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Crosstalk between molecular regulators miR-126, hypoxia-inducible factor 1-alpha (HIF-1-α), and high-mobility group box-1
(HMGB1) contributes to the regulation of inflammation and angiogenesis in multiple physiological and pathophysiological
settings. Here, we present evidence of an overriding role for miR-126 in the regulation of HMGB1 and its downstream
proinflammatory effectors in endothelial cells subjected to hypoxia with concurrent acidosis (H/A). Methods. Primary mouse
endothelial cells (PMEC) were exposed to hypoxia or H/A to simulate short or chronic low-flow ischemia, respectively. RT-
qPCR quantified mRNA transcripts, and proteins were measured by western blot. ROS were quantified by fluorogenic ELISA
and luciferase reporter assays employed to confirm an active miR-126 target in the HMGB1 3′UTR. Results. Enhanced
expression of miR-126 in PMECs cultured under neutral hypoxia was suppressed under H/A, whereas the HMGB1 expression
increased sequentially under both conditions. Enhanced expression of HMGB1 and downstream inflammation markers was
blocked by the premiR-126 overexpression and optimized by antagomiR. Compared with neutral hypoxia, H/A suppressed the
HIF-1α expression independently of miR-126. The results show that HMGB1 and downstream effectors are optimally induced
by H/A relative to neutral hypoxia via crosstalk between hypoxia signaling, miR-126, and HIF-1α, whereas B-cell lymphoma
2(Bcl2), a HIF-1α, and miR-126 regulated gene expressed optimally under neutral hypoxia. Conclusion. Inflammatory
responses of ECs to H/A are dynamically regulated by the combined actions of hypoxia, miR-126, and HIF-1α on the master
regulator HMGB1. The findings may be relevant to vascular diseases including atherosclerotic occlusion and interiors of plaque
where coexisting hypoxia and acidosis promote inflammation as a defining etiology.
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1. Introduction

As integral vasoregulators, endothelial cells (ECs) serve as
multifunctional biosensors that coordinate vascular
responses to environmental stress of which hypoxia, oxida-
tive stress, acidosis, and inflammation are especially promi-
nent in myocardial disease and cancer [1–5]. By regulating
EC survival, senescence, growth, invasion, glucose metabo-
lism, and multiple molecular signaling pathways, hypoxia
and HIF factor signaling are central to vascular EC responses
to conditions of ischemia and downstream consequences of
endothelial dysfunction, remodeling, and vascular disease
[6–10]. Acidosis, an obligatory component of chronic ische-
mia caused by vessel occlusion, and present inside athero-
sclerotic plaque [11], is primarily driven by increased
glycolysis and buildup of extracellular waste metabolites.
Acidosis when combined with hypoxia additionally regulates
and/or accentuates multiple aspects of the responses of ECs
to ischemia, including survival, inflammation, and vessel
tone and integrity via stress kinase signaling, calcium, and
NO pathways [12–15]. Multiple microRNAs are known to
modulate endothelial inflammatory responses [16] and
established roles for miR-126 in regulating vascular integ-
rity, angiogenesis, atherogenesis, and vessel functions that
have been described [17–21].

Although miR-126 has been widely studied in the con-
text of cellular hypoxia [22–27], its role in ECs subjected to
chronic ischemic and/or acidotic conditions is relatively
unexplored. HIF-1α has been shown to induce the miR-
126 expression in a number of cell types including cultured
human umbilical vein endothelial cells, and other studies
have described positive feedback loop regulation between
HIF-1α and miR-126 [26, 28, 29]. Consequently, HIF-1/
miR-126 signaling is implicated in vasculogenesis and vascu-
lar disease, including proliferation, differentiation, migra-
tion, atherogenesis, senescence, and programmed cell death
of vascular cells [30]. Inflammation is a fundamental cellular
component of innate and adaptive immunity that, when
deregulated is implicated in multiple cardiovascular patholo-
gies, notably those that involve atherosclerosis, diabetes, obe-
sity, hypertension, and responses to ischemia-reperfusion
and myocardial infarction [31–33]. Acidosis occurs most fre-
quently in association with sustained ischemia, inflammation,
and metabolic disease where under the most severe conditions
of ischemia, affected tissue pH can fall below 6.5 [12] and sig-
nificantly impact basic physiological processes including
immune responses, cell viability, angiogenesis, and localized
inflammation [34–37].

