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Background. Colorectal cancer (CRC) is the third most common malignancies worldwide. Ferroptosis is a programmed, iron-
dependent cell death observed in cancer cells. However, the prognostic potential and immunotherapy biomarker potential of
ferroptosis-related genes (FRGs) in CRC patients remains to be clarified. Methods. At first, we comprehensively analysed the
different expression and prognosis of related FRGs in CRC patients based on TCGA cohort. The relationship between
functional enrichment of these genes and immune microenvironment in CRC was investigated using the TCGA database.
Prognostic model was constructed to determine the association between FRGs and the prognosis of CRC. Relative verification
was done based on the GEO database. Meanwhile, the ceRNA network of FRGs in the model was also performed to explore
the regulatory mechanisms. Results. Eight differentially expressed FRGs were associated with the prognosis of CRC patients.
Patients from the TCGA database were classified into the A, B, and C FRG clusters with different features. And FRG scores
were constructed to quantify the FRG pattern of individual patients with colorectal cancer. The CRC patients with higher FRG
score showed worse survival outcomes, higher immune dysfunction, and lower response to immunotherapy. The prognostic
model showed a high accuracy for predicting the OS of CRC. Finally, a ceRNA network was analysed to show the concrete
regulation mechanisms of critical FRGs in CRC. Conclusions. The FRG risk score prognostic model based on 8 FRGs exhibit
superior predictive performance, providing a novel prognostic model with a high accuracy for CRC patients. Moreover, FRG
score can be the potential biomarker of the response of immunotherapy for CRC.

1. Introduction

Colorectal cancer (CRC) is the third most common malig-
nancy worldwide and has become one of the leading causes
of cancer-related death [1, 2]. In the past few years, the inci-
dence of CRC has kept increasing in Asian countries, includ-
ing China, Singapore, South Korea, and Japan, owing to
demographic trends and adaptation to western lifestyles [3].
Traditional therapies, such as surgical resection, chemother-
apy, radiotherapy, and combined therapy, are currently used

for the treatment of CRC. However, the therapeutic efficiency
of these therapies is severely limited due to the complexity of
CRC pathogenesis and treatment resistance [4]. Therefore,
there exists an urgent need to detect molecular changes and
explore molecular mechanisms which are involved in tumor-
igenesis and are related with the prognosis of CRC. What is
more, nowadays, immunotherapy has become a novel treat-
ment for many cancers. There grows a high enthusiasm in
immunotherapy research, with loads of treatments in clinical
and preclinical developing. It becomes a powerful therapy to
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improve the prognosis of some solid malignant tumors
[5]. Various experiments and clinical studies have demon-
strated that immunotherapy does have effective advantages
over traditional antitumor therapy, which can helpfully
improve cancer prognosis condition. The identification of
novel biomarkers may provide new immunotherapy
markers for CRC treatment, which may assist the cure
of CRC. For example, some researches have already found
that immune biomarkers include programmed cell death-1
(PD-1), infiltration of the CD8+ T-cell, PD ligand 1 (PD-
L1) expression, and tumor mutation burden (TMB) for
immunotherapy in CRC. However, there also exists some
problems. Take PD-L1biomarker as an example, the het-
erogeneity of PD-L1 detection is an important issue at
present. Different antibodies for detecting PD-L1 expres-
sion, different detection platforms, and different evalua-
tion systems may have different positive critical values,
making it difficult to form a consistent standard to mea-
sure pD-L1 expression in tumor cells. So, it is necessary
for human to learn more about biomarkers and CRC.
Meanwhile, the prognosis of colorectal cancer can be
improved a lot due to an earlier diagnosis through bio-
markers [6], which also certifies the significance and
necessity of our research.

