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Background. The study was aimed at finding accurate and effective therapeutic targets and deepening our understanding of the
mechanisms of advanced atherosclerosis (AA). Methods. We downloaded the gene expression datasets GSE28829, GSE120521,
and GSE43292 from Gene Expression Omnibus. Weighted gene coexpression network analysis (WGCNA) was performed for
GSE28829, and functional enrichment analysis and protein–protein interaction network analysis were conducted on the key
module. Significant genes in the key module were analyzed by molecular complex detection, and genes in the most important
subnetwork were defined as hub genes. Multiple dataset analyses for hub genes were conducted. Genes that overlapped
between hub genes and differentially expressed genes (DEGs) of GSE28829 and GSE120521 were defined as key genes. Further
validation for key genes was performed using GSE28829 and GSE43292. Gene set enrichment analysis (GSEA) was applied to
key genes. Results. A total of 77 significant genes in the key module of GSE28829 were screened out that were mainly
associated with inflammation and immunity. The subnetwork was obtained from significant genes, and 18 genes in this
module were defined as hub genes, which were related to immunity and expressed in multiple diseases, particularly systemic
lupus erythematosus. Some hub genes were regulated by SPI1 and associated with the blood, spleen, and lung. After
overlapping with DEGs of GSE28829 and GSE120521, a total of 10 genes (HCK, ITGAM, CTSS, TYROBP, LAPTM5,
FCER1G, ITGB2, NCF2, AIF1, and CD86) were identified as key genes. All key genes were validated and evaluated successfully
and were related to immune response pathways. Conclusion. Our study suggests that the key genes related to immune and
inflammatory responses are involved in the development of AA. This may deepen our understanding of the mechanisms of
and provide valuable therapeutic targets for AA.

1. Background

Cardiovascular disease (CVD) is one of the leading causes of
death in the world, and approximately 17 million people die
from it every year [1]. Atherosclerosis (AS) is the most fre-
quent cause of CVD [2]. The main feature of AS is complex
chronic inflammation. Its pathogenesis and molecular
mechanisms are multifactorial and characterized by smooth
muscle cell proliferation, endothelial damage, cell apoptosis,
inflammatory cell activation, lipid accumulation, vascular
matrix changes, and oxidative stress [3, 4]. As early athero-
sclerosis (EA) progresses to advanced atherosclerosis (AA),
atherosclerotic plaques will gradually expand and rupture,
leading to vascular stenosis or occlusion and causing myo-

cardial infarction and ischemic stroke [5, 6]. Current treat-
ment strategies for reversing advanced plaque formation
are still limited, and the mechanisms of AA are not fully
elucidated [7]. Thus, more comprehensive and in-depth
investigations of AA are needed.

In recent years, high-throughput platforms for gene
expression analysis, such as microarrays, have become effec-
tive tools for revealing the pathogenesis of CVD. With the
help of this method, researchers have already discovered
many biomarkers related to CVD and AS. By comparing
the expression levels of lncRNA from peripheral blood
mononuclear cells in patients with coronary artery disease
and healthy people, researchers found that ENST0000
0444488.1 and uc010yfd.1 can better distinguish these two
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groups [8]. NEDD4L, FBXO44, FBXO27, WSB1, FBXW8,
UBE2F, and ASB1 have been reported as hub genes that help
elucidate the pathogenesis and progression of AS [9]. Such
studies have mainly been limited to plaque-related expres-
sion profiles, and only a few have addressed advanced pla-
que. Some scholars have found that the stability of
atherosclerotic plaques is mainly affected by inflammation,
matrix remodeling, and calcification, which are reflected in
differentially expressed genes (DEGs) between stable plaque
and unstable plaque [10]. By screening DEGs from stable
and ruptured plaques, FABP4 and leptin have been shown
to be involved in the process of atherosclerotic plaque rup-
ture [11]. CCL4, CCL18, MMP9, and SPP1 are highly
expressed in ruptured plaques and have been validated with
experimental evidence [12].

However, some false positives may occur in these studies
due to the limitation of the number of samples. While the
hub genes are statistically significant, they are not function-
ally annotated in many cases, or they have important roles in
the protein–protein interaction (PPI) network that is not
statistically significant [13]. Also, because of the small rate
of change or low abundance of some hub genes, information
on those genes may have been missed.

