, miRNAs, lncRNAs, and
ceRNA Network. The low RSI group was used as a refer-
ence in the analyses. In RNAseq, 558 significantly differen-
tially expressed genes (DEGs) were obtained; 334 were
upregulated, and 224 were downregulated (Figure 2(a)).
KRT6A and IDO1 were the most significantly upregulated
(logFC = 1:32, adj:p = 0:0002) and downregulated (logFC =
− 1:42, adj:p < 0:0001) genes, respectively.

In the GEO database, there were 12 upregulated genes
and 28 downregulated genes. FBN2 and MAGEA6 were
the most significantly upregulated (logFC = 0:85, p value =
0.001) and downregulated (logFC = −1:02, p value = 0.01)
genes, respectively.

After intersecting the DEGs in the two databases, we
found the total of 17 genes in both databases, including

ADAM23, AHNAK2, BST2, COL11A1, CXCL10, CXCL11,
CXCL13, FBN2, HAS3, IFI27, IFI44L, IFIT1, IFIT3,
MAGEA6, MMP13, NEFL, and PTGR1.

In TCGA database, 31 differentially expressed miRNAs
(DEMs) were obtained. (Figure 2(a)). miR-1269a was the
most significantly upregulated (logFC = 1:17, p = 0:0089),
while miR-875-3p was the most significantly downregu-
lated (logFC = −3:06, p = 0:0089). And in lncRNAseq
(Figure 2(c)), the number of differentially expressed
lncRNAs (DELs) was 145, in which LINC01871 was the most
significantly upregulated (logFC = 0:87, adj:p < 0:0001) and
AL049555.1 was the most significantly downregulated
(logFC = −0:55, adj:p = 0:0016).

We used a website http://mirwalk.umm.uni-heidelberg.
de/search_mirnas/, predicting miRNAs’ target genes, and
intersected with the DEGs to draw miRNA-target maps.
A 66-pair interaction between differentially expressed
genes and miRNAs and an 11-pair interaction between
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Figure 4: (a) Heatmap of gene set variation analysis for GSVA. (b) The three most significant pathways of GSEA. (c) Dotplot of significantly
different pathways from G.O.
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differentially lncRNAs and miRNAs consisted of a ceRNA
network, of which miR-184 and miR-490-3p were located
in the center. These miRNAs may play critical roles in
radiosensitivity (Figures 3(a) and 3(b)).

4.3. Functional Analysis. GSVA analysis revealed 31 signifi-
cant pathways, including hedgehog_signaling_pathway,
erbb_signaling_pathway, and apoptosis. GSEA found that
87 gene sets were enriched in the HRSI group, including
hedgehog_signaling_pathway, while 91 gene sets were
enriched in the LRSI group, including natural_killer_cell_
mediated_cytotoxicity, toll_like_receptor_signaling_path-
way, and cytosolic_DNA_sensing_pathway (Figures 4(a)
and 4(b)).

G.O. and KEGG of RNA expression levels revealed that
these genes were most significantly enriched in T cell activa-
tion and cytokine−cytokine receptor interaction (Figure 4(c)).

4.4. SNV and CNV Analysis. In 480 LUSC patients, the
mutation proportion of the most significant genes (SLITRK5,
GALK2, MYCBP2, MYO9A, HRNR, SGK1, and CACNG7)
between the two groups of HRSI (n = 338) and LRSI
(n = 142) is shown in Figure 5.

After using the mafCompare function, we obtained 212
differential mutation genes, and most of the differential
mutation genes in the LRSI group had higher mutation rates.
In terms of cancer-driven mutations, the HRSI group has
two significant mutations, including HRAS and KLF5, while
the LRSI group has three significant mutations, including
ATP6V0A2, BSX, and VNN1 (Figures 6 and 7).

We analyzed changes in chromosomal regions in two
groups. There are statistical differences between 876 deletion

fragments and 239 amplification fragments (p < 0:05). MN1
was the most significant amplification fragments (p = 0:004),
and SGCD was the deletion fragments (p = 0:0007). Most of
amplification regions were located on chromosome 2, 5, 7,
18, and 22, while most of the deletion regions were on chro-
mosomes 4, 5, 10, 15, 18, and X. As is shown in the figure, in
the HRSI group, deletion regions were most evident on
chromosome 5 (Figure 8).