Ferroptosis is a programmed, iron-dependent cell death
driven by the accumulation of lipid peroxides. It differs from
autophagy, apoptosis, and other regulated cell death [7, 8].
The morphology of mitochondria undergoes dramatic
changes during ferroptosis, including the loss of mitochon-
dria crista, mitochondrial shrinkage with increased mem-
brane density, and outer mitochondrial membrane rapture
[9]. In recent years, ferroptosis has emerged as a promising
treatment concern for cancer therapy, especially in cancers
resistant to conventional therapies [10, 11]. Meanwhile, sev-
eral studies have suggested the use of ferroptosis-related
gene (FRG) signatures as a prognostic feature for hepatocel-
lular carcinoma [12, 13]. Previous evidence also suggested
that ferroptosis plays an important role in CRC. For exam-
ple, RSL3 triggers ferroptosis by upregulating LIP and pro-
moting the accumulation of ROS in cells [14]. The level of
ACADSB in CRC tissues is lower than that of normal colon
tissues and is correlated with lower TNM stage in CRC
patients [15]. However, the characterization of FRGs in
CRC tumorigenesis and their prognostic potential for CRC
warrant further investigation.

By using bioinformatics techniques, researchers can use
public database data to identify genes signature associated
with prognosis in colorectal cancer, and noncoding RNAs
such as lncRNAs are also closely related to tumor charac-
teristics [16]. In this study, we identified eight meaningful
ferroptosis-related gene signatures from public databases
and constructed a prognostic model for CRC with high
accuracy. Moreover, to discuss about the CRC immuno-
therapy, we estimated the TIDE value and immunotherapy
sensitivity of FRGs, which may provide potential biomark-
ers for clinical treatment and prognosis. To further study
the mechanism of CRC, we created the circRNA-miRNA-
lncRNA-mRNA network regulated FRGs in the prognostic
model.

2. Materials and Methods

2.1. Data Acquisition. The RNA sequencing and correspond-
ing clinical data were downloaded from the TCGA database
(https://portal.gdc.cancer; including 568 CRC samples and
44 normal tissue samples) and the GEO database (http://
www.ncbi.nlm.nih.gov/geo/; GSE17536, including 177 CRC
samples). And microarray datasets which provide circRNA
expression data in CRC patients were acquired from the
GEO database (GSE17536, including 10 CRC samples and
10 corresponding normal tissue samples). A total of 60 FRGs
have been retrieved from previous studies [7, 10, 17, 18].
Since both the TCGA database and the GEO database are
publicly available and this study strictly followed access pol-
icies for databases and publication guidelines, ethical
approval from a local ethics committee was not required.

2.2. Screening and Identifying DEGs Associated with CRC
Prognosis. The mRNA sequencing data from the TCGA
database was matched with FRGs. The differentially
expressed genes (DEGs) between CRC tissues and adja-
cent nontumorous tissues were identified by the “limma”
R package with a false discovery rate of <0.05. Univariate
Cox analysis of overall survival (OS) was performed using
the “survival” R package to screen FRGs with prognostic
potential.

2.3. Consensus Clustering Analysis and Construction of FRG
Score. In order to investigate the function of FRGs in CRC,
the prognostic DEGs were incorporated to divide tumor
samples into different clusters with “ConsensusClusterPlus”
R package. Kaplan–Meier analysis was used to evaluate the
differences of OS between different groups. Thereafter,
PCA (principal component analysis) was used to validate
the reliability of clustering with the R package “ggplot2.”
To investigate the difference on biological process between
different groups, we performed GSVA enrichment analysis
through “GSVA” R packages.

Then, we constructed a set of scoring system to evaluate
the FRGs pattern of individual CRC patient based on princi-
pal component analysis. This score is termed as FRG score.
Both principal component 1 and 2 were selected to act as
scores. The infiltration of immune cells was assessed
between patients with different FRG scores with CIBER-
SORT computational method.

2.4. Immunotherapy Response Predictions. TIDE (http://tide
.dfci.harvard.edu/) is a computational method that inte-
grates the expression signatures of T cell dysfunction and
exclusion to model tumor immune evasion. We used the
TIDE algorithm to predict the clinical response to immune
checkpoint blockade (ICB) in CRC patients based on pre-
treatment genomics.