Weighted gene coexpression network analysis
(WGCNA) is a method that is mainly based on the network.
Using this method, a scale-free network is constructed by
analyzing all the expression profiles included in a study.
WGCNA can identify gene coexpression network modules,
determine the correlation between modules and phenotypes,
and then discover important genes that regulate key biolog-
ical processes [14]. This method has helped researchers
achieve many remarkable results in numerous areas, includ-
ing cancers [15], the nervous system [16], and the immune
system [17].

In our study, we identified key modules and significant
genes using WGCNA for GSE28829 and conducted a bioin-
formatic analysis for key module and hub genes to reveal
potential functions. In order to avoid both false positive
and false negative results, the DEGs of GSE28829 and
GSE120521 were screened out to confirm some key genes.
Finally, those key genes were validated in GSE28829 and
GSE43292. We believe that this research can deepen our
understanding of the mechanisms of AA and guide us in
finding better treatment strategies.

2. Materials and Methods

2.1. Study Design. The raw data for GSE28829 and
GSE43292 and the normalized data for GSE120521 were
downloaded from the Gene Expression Omnibus (GEO)
database. The overall research design flow chart is shown
in Figure 1. First, gene expression profiles of plaques in
GSE28829 and GSE120521 were used to identify DEGs in
EA and AA. For WGCNA, the variances of every gene in
all samples were calculated and sorted in descending order,
and the top 25% of genes were selected as candidates. Then,
we selected a significant coexpression module for further
analysis. To reveal the potential functions of the genes in this
module, we used the clusterProfiler package for functional

enrichment analysis. Moreover, significant genes were
screened from this module based on gene significance and
module membership (MM) value. Next, we constructed the
PPI network and performed molecular complex detection
(MCODE) analysis using the Cytoscape software to obtain
the important subnetworks of these genes. The hub genes
from the most important subnetwork were further analyzed
with the Metascape tool. In order to find the key genes, we
simultaneously mapped the hub genes to DEGs of
GSE28829 and GSE120521, and the overlapping genes were
identified as key genes. All of the key genes were validated in
dataset GSE43292 and evaluated in datasets GSE28829 and
GSE43292. Finally, to obtain further insights into the func-
tions of these key genes, we performed a gene set enrichment
analysis (GSEA) for each key gene.

2.2. Data Preprocessing. The three datasets were downloaded
from the GEO database. The data consisted of gene expres-
sion profiles with early and advanced samples of carotid ath-
eroma plaque. Details are shown in Table 1.

All analyses using R packages were based on the R soft-
ware (version 4.0.2). The raw data of GSE28829 [18] and
GSE43292 [19] were read using the affy package [20]. In
order to make the data better for analysis, the robust multi-
array average (RMA) method was used to normalize the
data, and batch effects were removed [21]. When the probe
expression data were duplicated, their average value was
used as the gene expression value. For GSE120521 [10], the
processed gene expression data provided by GEO were used.

2.3. Identification of DEGs. The limma R package was used
to screen DEGs [22]. To calculate the P values of the genes,
an adjusted t-test was used. The false discovery rate (FDR)
was calculated using the Benjamini and Hochberg method.
Genes with an FDR lower than 0.05 and an absolute value
of fold change (FC) higher than 2 were set as significant
DEGs.

2.4. Construction of Coexpression Network. In order to avoid
the background noise owning to the low expression levels of
genes, variances of every gene in samples of both groups in
GSE28829 were calculated. The results were sorted in
descending order, and the genes with the top 25% variance
were selected as candidate genes. The coexpression network
of the candidate genes was constructed with the WGCNA
package [23], with the minimum number of genes in a mod-
ule set at 50. The maximum number of genes in a module
was set as the number of all input genes. The cut height
was set at 0.2 to merge possible similar modules.

2.5. Identification of Key Modules Related to AA. The module
eigengene (ME) represents the gene expression levels in the
module. The relationship between the module and AA can
be determined by calculating the correlation between the
ME and the clinical phenotype of AS, and the module with
the highest absolute value of ME is the key module. Gene
significance (GS) represents the correlation between a gene
and a phenotype. In the module trait correlation analysis,
genes with an MM higher than 0.9 and a GS higher than
0.4 in the key module were identified as significant genes.
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2.6. Functional Enrichment Analysis of the Key Module. In
order to further understand the functions of the genes in
the key module, the clusterProfiler package [24] was used
to identify and visualize the gene ontology (GO) terms
enriched by the genes in the key module. Significant enrich-
ment was screened as a P value lower than 0.05.