4.5. DNA Methylation Analysis. After quality control, there
were 35 upregulated and 231 downregulated methylation
positions detected in the HRSI group. Then, we analyzed
the differential methylation regions (DMRs). 70 DMRs were
obtained, and we used the DMRs to annotate the functional
consequences of genetic variation through http://wannovar
.wglab.org/. It showed that the most significant DMR was
ZFP36L2. We analyzed the methylation genes and mRNAs
to obtain methylation-driven genes in the HRSI group. It
showed a total of 8 significant genes, including PSMB8,
AIM2, GBP4, ACSL5, CD74, OAS2, TRAF2, and ZBTB24,
in which PSMB8 is the most significant driven gene
(Figures 9 and 10).

5. Discussion

Personalized and precise treatment of cancer patients is a
medicine goal at present. RSI is of great significance to the
individualization of tumor radiation therapy.

Our study used TCGA and GEO databases to determine
the relationship between RSI score and multiomics genetic
differences in LUSC patients. In differentially expressed
mRNA analyses, we found gene expression, such as KRT6A
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and IDO1, is the most significant mRNAs. As is shown in
the results, compared with the LRSI group, IDO1 expression
in the HRSI group was upregulated. The level of gene tran-
scription of IDO1 is closely related to T cell infiltration
[8–12]. In some studies, IDO1 enzymatic activity can
directly influence radiation sensitivity, such as colorectal
cancer [13–17]. We found some genes in TCGA and GEO
databases are related to radiation therapy, including FBN2,
IFI27, and IFIT1. Forrester et al. found that FBN2 was asso-
ciated with radiation-induced fibrosis [18]. STAT1, associ-
ated with increased resistance to radiation, regulated IFI27
and IFIT1, which indicated that IFI27 and IFIT1 might be
involved in radiation sensitivity.

In differentially expressed miRNA analyses, miR-1269a
is the most significant miRNAs. miR-1269a is significantly
more expressed in NSCLC tissue than in adjacent tissue.
miR-1269a expression upregulation enhances cell prolifera-
tion and cluster formation and induces cell cycle conversion.
miR-1269a could function as an onco-miRNA in NSCLC

and promote NSCLC growth via downregulating SOX6
[19]. SOX6 suppresses the cell cycle of lung adenocarcinoma
by regulating cyclin D1, which indicated miR-1269a might
be involved in radiation sensitivity [20]. In lncRNA analyses,
LINC01871 was the most significant one. LINC01871 was
related to the immunotherapeutic strategy and was used to
predict the prognosis of patients with cervical cancer. Radio-
therapy combined with immunity will be the next oncology
practice [21].

We enriched the function of genes, and the results
showed that the upregulated gene pathways in the HRSI
group have a stronger relationship with cytosolic_DNA_
sensing_pathway. That implied that differences might relate
to the sensitivity of radiotherapy.

In SNV and CNV analysis, the mutation proportion of
the most significant genes included SLITRK5, SGK1, and
CACNG7. SLITRK5 involved radioresistance in nasopha-
ryngeal carcinoma [22]. Several studies have shown that
SGK1 can increase radiotherapy sensitivity through various
means, in multiple cancers, such as lung cancer, glioblas-
toma, and synovial sarcoma [22–29].

In DNA methylation analyses, ZFP36L2 is the most sig-
nificant differential methylation region. A recent study
shows that ZFP36L2 inhibited cell proliferation through
the cell cycle, which implied that it might be involved in
radiation sensitivity [30]. Immune proteasome (PSMB8) is
the most significant regional methylation gene between the
two groups. PSMB8 is associated with proliferation and apo-
ptosis and is considered a novel prognostic indicator in
patients [31]. Ha et al. thought PSMB8 was a predictive
marker of preoperative radiosensitivity [32]. Compared with
the LRSI group, KLF5 was the most significant gene for
CNV in the HRSI group. KLF5 plays an important role in
the DNA damage response by regulating DNA damage
checkpoint proteins and is associated with cisplatin DDP
resistance [33–35]. The relationship between KLF5 and
radiotherapy sensitivity needs to be discovered.
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Finally, there are some flaws in our experiment. Because
the GEO database lacks methylation datasets, we cannot use
GEO data to compare methylation mutations. There is also a
lack of clinical samples for radiation therapy, so we cannot
verify that the differences we find are related to radiation
sensitivity.

6. Conclusion

In summary, our study used TCGA and GEO data to inves-
tigate multicomponent differences between patients with
LUSC high and low RSI. Our research can refer to precision
radiotherapy studies and help build personalized precision
management for patients in clinical applications.

Data Availability

TCGA data: the data were downloaded from The Cancer
Genome Atlas (TCGA) data portal (https://portal.gdc.
cancer.gov/)(TCGA-LUSC) through https://xenabrowser
.net/datapages/, including mRNA and miRNA expression
data, methylation array, mutation profiles, copy number var-
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