2.5. Correlation between FRG Score and Tumor Mutational
Burden (TMB). We analysed the distribution differences of
somatic mutation using maftools package in the TCGA
cohort. A correlation analysis was also performed to further
reveal the concrete association between FRG score and
tumor mutation.
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Figure 1: Continued.
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2.6. Development of Prognostic Signatures Based on FRGs.
The FRGs were incorporated into the LASSO Cox regression
using the “glmnet” R package. In order to prevent overfitting
effects of the model, the penalty regularization parameter λ
was determined via the ten-fold cross validation. The risk

score of the FRG model for each patient was calculated as
follows: RiskScore =∑n

i=1ðExpi ∗ βiÞ. Where n is the number
of selected FRGs, Expi is the expression value of gene i, and
βi is the coefficient of gene i generated from LASSO regres-
sion analysis. To determine whether the risk score was an
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Figure 1: Identification of the candidate ferroptosis-related genes in the TCGA database. (a) Venn diagram to identify differentially
expressed genes between tumor and adjacent normal tissue that were correlated with OS. (b) The 8 overlapping genes express quantity
in tumor tissue. (c) Forest plots showing the results of the univariate Cox regression analysis between gene expression and OS. (d) The
PPI network downloaded from the STRING database indicated the interactions among the candidate genes. (e) The correlation network
of candidate genes. The correlation coefficients are represented by different colors.
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independent prognostic predictor for OS, compared to other
clinical features, univariate and multivariate Cox regression
analyses were performed.

2.7. Construction and Evaluation of the Nomogram. The
“rms” R package was used to construct a predictive nomo-
gram and corresponding calibration maps based on
independent predictive factors. Time-dependent receiver
operating characteristic (ROC) curve analysis was per-
formed to evaluate the predictive power of the nomogram
using the “timeROC” R package. Patients from GSE39582
were analysed using the same formula as that for the
TCGA database. ROC curves were generated to determine
the sensitivity and specificity of the predictive nomogram.

2.8. Construction of circRNA–miRNA–lncRNA–mRNA
Network. Differential lncRNAs and miRNAs were screened
between tumorous and nontumorous samples of CRC
patients from TCGA cohorts, and miRNAs targeting FRGs
in prognostic models and lncRNAs were identified by
GDCRNATools. Tumor and nontumor samples of
GSE126094 were used to screen for circRNA with abnor-
mal expression in tumors. The circRNA bound to miRNA
was predicted using Starbase database (http://starbase.sysu
.edu.cn/). Finally, the intersection of circRNA–miRNA,
miRNA-lncRNA, and miRNA–mRNA pair was taken to

construct the circRNA–miRNA–lncRNA–mRNA regula-
tory network.

2.9. Statistical Analysis. All statistical analyses were per-
formed using the R software (Version 4.0.3). The Student’s
two-sided t-test was performed to compare gene expression
between CRC tissues and adjacent nontumorous tissues. The
OS of different groups was compared by Kaplan-Meier anal-
ysis followed by log-rank test. All P values were two-tailed. P
value < 0.05 was considered statistically significant if not
specified above.

3. Results

3.1. Identification of Ferroptosis-Related Prognostic DEGs in
the TCGA Database. There were 51 out of 60 FRGs dif-
ferentially expressed between CRC tissues and adjacent
nontumorous tissues, and 9 of them were associated
with the OS of CRC patients (Figure 1(a)). Thus, 8 of
the DEGs (AKR1C1, ALOX12, ATP5MC3, CARS1,
HMGCR, CRYAB, FDFT1, and PHKG2) related with prog-
nosis of CRC patients were chosen (Figures 1(b) and 1(c)).
The interaction network of these genes (Figure 1(d)) indi-
cated that CARS1, ATP5MC3, and FDFT1 are the pivot
genes. The correlations among these genes are shown in
Figure 1(e).

KEGG_ascorbate_and_aldarate_metabolism
KEGG_limonene_and_pinene_degradation
KEGG_valine_leucine_and_isoleucine_degradation
KEGG_propanoate_metabolism
KEGG_butanoate_metabolism
KEGG_fatty_acid_metabolism
KEGG_huntingtons_disease
KEGG_Alzheimers_disease
KEGG_Parkinsons_disease
KEGG_pyruvate_metabolism
KEGG_citrate_cycle_TCA_cycle
KEGG_glycolysis_gluconeogenesis
KEGG_arginine_and_proline_metabolism
KEGG_P53_signaling_pathway
KEGG_glyoxylate_and_dicarboxylate_metabolism
KEGG_one_carbon_pool_by_folate
KEGG_fructose_and_mannose_metabolism
KEGG_biosynthesis_of_unsaturated_fatty_acids
KEGG_terpenoid_backbone_biosynthesis
KEGG_steroid_biosynthesis