The high-mobility group box 1 protein (HMGB1) is a
secreted cytokine immunomodulator with central roles in
autoimmune, infectious, and inflammatory pathologies
especially related to cancer and cardiovascular disease.
HMGB1 has been linked with angiogenesis, endothelial dys-
function, inflammation, and atherosclerosis through its reg-
ulation of toll-like receptor 4 and inflammatory cytokine
secretions [38–43]. HMGB1 is expressed in myocardial cells
where it selectively binds chromatin and activates innate
immune and inflammatory-related genes [44]. Recently,
microRNAs including miR-126 have been shown to confer

important regulation of HMGB1 [45–50]. Here, we iden-
tify a pH component in the regulation of HMGB1 with
contextual targeting by miR-126 that constitutes a critical
component of signal transmission in the EC response to
conditions of chronic simulated ischemia and associated
inflammation.

2. Materials and Methods

2.1. Reagents. Primary mouse aortic endothelial cells
(PMEC) were from Cell Biologics. Antibodies were obtained
from the following vendors: p-Akt, Akt, Bcl2, TNF-α, and
NAPDH oxidase, from Cell Signaling Technology, and
HMGB1 and NADPH from Abcam; human premicroRNA
expression constructs, Lenti-PremiR-126 and Anti-miR-
126 from System Bioscience LLC; OxiSelect ROS assay kit
from Cell Biolabs; Lipofectamine 2000 reagent from Thermo
Fisher Scientific; and Luc-Pair miR luciferase assay kit from
GeneCopoeia.

2.2. Endothelial Cell Culture and Treatment. PMECs, plated
at 1 × 106 cells per ml, were cultured in Dulbecco’s Modified
Eagle’s Medium (DMEM) with 10% fetal bovine serum in a
humidified atmosphere with 5% CO2 at 37°C. Our condi-
tions for exposure to hypoxia (0.5% O2/5% CO2) are
described in detail elsewhere [51–53]. Media was titrated
with lactic acid to achieve a starting pH of 7:4 ± 0:05 for
hypoxia alone and 6:7 ± 0:05 for hypoxia-acidosis (H/A), a
moderately acidic pH for ischemic tissues within the range
that can be caused by severely occluded myocardial tissue
or within a tumor environment in vivo [54, 55]. Our H/A
conditions are designed to mimic chronic low-flow ischemia
caused by such severe occlusion as well as ECs within an
atherosclerotic lesion where oxygen and ionic exchanges
between vessels and the blood are restricted. Media for the
H/A condition was replaced daily, and cultures were exposed
to hypoxia for 24 h and H/A for 72h to more closely mimic
chronic ischemia. Previous studies by others and ourselves
have documented that most cells including primary ECs
respond rapidly to hypoxia with activation of HIF-1α within
8-12h of exposure and minimal additional change of HIF-1
responses between 24 and 72 h [56–62]. Under these condi-
tions, we found that media pH under either condition did
not change significantly over 24 h. Extended times are also
appropriate to mimic metabolic adaptations to simulated
ischemia because of the vastly larger extracellular space of
cultured ECs versus vascular ECs in vivo. In some incuba-
tions, cells were subjected to lentivirus infection using Lipo-
fectamine 2000 before exposure to conditions.

2.3. Western Blot. Our procedures for western blots are
described in detail elsewhere [51, 52]. Briefly, 30μg of total
protein per lane in loading buffer was separated by 12%
SDS-PAGE gel and proteins transferred onto membranes.
After blocking, primary antibodies (1 : 500 dilution) were
incubated overnight at 4°C, followed by room temperature
exposure to secondary antibodies (1 : 4000 dilution). Reac-
tive bands were revealed by chemiluminescence.
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2.4. RNA Analysis. For RNA quantification, total RNA was
isolated from cells using TRIzol Reagent and subjected to
real-time PCR using TaqMan probes (Applied Biosystems)
as described previously [63]. All values are expressed relative
to a mean expression value for the 22,000+ transcripts on
each microarray.

2.5. Measurement of ROS. ROS were measured using an Oxi-
Select ROS assay kit, exactly as described by the manufac-
turer and as previously reported [64].