2.7. PPI Network Construction of Significant Genes and Hub
Gene Selection. The STRING database 11.5 was used to con-
struct the PPI network of significant genes [25], and the com-
bined score was chosen as greater than 0.4. The PPI network
was visualized using the Cytoscape software (version 3.8.2)
[26]. We screened the subnetworks of the PPI network using
the MCODE plug-in [27]. The criteria used for cutoff were
degree cutoff = 2, node score cutoff = 0:2, max depth = 100,
and K − core = 2. The genes in the most significant subnetwork
were defined as hub genes.

2.8. Multidatabase Analysis of Hub Genes. Metascape is a
comprehensive portal containing 40 databases that integrate
functions such as functional enrichment analysis, gene
annotation, and interactive group analysis. Following the
screening of the important subnetwork, the Metascape tool
was used for further gene annotation analysis. Also, another
three datasets, DisGeNET, PaGenBase, and TRRUST, were
applied to identify the gene related disease, specific tissue,
and transcription factor, respectively. The criteria for cutoff
were set as P value < 0.01, enrichment factor > 1:5, and
minimum count = 3.

2.9. Key Gene Selection and Validation. In order to avoid
false positive rates in the results, hub genes were simulta-
neously mapped to DEGs of GSE28829 and GSE120521,
and the overlapping genes were identified as key genes. All
of the key genes were further validated in GSE28829 and

GSE28829
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Key co-expression 
module

GO&KEGG
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Figure 1: Research design flow chart.

Table 1: The summary of the datasets.

GEO ID Platform Tissue type
Sample
size

Experiment type

GSE28829 GPL570
Advanced carotid atherosclerotic plaques and early carotid

atherosclerotic plaques
16 vs. 13 Array

GSE120521 GPL16791
Unstable carotid atherosclerotic plaques and stable carotid atherosclerotic

plaques
4 vs. 4

High-throughput
sequencing

GSE43292 GPL6244
Advanced carotid atherosclerotic plaques and early carotid

atherosclerotic plaques
32 vs. 32 Array
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GSE43292 databases. The pROC package [28] was used to
plot the ROC curve and calculate the area under curve
(AUC). The ROC curve was used to evaluate whether the
key genes can distinguish AA and EA plaques well.

2.10. GSEA for Key Genes. GSEA was performed based on
the gene list obtained from each key gene using the GSEA
function from the R package clusterProfiler [29]. The refer-
ence gene set was h.all.v7.4.entrez.gmt in the Molecular Sig-
natures Database. The criterion for significance was set as an
adjusted P value < 0.05.

3. Results

3.1. Data Preprocessing and Identification of DEGs. The gene
expression distribution of samples in GSE28829 before data
processing is shown in Figure 2(a). We could see that their
median distribution was not on a straight line. After normal-
ization, the median value of gene expression was basically at
the same level (Figure 2(b)). After that, a total of 329 DEGs
were distinguished from GSE28829. Among these, 270
upregulated genes and 59 downregulated genes were
screened out. The expression of genes in GSE120521 was
already normalized. Next, 539 upregulated genes and 557
downregulated genes were screened out from GSE120521.
The DEGs of the two datasets are shown in Table S1 and
Table S2.

3.2. Coexpression Network Selection and Identification of the
Significant Module. A total of 5,044 genes out of 20,174
annotated genes were selected as candidates with the top
25% variance. In order to gain further insight into the bio-
logical functions of these genes in the progression of AA,
we conducted the WGCNA analysis. The network was built
using the WGCNA R package. After calculation, the best
soft-thresholding power was set at 7, and the correlation
coefficient threshold was set at 0.85 (Figure 3(a)). Several
modules comprised most genes, which can be seen with
the blue, brown, green, and yellow-green areas in
Figure 3(b). The relationship between a module and a phe-
notype was analyzed, and multiple modules were related to
AA (Figure 3(c)). The GS of all genes in each module is
shown in Figure 3(d). We could intuitively see that the blue
one is the module that has the most significant relationship
with AA. Figure 3(e) provides the relationship between the
MM and GS of each gene in the blue module. A total of 77
genes with a high GS for AA were selected as the hub genes.