FRG cluster

FRG cluster
B
C

−2

−1

0

1

2

(d)

Figure 2: Clusters of FRG expression in CRC patients and biological characteristics. (a) Three distinct FRG clusters were identified using
unsupervised clustering. (b) Survival analyses for the three FRG clusters based on patients with colorectum cancer. (c) Principal
component analysis for the transcriptome profiles of three FRG clusters. (d) GSVA enrichment analysis showing the activation states of
biological pathways in cluster B vs. cluster C. The heat map was used to visualize these biological processes, red represented activated
pathways, and blue represented inhibited pathways.
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3.2. FRG Clusters Mediated by Prognostic Differentially
Expressed Genes. The R package of ConsensusClusterPlus
was used to classify patients with qualitatively different fer-
roptosis patterns based on the expression of 8 prognostic
differentially expressed FRGs, and three distinct FRG pat-

terns were eventually identified using unsupervised cluster-
ing. We termed these patterns as FRG cluster A-C,
respectively (Figure 2(a)). Prognostic analysis for the three
FRG clusters revealed the particularly prominent survival
advantage in cluster C, as the contrast, cluster B had the
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Figure 3: Construction FRG score. (a) Differences in FRG score among three FRG Clusters. (b) Kaplan-Meier curves indicated FRG score
was markedly related to overall survival of patients in the TCGA cohort. (c) Different immune cell subset infiltration of low and high FRG
score patient groups.
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worst prognosis (P < 0:001) (Figure 2(b)). Principal compo-
nent analysis for the transcriptome profiles of the three FRG
patterns is showing a remarkable difference on tran-
scriptome between cluster B and C (Figure 2(c)). To explore

the biological process among cluster B and C, we performed
gene set variation analysis (GSVA). As shown in Figure 2(d),
cluster C was markedly enriched in metabolism, especially in
lipid metabolism. Since ferroptosis was associated with lipid
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Figure 4: Predictions of the immunotherapy response in CRC patients. (a) The violin plots present of immune dysfunction in high and low
FRG score groups. (b) The likelihood of the clinical response to antiPD1 and anti-CTLA4 therapy for high and low FRG score patients from
the TCGA cohorts. True represents immunotherapy responders, while false represents immunotherapy nonresponders.
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peroxides, differences in lipid metabolism among patients
with different prognostic suggest differences ferroptosis
status.

3.3. Correlation between FRG Score and Prognosis in CRC
Patients. Considering the individual heterogeneity of the
expression of FRGs, we constructed a set of scoring system
to quantify the FRG pattern of individual patients with
colorectal cancer based on the 8 prognostic differentially
expressed FRGs. We termed it as FRG score. Patients of
three clusters were divided in two groups according to the
FRG scores. Meanwhile, their prognosis and biological pro-
cess of CRC were further evaluated based on the score.
The results showed that these CRC patients with higher
FRG scores showed a worse survival outcome than those
patients with lower FRG scores (P = 0:005) (Figures 3(a)
and 3(b)).

Moreover, to investigate the association between FRG
score and immune status, the CIBERSORT computational
method was used to quantify different immune cell subsets
and cell functions. The results revealed that the grade of
CD8+ T cells in higher FRG score group was lower than
the lower FRG score group (Figure 3(c)), which indicates
the FRG score is related to the immune microenvironment
of CRC.

3.4. FRG Score Is a Biomarker for Immune Checkpoint
Therapy in CRC Patients. Afterward, the tumor immune
dysfunction and exclusion (TIDE) algorithm was used to
predict the immune checkpoint therapy response based on
FRG score in CRC patients. Interestingly, according to the
results shown in Figures 4(a) and 4(b), CRC patients with
lower FRG score had less immune dysfunction and were
more likely to respond to immunotherapy. Suggest that
FRG score can be used as reference index for clinical treat-

ment of colorectal cancer patients, as whether use immuno-
therapy for these patients.