2.6. Luciferase Reporter Assay. Luciferase assays were per-
formed on cell extracts as previously described [65] using a
Luc-Pair miR luciferase assay kit (GeneCoepia). Relative
luciferase activities are expressed as luminescence units nor-
malized to Renilla luciferase activity. Luminescence was
quantitated using a multimode microplate reader (BMG
Labtech).

2.7. Quantitative RT-PCR. The MiR-126 expression was
quantified using a quantitative real-time reverse
transcription-PCR assay from Ambion described previously
[66]. Briefly, PCR reactions were carried out in triplicate in a
25μl volume using SYBR Green Assay Master Mix (Applied
Biosystems) for 3min at 95°C, followed by 40 cycles of 95°C
for 15 s, 60°C for 30 s, and 72°C for 45 s in a Bio-Rad I Cycler
(Bio-Rad Laboratories). Micro-RNA primers were used as fol-
lows: miR-126 forward, 5′-TATAAGATCTGAGGATAGGT
GGGTTCCCGAGAACT-3′, reverse, 5′-ATATGAATTCTC
TCAGGGCTATGCCGCCTAAGTAC-3′; HMGB1 forward,
5′-TATGGCAAAAGCGGACAAGG-3′, reverse, 5′-CTTCG
CAACATCACCAATGGA-3′; GAPDH forward, 5′-ACA
ACTTTGGTATCGTGGAAGG-3′, reverse, 5′-GCCATCAC
GCCACAGTTTC-3′; U6 forward 5′-CTCGCTTCGGCAG-
CACA-3′, reverse 5′-AACGCTTCACGAATTTGCGT-3′.
The relative gene expression was quantified using the 2−ΔΔCq

method [67]. Three independent experiments were routinely
performed for each assay.

2.8. Statistics. All data are expressed asmean ± S:E:M. Statis-
tical comparisons were performed using Graphpad Prism
software (GraphPad Software Inc.), and Student’s t-test
was used to compare differences.

3. Results

Suppression of hypoxia-induced miR-126 and HMGB1 by
acidosis of PMECs: cultured PMECs were subjected to 24 h
of hypoxia alone or 72 h hypoxia with concurrent acidosis
and isolated RNAs and proteins quantified for expression
of mir-126, HMGB1, and HIF-1α. As shown in Figure 1,
hypoxia alone conferred increased expression of miR-126
and HMGB1-specific RNAs, respectively, by 12 ± 2 − fold
and 2:1 ± 0:1 − fold (both p < 0:01 relative to aerobic con-
trols) and proteins HMGB1 and HIF-1α, respectively, by
1:85 ± 0:1 − fold and 3:6 ± 0:2 − fold (both p < 0:01 relative
to aerobic controls). When acidosis was present for 72 h with
concurrent hypoxia, mir-126 levels were 4:1 ± 0:05 − fold
relative to aerobic cells, a decline of 3-fold relative to hypoxia

alone, whereas HMGB1 mRNA levels were further increased
over pH neutral hypoxia to 3:2 ± 0:15 of aerobic cell, an
increase of 50% over neutral hypoxia. At the protein level,
HMGB1 protein increased in parallel with the mRNA also
to 3:2 ± 0:1 − fold relative to aerobic cells, whereas HIF-1
protein under H/A was 1:8 ± 0:1 − fold of aerobic cells, a
50% decline relative to neutral hypoxia. As discussed in
Methods, previous work by others and ourselves has shown
that HIF-1α accumulates rapidly when primary ECs are
exposed to hypoxia, maximally within 4-8 h with no signifi-
cant change between 24 and 72 h in most cases [56, 57, 61].
The results indicate positive regulation of all 3 RNA/gene
targets by hypoxia and quenching of miR-126 and HIF-1α
by concurrent acidosis, but enhanced expression of HMGB1
by H/A.