3.3. Functional Enrichment Analysis of the Key Coexpression
Module. The GO terms of the biological process (BP) analy-
sis showed that the BPs of the blue module were mainly
enriched in neutrophil activation, neutrophil activation
involved in immune response, neutrophil-mediated immu-
nity, neutrophil degranulation, and leukocyte migration,
which are indicative of immune cell stimulation and migra-
tion in patients with AA (Figure 4(a)). The GO terms of the
cellular component (CC) were mainly enriched in the secre-
tory granule membrane, endocytic vesicle, secretory granule
lumen, and vesicle lumen. The GO terms of molecular func-
tion (MF) were enriched in amide binding, peptide binding,

immune receptor activity, cytokine binding, and amyloid
beta binding. The Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway is mainly involved in tuberculosis,
phagosome, lysosome, neutrophil extracellular trap formation,
osteoclast differentiation, rheumatoid arthritis, leishmaniasis,
hematopoietic cell lineage, cell adhesion molecules, and sys-
temic lupus erythematosus. In addition, these AA correlated
pathways were related to immunity–inflammation responses
(Figure 4(b)).

The relationship between those genes and BP terms indi-
cated that many genes enriched in neutrophil activation are
also related to other BP terms, such as immune response,
leukocyte proliferation, leukocyte migration, and regulation
of cell–cell adhesion, which indicates that those genes could
be related to multiple biological pathways involved in the
progression of AA (Figure 4(c)). Also, Figure 4(d) shows
that many genes related to phagosome, tuberculosis, and
Staphylococcus aureus infection are also enriched for other
pathways, including leishmaniasis, rheumatoid arthritis,
and osteoclast differentiation.

Overall, these findings demonstrate that genes in the
blue module are involved in immune and inflammation-
related functions.

3.4. PPI Construction and Multidatabase Analysis of
Modules. The PPI network of the significant genes in the
blue module (interaction score > 0:4) was constructed, and
61 nodes and 398 interaction pairs were identified from
the network (Figure 5(a)). Two highly connected modules
were harvested by the MCODE analysis, and only one mod-
ule had a score greater than 10 (16.941) (Figure 5(b)). The
module contained 18 nodes and 144 edges. The genes in
the module 1 were identified as hub genes.

In order to fully understand the role hub genes play in
the development of AA, we conducted a multidatabase anal-
ysis of these genes. Enrichment analysis of module 1 in the
Metascape database indicated that the hub genes are mainly
related to positive regulation of immune response, Staphy-
lococcus aureus infection, myeloid leukocyte activation,
osteoclast differentiation, positive regulation of cytokine pro-
duction, IgG binding, negative regulation of the immune sys-
tem process, natural killer cell mediated cytotoxicity, Rap1
signaling pathway, lytic vacuole, positive regulation of leuko-
cyte proliferation, cytokine-mediated signaling pathway, and
myeloid leukocyte differentiation (Figure 6(a)). Disease
enrichment analysis in the DisGeNET database revealed that
these genes were mainly related to lupus nephritis, nephritis,
lupus vulgaris, and lupus erythematosus (Figure 6(b)). Tissue
characteristic enrichment analysis in the PaGenBase data-
base suggested that hub genes were enriched in the blood,
spleen, and lung (Figure 6(c)). Transcription factors analysis
in the TRRUST database showed that the hub genes were
mainly regulated by SPI1 (Figure 6(d)).

3.5. Key Gene Selection and Validation. In order to find the
key genes, the hub genes were mapped to the DEGs from
GSE28829 and GSE120521 (Figure 7), and 10 genes were
screened out: HCK, ITGAM, CTSS, TYROBP, LAPTM5,
FCER1G, ITGB2, NCF2, AIF1, and CD86.
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Figure 2: Box plots for the gene expression data. Red bars represent advanced atherosclerotic plaque samples, and blue bars represent early
atherosclerotic plaque samples. The black lines in each box represent the median gene expression level. (a) The black lines of raw data are
not at the same level. (b) After data processing, the black lines are almost at the same level.