3.5. FRG Score Is Correlated with TMB in CRC Patients. As
the TMB is a critical biomarker for immune checkpoint
therapy of CRC patient, thus, we analysed the distribution
differences of somatic mutation between low and high
FRG score in TCGA cohort of CRC using maftools pack-
age. As shown in Figure 5(a), low FRG score group pre-
sented more extensive tumor mutation burden than the
high FRG score group. The FRG score and TMB also
exhibited a significant negative correlation in TCGA
cohort (P = 0:042) (Figure 5(b)). CRC patients with high
TMB level had worse prognosis in the TCGA cohort
(Figure 5(c)). Moreover, we also combined the FRG score
and TMB level for predicting the prognosis of CRC. Inter-
estingly, we found that CRC patients with high FRG score
and high TMB level had the worst prognosis (Figure 5(d)).

3.6. FRG Risk Score Is an Independent Biomarker for
Prognosis of CRC Patients. The expression profile of the
eight FRGs was used to establish the prognosis model using
LASSO Cox regression analysis (Figure 6(a)). The risk score
was calculated as follows: Risk Score = SUM ð0:21 ∗AKR1C
1 + 0:573 ∗ALOX12 – 0:062 ∗ATP5MC3 + 0:543 ∗ CARS1
– 0:11 ∗HMGCR + 0:182 ∗ CRYAB – 0:3 ∗ FDFT1 + 0:348
∗ PHKG2Þ. The Kaplan-Meier curve revealed that the prog-
nosis of low-risk patients was significantly better than that of
the high-risk group (Figure 6(b)), suggesting the great sensi-
tivity and specificity of the prognostic signature in predicting
CRC survival outcome. The predictive performance of the
risk score for OS was evaluated by time-dependent ROC
curves, and the area under the curve (AUC) reached 0.638
at 1 year, 0.679 at 2 years, and 0.685 at 3 years, showing a
high accuracy (Figure 6(c)). In order to study the
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Figure 5: Correlation of FRG score with TMB. (a) Tumor somatic mutation established by those with high and low FRG score. (b)
Correlations between FRG score and TMB. (c) Survival analyses for low and high TMB patient groups in the TCGA cohort using
Kaplan-Meier curves. (d) Survival analyses for subgroup patients stratified by both FRG score and TMB using Kaplan-Meier curves.
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relationship of patients in different ferroptosis assessment
systems, we constructed an alluvial diagram showed the
changes and associations of FRG clusters, FRG score, risk
score, and survival state (Figure 6(d)). Univariate and multi-
variate Cox regression analyses were then performed to
determine whether FRG risk score can be a predictor for
OS, independent of other clinical features (including gender,
age, and TNM stage). And we found that TNM stage
(HR = 2:089), age (HR = 1:038), and risk score (HR = 1:858
) were independent predictors for OS (Figures 6(e) and 6(f)).

3.7. Construction and Validation of the FRG Risk Score
Nomogram. Based on the above prognostic factors, a nomo-
gram which also including FRG risk score was developed to
quantify the prediction of individual survival probability for
1, 2, and 3 years (Figure 7(a)). The C-index of the nomo-
gram was 0.75 (95% CI: 0.70–0.81). The calibration curves
indicated great consistency between predicted OS and actual
observation at 1, 2, and 3 years (Figure 7(b)).

Then, ROC curves were generated to verify the predic-
tive value of the nomogram. The AUCs for 1-year, 2-year,
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Figure 6: Prognostic analysis of the 8-gene signature model in the TCGA cohort. (a) The distribution and median value of the risk scores in
the TCGA cohort. (b) Kaplan-Meier curves for the OS of patients in the high-risk group and low-risk group in the TCGA cohort. (c) AUC of
time-dependent ROC curves verified the prognostic performance of the risk score in the TCGA cohort. (d) Alluvial diagram showing the
changes of FRG clusters, FRG score, risk score, and survival state. (e) and (f) Results of the univariate (e) and multivariate (f) Cox
regression analyses regarding OS in the TCGA derivation cohort.
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and 3-year OS were 0.752, 0.771, and 0.791, respectively, in
the TCGA database (Figure 7(c)). To examine the robust-
ness of the model, we incorporated patients from the GEO
database into the predictive model as a verification. The
results showed that the AUCs for 1-year, 2-year, and 3-
year OS with the nomogram were 0.850, 0.849, and 0.749,
respectively (Figure 7(d)).