3.1. Inflammatory Indicators, Increased under Hypoxia, Are
Enhanced by HA. HMGB1 is a secreted immune-
inflammatory protein expressed in many cell types, that acts
as a damage-associated molecular pattern (DAMP) factor
[68] and can induce signaling pathways by binding to
immune modulators such as advanced glycation end prod-
ucts (RAGE) and toll-like receptors (TLRs) [69, 70], thereby
stimulating inflammatory cascade. To investigate functional
consequences of HMGB1 induction by hypoxia in the pres-
ence and absence of acidosis, we assayed putative down-
stream inflammatory effectors of HMGB1 including ROS,
NADPH, and TNF-α, as well as survival signaling pathway
intermediates p-Akt and Bcl-2. As shown in Figure 2, ROS
production, TNF-α, and NAPDH expression were signifi-
cantly increased by both hypoxia alone and hypoxia-
acidosis (p < 0:01), in a manner that paralleled closely the
expression patters of HMGB1. P-Akt, a marker of survival
kinases, was also significantly induced by both experimental
manipulations while prosurvival, antiapoptosis marker Bcl2
was increased by both hypoxia and hypoxia-acidosis but
more markedly by the former (all p < 0:01). The results are
consistent with positive and regulation of HMGB1 and its
downstream inflammatory effectors by hypoxia that is incre-
mentally enhanced by concurrent acidosis.

3.2. Contextual Regulation of the HMGB1 Expression by
miR-126 Modulators. It was reported that the HMGB1 gene
contains a 3′UTR target for miR-126 and that elevated miR-
126 downregulated HMGB1 and suppressed inflammatory
responses of ECs during exposure to hyperglycemia [50].
Because the actions of miR-126 are context-dependent and
can mediate positive or negative actions on gene expression
depending on the prevailing environments [21], we asked
whether miR-126 contributes to the incremental regulation
of HMGB1 gene expression by hypoxia-acidosis. To do this,
PMECs were transfected with optimal doses of miR-126 pre-
miR or antagomir RNAs and the expression of HMGB1 and
HIF-1α measured after exposure to H/A for 72h as
described in Methods. As shown in Figure 3, ECs pretrans-
fected with the miR-126 mimic displayed robust expression
of miR-126 relative to controls, whereas the expression in
antagomir-transfected cells was reduced by about 50% of
control nontransfected cells (Figure 3(a)). Despite the high
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expression of apparent miR-126 conferred by overexpres-
sion of the mimic, levels of HMGB1 mRNA remained
unchanged relative to nontransfected control cells; perhaps,
an indication that elevated basal miR-126 under hypoxia-
acidosis alone is sufficient to convey significant degradation
of HMGB1 mRNA. Conversely, the overexpression of the
antagomir conferred almost 6-fold increased expression of
HMGB1 mRNA; again, consistent with the possibility that
endogenous miR-126 actively promotes degradation of

HMGB1 mRNA expression under hypoxia-acidosis. Protein
expression analyses supported such an interpretation that
miR-126 regulates the HMGB1 gene expression during
exposure to hypoxia-acidosis by promoting mRNA degrada-
tion and suppressing translation. As shown in Figures 3(c)
and 3(d), the overexpression of the miR-126 mimic signifi-
cantly blocked HMGB1 protein expression (p < 0:01),
whereas the antagomir overexpression conferred >10-fold
increased protein expression relative to control conditions.
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Figure 1: Quantification of responses of miR-126, HMGB1, and HIF-1α to hypoxia and H/A in PMECs. MiR-126 and HMGB1 RNAs were
measured by RT-PCR (a, b) and Western blot (c)–(e). Results are expressed as mean ± SEM. ∗∗p < 0:01, ∗p < 0:05. Hy-24 h and HA-72 h:
PMECs were exposed to hypoxia for 24 hours or H/A for 72 hours. Results are expressed as mean ± SEM. ∗∗p < 0:01; ∗p < 0:05; n = 4.
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As a control, and to ensure that the results are not influenced
by an indirect interference of miR-126 on HIF-1α, we dem-
onstrate in Figure 3(e) that HIF-1α protein levels, increased
under hypoxia-acidosis, were not affected by miR-126 mimic
or antagomir overexpression in these ECs. The results dem-
onstrate that decreasing miR-126 levels by transfection of an
antagomiR prior to exposure to hypoxia-acidosis conferred
markedly increased expression of HMGB1 mRNA and pro-
tein consistent with a classical miR-mediated targeting of the
HMGB1 gene to induce mRNA degradation and transla-
tional repression [71]. This interpretation is also supported

by the effects of the overexpression of the miR-126 mimic,
although relatively minor compared with the antagomir.
Both effects suggest significant regulation of the HMGB1
gene expression by endogenous miR-126 under hypoxia-
acidosis.