5Disease Markers



1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

12

12

14

14

16

16

18

18

20

20

0.8

0.6

0.4

0.2

0.0

−0.2

Sc
al

e f
re

e t
op

ol
og

y 
m

od
el

 
fit

 (s
ig

ne
d 

R2 )

5 10 15 20

Soft threshold (power)

5 10 15 20

Soft threshold (power)

1200

1000

800

600

400
200

0
M

ea
n 

co
nn

ec
tiv

ity

Scale independence Mean connectivity

(a)

1.0

0.9

0.8

0.7

0.6

0.5

Dynamic tree cut

Merged dynamic

Cluster dendrogram

(b)

1

0.5

−0.5

−1

0

−0.038
(0.8)

−0.68
(5e-05)

0.68
(5e-05)

0.038
(0.8)

−0.48
(0.008)

0.48
(0.008)

−0.11
(0.6)

0.11
(0.6)

−0.29
(0.1)

0.29
(0.1)

−0.66
(1e-04)

0.66
(1e-04)

0.23
(0.2)

−0.23
(0.2)

0.53
(0.003)

−0.53
(0.003)

−0.11
(0.6)

0.11
(0.6)

0.21
(0.3)

−0.21
(0.3)

0.22
(0.2)

−0.22
(0.2)

0.4
(0.03)

−0.4
(0.03)

0.81
(1e-07)

−0.81
(1e-07)

0.61
(5e-04)

−0.61
(5e-04)

0.007
(1)

−0.007
(1)

0.41
(0.03)

−0.41
(0.03)

0.16
(0.4)

−0.16
(0.4)

AA EA

Module-trait relationships

MEpurple

MEbrown

MEyellow

MEcyan

MEmidnightblue

MEturquoise

MEblack

MEmagenta

MEgreenyellow

MEsalmon

MEtan

MEred

MEpink

MElightcyan

MEblue

MEgreen

MEgrey

(c)

0.8

0.6

0.4

0.2

0.0

G
en

e s
ig

ni
fic

an
ce

(d)

G
en

e s
ig

ni
fic

an
ce

 fo
r A

A

0.8

0.6

0.4

0.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

Module membership vs. gene significance
cor = 0.79, p = 6.9e–178

Module membership in blue module

(e)

Figure 3: Gene coexpression networks in samples of GSE28829 and module trait correlation analysis of key coexpression network. (a)
Analysis of the scale-free index for soft-thresholding powers and 0.85 were used as the correlation coefficient threshold, and the best
soft-thresholding power was 7. (b) Gene dendrogram and modules colors of 29 samples in GSE28829. (c) Heatmap of the correlation
between modules and AA and EA. (d) Module significance values of all the 17 coexpression modules associated with AA. (e) The gene
significance for AA in the blue module.
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Figure 4: Continued.
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The expression levels of all 10 of the key genes were
tested in GSE43292. The results (Figure 8) showed that all
of the key genes were highly expressed (all P < 0:001) in
AA plaques as compared to EA in GSE43292. Furthermore,
we plotted the ROC and calculated the AUCs for the key
genes and found that all of the AUCs of key genes were
greater than 0.8 in GSE28829 (Figure 9(a)) and GSE43292
(Figure 9(b)).

3.6. Gene Set Enrichment Analysis. The full list of gene sets
enriched in AA plaques with those 10 key genes was highly
expressed using GSEA (Figure 10). All of the gene sets were
mainly related to immunity and inflammation. In addition,
AIF1 (Figure 10(i)) was also related to oxidative phosphor-
ylation and allograft rejection. The gene sets related to
immunity and inflammation were selected to perform fur-
ther analysis. The gene sets “complement,” “inflammatory
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Figure 6: Multidatabase analysis of hub genes. (a) Biological functions of hub genes. (b) Disease enrichment related to hub genes involved in
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response,” “interferon γ response,” and “TNF-α signaling
via NF-κB” were enriched in samples with high expression
levels of HCK, ITGAM, CTSS, TYROBP, LAPTM5,
FCER1G, ITGB2, NCF2, and CD86 (Figure 11). The sam-
ples with high AIF1 expression were mainly enriched in
“complement,” “inflammatory response,” and “interferon
γ response” (Figure 11(i)).

4. Discussion

Our study applied WGCNA to build the gene network
related to AA and found some coexpression networks. Com-
bined with PPI and MCODE plug-in analyses, several key
genes associated with the pathogenesis of AA were identi-
fied. Our findings broaden the horizons of the mechanism
of AS development from early to advanced stages.