3.8. The ceRNA Network of the Key Genes of FRG Risk Score
Model. As noncoding RNAs play important roles in the reg-
ulation of expression of genes. ceRNA network was per-
formed to learn about the concrete mechanism. We used
GDCRNATools to find 15 miRNAs, which consider 4 FRGs
as target in prognosis model, and 5 lncRNAs binds to the
miRNAs. Then, we found 5 different expressed circRNAs
which had spongy effect to the miRNAs in Starbase. In addi-
tion, we constructed the circRNA–miRNA–lncRNA–mRNA
regulatory network, which showed a regulatory network of
the FRG risk score model based on ceRNA network in
CRC (Figure 8).

4. Discussion

Colorectal cancer is the third most common cancer all
around the world, with 1.36 million people diagnosed in
2012 [6]. In this study, we analysed the expression of 60
FRGs in CRC tissues and investigated their association with
the OS prognosis of CRC patients by estimating the data
from public databases. Eight differentially expressed FRGs
were finally selected, which are associated with the prognosis
in CRC. Patients with different expression level of these
genes showed diverse functional enrichment and immune
status. In addition, we proposed a prognostic nomogram
based on these genes, which exhibited a great sensitivity

and specificity in predicting the overall survival of 1, 2, and
3 years with a high accuracy.

In our study, different FRG clusters showed significantly
distinct overall survival, suggesting that ferroptosis status
was significantly correlated with prognosis. Cluster C had
the lowest FRG score and was markedly enriched in metab-
olism, especially in lipid metabolism. Lipid oxidation plays a
central role in the process of ferroptosis, while normal lipid
metabolism might be expected to perturb ferroptotic cell
death [19]. Interestingly, not only did we observed better
outcomes in the low FRG score group patients, but we also
observed more CD8+ T cell infiltration in them. Effector
CD8+ T cells released cytokines IFNγ, and both of them
were key features of effective immunotherapy in cancer
patients [20]. And the low FRG score group patients were
more likely to respond to immunotherapy in our study, sug-
gesting that ferroptosis may be a potential biomarker for
cancer immunotherapy.

The potential modulation between ferroptosis and
tumor immunity remains unclear. TMB associated with
FRG score may be a potential mechanism. There were more
somatic mutations in the low FRG score group, and FRG
score was negatively correlated with TMB in TCGA. Somatic
mutations in tumor DNA produce neoantigens, with
mutation-derived antigens recognized and targeted by the
immune system, especially after treatment with drugs that
activate T cells. The more somatic mutations, the more
neoantigens to form [21]. The mechanism between TMB
and ferroptosis has not been reported. However, previous
studies have been reported that radiotherapy not only
increases somatic mutations but also induces tumor ferrop-
tosis. The connection needs to be further studied [22].

Our prognostic model consisted of eight FRGs
(AKR1C1, ALOX12, ATP5MC3, CARS1, HMGCR, CRYAB,
FDFT1, and PHKG2), which can be roughly classified into
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Figure 7: Construction and validation of a predictive nomogram. (a) The nomogram for predicting the OS of patients with GC at 1, 2, and 3
years. (b) Calibration curves of the nomogram for OS prediction at 1, 2, and 3 years. (c) ROC curves to evaluate the predictive ability of the
nomogram in the TCGA cohort. (d) ROC curves to examine the robustness of the model based on GEO database.
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five categories: lipid metabolism (AKR1C1, ALOX12,
HMGCR, and FDFT1), energy metabolism (ATP5MC3),
antioxidant metabolism (CARS1), intracellular architecture
(CRYAB), and andiron metabolism (PHKG2). AKR1C1 is
a member of the Aldo-keto reductase superfamily, which is
implicated in the elimination of the final products of lipid
peroxidation and can enhance the detoxification effect of
active aldehydes generated by plasma membrane oxidation
during ferroptosis [23]. ALOX12, a member of the lipoxy-
genase family, is upregulated in CRC tissues and promotes
the production of tumor stromal vascular endothelial growth
factor, resulting in angiogenesis and tumor metastasis [24,
25]. The overexpression of ALOX12 makes cells sensitive
to ferroptosis [26]. ATP5MC3, also known as ATP5G3, is
a subunit of mitochondrial ATP synthase. Sorafenib has
been shown to alter mitochondrial morphology, decrease
oxidative phosphorylation, induce the collapse of mitochon-
drial membrane potential, reduce ATP synthesis, and ulti-
mately lead to ferroptosis [27]. CARS1 encodes class 1
aminoacyl-tRNA synthetase. The knockdown of CARS1
has been reported to inhibit ferroptosis induced by cystine