In the present study, through the WGCNA analysis, 17
coexpression modules were determined. The blue module,
containing 829 genes, was most significantly associated with
AA. We performed an enrichment analysis on the genes in
the blue module and found that the blue module was mainly
enriched in immune and inflammatory pathways. In recent
decades, a lot of research has been conducted to examine
the immune and inflammatory mechanisms in AS.
Researchers have found that inflammation is closely related
to AS and plaque instability [30]. Monocyte-differentiated
macrophages become foam cells after ingesting lipids, and
foam cells can cause cell adhesion, matrix degradation, and
inflammatory cell infiltration by secreting inflammatory fac-
tors, which can lead to plaque rupture [31]. The activation of
neutrophils can be affected by oxidatively modified low-
density lipoprotein (oxLDL), thereby enhancing the forma-
tion of a neutrophil extracellular trap (NET). After the
formation of NET, the enzymes released by neutrophils
can induce the oxidative modification and/or degradation
of LDL, produce modified proinflammatory LDL, and pro-
mote the further activation of neutrophils [32]. NET can also
aggravate endothelial dysfunction, causing plaque instability

and weakening of the fibrous cap, leading to AS and throm-
bosis [33]. Th1 cells mainly promote inflammation, while
Th2 cells show a dual role not only slightly promoting the
occurrence of AS but also inhibiting the development of
AS [34]. Regulatory T cells mainly inhibit the formation of
AS [35, 36]. Therefore, our research also confirmed that
immune cells are involved in the formation of AA plaques.

In order to find genes that are more closely related to AA
in the key module, we selected 77 significant genes from the
blue module for further analysis by setting the MM and GS
values. By constructing the PPI network, we harvested the
subnetwork with the highest score from significant genes,
which had a total of 18 hub genes. We conducted a Metas-
cape analysis, and the results showed that the genes are
related to many biological functions, including positive reg-
ulation of immune response, Staphylococcus aureus infec-
tion, myeloid leukocyte activation, and osteoclast
differentiation. These biological functions are also related
to immune cells, which further confirms the role of immune
response in AA. According to the results of the TRRUST
database analysis, SPI1 is the main regulatory transcription
factor for these genes. It has been reported that the expres-
sion of SPI1 increased during the differentiation process of
myeloid cells, while the expression in differentiated mast
cells, monocytes, B cells, and peripheral blood neutrophils
maintained high levels [37]. The DisGeNET database analy-
sis showed that these genes are closely related to systemic
lupus erythematosus (SLE) and other diseases. The common
point of SLE and AS is inflammation as the main feature,
and the difference is that the inflammation of SLE is autoim-
mune, which impairs several organ systems, including the
cerebrovascular and cardiovascular systems [38, 39]. The
enhanced proinflammatory state and systemic inflammation
play an important role during the formation of atherosclero-
tic thrombosis [38]. AS may also be accelerated by systemic
inflammation. Therefore, the prevalence of AS in SLE
patients is greater than that in the general population [40].
Tissue characteristic enrichment analysis indicated that
these genes were enriched in the blood, spleen, and lung. It
also revealed that the tissue distribution of genes has a strong
correlation with immunity. The multidatabase analysis fur-
ther confirmed that the hub gene related immune and
inflammatory response plays an important role in AA and
helped us to understand the pathogenesis of AA from more
aspects.

We also incorporated the DEGs of GSE28829 and
GSE120521 for combined analysis. Finally, we found 10
key genes: HCK, ITGAM, CTSS, TYROBP, LAPTM5,
FCER1G, ITGB2, NCF2, AIF1, and CD86. ITGAM and
ITGB2 encode the αM chain and β2 chain of integrin,
respectively. Under the stimulation of inflammation and
thrombus, the αM β2 integrin can mediate the adhesion of
neutrophils and monocytes to endothelial cells [41]. HCK
is a signal transduction protein that mainly transmits mem-
brane receptor signals. It plays an important role in the
innate immune response by regulating the phagocytosis of
neutrophils and the proliferation and migration of macro-
phages [42]. It is reported that after knocking out HCK,
the endothelial adhesion and migration in AS plaques will