deprivation [28]. HMGCR is a rate-limiting enzyme in cho-
lesterol synthesis, and the inhibition of HMGCR enhances
FIN-56-induced ferroptosis [29]. CRYAB is a structural pro-
tein of the crystalline lens that participates in the intracellu-
lar architecture. High CRYAB level is associated with a poor
prognosis in CRC [30]. FDFT1 encodes the first specific
enzyme in cholesterol biosynthesis, and the knockdown or
inhibition of FDFT1 represses FIN-56-induced ferroptosis
[31]. PHKG2 encodes a subunit of phosphorylase kinase,
and the knockdown of PHKG2 inhibits ferroptosis induced
by erastin [32]. In our study, five of these genes (AKR1C1,
ALOX12, CARS1, CRYAB, and PHKG2) were associated
with a poor prognosis in CRC, while the remaining three
(ATP5MC3, HMGCR, and FDFT1) were associated with a
better prognosis. AKR1C1, ALOX12, CARS1, and PHKG2
have been reported to enhance ferroptosis. However,
whether these genes would affect the prognosis of CRC
patients by regulating ferroptosis remains to be elucidated.

Our prognostic model showed a high accuracy in CRC
outcomes prediction. Meanwhile, four of the FRGs,
ATP5MC3, HMGCR, CARS1, and PHKG2, are strongly
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Figure 8: Construction of the circRNA–miRNA–lncRNA–mRNA regulatory network.
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related to the competitive endogenous RNA (ceRNA) net-
work, which has become more and more popular in cancer
research nowadays. ceRNA can regulate the expression of
mRNA through the competitive binding of the noncoding
RNAs. miRNAs direct the RNA-induced silencing complex
(RISC) to miRNA-response elements (MREs) localized on
mRNA, which the function of protein production was
inhibited. In addition to mRNA, MREs can also be found
on nonprotein-coding transcripts, such as circRNA and
lncRNA. Each miRNA has many RNA targets, and numer-
ous RNA molecules carry several MREs. This target multi-
plicity led to the hypothesis that different RNAs compete
for limiting miRNAs, thus, acting as ceRNA network. The
circRNAs and lncRNAs in the network act as sponges har-
bor, providing one or more complementary binding sites
to miRNAs, which inhibit miRNA binding to mRNAs,
thereby improving protein expression and achieving regula-
tory effect. Especially, circRNAs formed through head-to-tail
splicing of exons within the same transcript. Such transcripts
were very stable and bound to become a class of powerful
ceRNA, playing an important role in normal physiology
and disease [33]. The ceRNA plays an important role in
the process of CRC including epithelial to mesenchymal
transition (EMT), inflammation formation, and so on. In
that case, this network proposes the possible reference and
direction for cancer therapy and diagnosis biomarkers.
However, to further study the ceRNA network in CRC pro-
cess, more researches should be done.

Our study combines FRG signature with clinical data to
construct a prognostic model of CRC. Moreover, we found
the relationship between ferroptosis and immunotherapy
sensitivity, as well as the potential ceRNA mechanism of
the key FRGs in this model. However, there are still some
limitations that should be addressed. First, the prognostic
model was developed and validated using public databases.
Prospective real-world data are needed to validate the clini-
cal efficacy of this model. In addition, the association
between ferroptosis-relate genes, immuno-activity, and
ceRNA network warrants further investigation.

5. Conclusions

In summary, we constructed a novel FRG risk score prog-
nostic model with high accuracy based on 8 FRGs in CRC
patients. Our study showed that FRGs can be the potential
biomarker for immunotherapy response of CRC. More inves-
tigations on the mechanisms of tumor immunity, FRGs, and
ceRNA network in CRC are needed to further study.
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