Hub genes DEG_28829

DEG_120521

1

1

10

6

174

139

946

Figure 7: Key genes selection. A total of 10 common genes related
to hub genes and DEGs of GSE28829 and GSE120521.
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be weakened, leading to decreases in plaque formation [43].
Interestingly, the same study found that after HCK knock-
out, monocytes had a subpopulation imbalance and accu-
mulated under the endothelium, which increases the
instability of the plaque. Our research showed that the high
levels of HCK expression in AA are a risk factor for the fur-
ther development of AS. We estimate that the different
effects may be related to different stages of AS, such as the
difference between AA and EA. Whether it protects or
aggravates AS and what its mechanism needs to be further
explored. TYROBP, also known as DAP12, is a transmem-
brane receptor widely found in neutrophils and mono-
cytes/macrophages [44, 45]. Studies have found that
DAP12 seems to be related to lipid deposition and plaque
inflammation in the process of promoting AS [46]. CTSS
can degrade antigen proteins into peptides and can also
reshape the components of the extracellular matrix [47].
Previous studies have shown that CTSS is expressed by
endometrial macrophages and smooth muscle cells and that
it participates in the formation of AS, together with serine
proteases and MMP [48]. NCF2 is a neutrophil solute factor
that encodes a subunit of NADPH oxidase [49]. NADPH
oxidase is the main source of reactive oxygen species
(ROS), which mainly play the roles of antibacterial, anti-
inflammatory, and redox signal transduction [50].
Researchers pointed out that NADPH oxidase and the
ROS produced are significantly related to hypertension
[51]. Oxidative stress is a risk factor for AS. Some studies
have suggested that NADPH may be involved in the promo-

tion of atherosclerotic inflammation [52]. However, there is
no direct evidence that NCF2 is involved in the progression
of AS. AIF1 is mainly expressed in cells of the monocyte lin-
eage [53]. In vitro, AIF1 can enhance the phagocytosis and
lipid uptake of macrophages [54] and can also increase the
proliferation and migration of macrophages, inducing
inflammation [55]. LAPTM5 positively regulates proinflam-
matory signaling pathways by promoting NF-κB and MAPK
signaling and the production of proinflammatory cytokines
in macrophages [56]. At present, FCER1G and CD86 are
rarely studied in the cardiovascular system.

Our research showed that not only these key genes are
significantly increased in AA plaques of GSE28829 but also,
more importantly, their expression levels were verified in
another dataset (GSE43292). We also found that these genes
are mainly enriched in “complement,” “inflammatory
response,” “interferon γ response,” and “TNF-α signaling
via NF-κB.” In fact, the roles of the above pathways in AS
have been frequently studied. For example, TNF-α can guide
inflammatory cells to accumulate in atherosclerotic plaques,
affect plaque stability, and cause thrombosis and cell necro-
sis [57, 58]. And the plaque stability affection of TNF-α
underlines its role in promoting the formation of AA. IFNγ
affects immune cells, endothelial cells, and smooth muscle
cells in AS plaques [59, 60]. This also further confirms the
connection between these genes and immune cells, which
is consistent with existing research.

As a whole, some previous studies have resolved the rela-
tionship between key genes and AS/AA, while our research
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Figure 9: ROC curve of key genes. (a) ROC curve for GSE28829. (b) ROC curve for GSE43292.
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Figure 10: Gene set enrichment analysis for key genes. (a) HCK. (b) ITGAM. (c) CTSS. (d) TYROBP. (e) LAPTM5. (f) FCER1G. (g) ITGB2.
(h) NCF2. (i) AIF1. (j) CD86.
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further emphasized the relationships of genes and immune
responses with AA, but the mechanism behind their involve-
ment is still unclear.

Although we tried to find key genes through multiple
algorithms and increase the credibility of these genes by

using multiple datasets, our research still has certain limita-
tions. First, the key genes are based on studies of AS and
normal groups in most existing studies. Therefore, if the
comparison to the normal group can be added to our study,
we may be able to dynamically understand the roles of these
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genes in the whole process of AS, from initiation to develop-
ment. In fact, we have tried to include samples of atheroscle-
rosis at different stages in the study, but we did not find any
suitable datasets. Also, we have not further studied the exact
molecular mechanisms of key genes involved in AA. Fur-
thermore, as mentioned above, immune response has
become the main pathogenic factor of AA. The changes of
immune cells at different stages of the disease and the rela-
tionship between immune cells and genes will become our
research focus in the future.

5. Conclusion

In conclusion, we comprehensively discussed the cells and
related factors involved in the development of AA. This fur-
ther confirmed that, in AA, immune response has become
the main pathogenic mechanism. It was also discovered that
multiple key genes play an important role in the develop-
ment of EA to AA. This deepens our understanding of the
occurrence and development of AA and also provides a
strong basis for us to find a treatment for the disease.
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