3.3. Confirmation of a Hypoxia-Acidosis Regulable miR-126
Target Site on the HMGB1 Gene 3′UTR. To confirm that
miR-126 can directly regulate the HMGB1 gene expression,
we synthesized oligonucleotides containing putative wild
type and mutant HMGB1-miR-126 binding sites and
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Figure 2: Responses of markers of inflammation, Akt, and Bcl2 during exposure of PMECs to 24 h hypoxia (Hy) and 72 h H/A. ECs were
infected with premiR-126 or antagomiR-126 and cultured under the specified conditions. (a) ROS were quantified using an OxiSelect ROS
assay kit. (b)–(f) Western blots quantified TNFα, p-Akt, and Bcl2. Results are expressed as mean ± SEM. ∗∗p < 0:01; ∗p < 0:05; n = 4.
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inserted them upstream of the Luciferase reporter gene as
described in Methods (Figure 4(a)). Plasmids were transfected
into PMECs with nontransfected cells as controls and sub-
jected to conditions of hypoxia-acidosis (Figures 4(b) and
4(c)). We first confirmed that the overexpression of the
premiR-126 conferred decreased expression of HMGB1,
whereas knockdown by the antagomir conferred increased
expression, as expected from results shown in Figures 1 and
3 (data not shown). Luciferase reporter gene assays revealed
that luciferase activity was significantly decreased or
enhanced, respectively, by premiR-126 or antagomiR-126,

when compared with controls (p < 0:01). Importantly, the
expression of an HMGB1 reporter plasmid that contained a
mutated 3′UTR reporter gene was unaffected by either
premiR-126 or antagomir (p > 0:5) (Figures 5(b) and 5(c)).
These results confirm that miR-126 targets the HMGB1 gene
expression through a 3′ UAAUAAUU target site and its reg-
ulation by H/A.

3.4. Predominant Role for miR-126 in the Regulation of
Inflammation Markers by Hypoxia and H/A. To investigate
possible individual roles of hypoxia, acidosis, HIF-1a, and
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Figure 3: PremiR and antagomir regulation of miR-126 expression and downstream responses of HMGB1 and HIF-1α in PMECs during H/
A culture. PMECs were infected with premiR-126 (OE) or anti-miR-126 (KD) and cultured under H/A. (a, b) miR-126 and HMGB1 RNAs
were measured by RT-PCR. (c)–(e) western blots quantified and HIF-1α. Results are expressed as mean ± SEM. ∗∗p < 0:01. Cont-OE and
Cont-KD refer to control (empty) vectors for the respective experimental premiR and antagomir overexpression groups. Results are
expressed as mean ± SEM. ∗∗p < 0:01; ∗p < 0:01; n = 4.
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the apparent overriding actions of miR-126 in regulating the
HMGB1-responsive inflammatroy cascade, MPECs were
pretransfected with miR-126 premiR or antagomiR, sub-
jected to conditions of hypoxia alone or H/A and expression
of inflammatory and cell survival markers measured and
compared with aerobic controls as described in Methods
and Figure 3. Relative intracellular levels of miR-126 after
transfection of antagomiR or antagomiR and subjection to
conditions are shown in Figure 5(a). Compared with
antagomiR-overexpressing control aerobic incubations,
exposure of transfected cells to hypoxia conferred increased
miR-126 of 5:3 ± 0:3 − fold, that decreased to 3:4 ± 0:02 −
fold under H/A. In antagomiR-transfected cells, miR-126
levels under hypoxic incubations were increased by 2:5 ±
0:2 − fold over aerobic controls and by 1:6 ± 0:1 − fold under
H/A. The expression of inflammation markers, ROS,
NADPH oxidase, TNFα, and survival kinase p-Akt displayed
trends that are consistent with the results of Figure 3 and
supports a major role for miR-126 in suppression of the
EC inflammatory response via HMGB1 under conditions
of hypoxia and especially H/A. The expressed levels of all
proteins from cells incubated under hypoxia alone or H/A
were the lowest when miR-126 was induced (Figures 5(b)
and 5(d)–5(f), OE columns 2-3), and, conversely, the highest
when miR-126 was reduced (Figures 5(b) and 5(d)–5(f), KD
columns 5-6) consistent with an overriding role for miR-126
in the regulation and suppression by acidosis as a major
component of inflammatory pathway regulation during H/
A. Levels of the antiapoptosis survival protein Bcl2, induced
under hypoxia, were further induced by H/A in the presence

of miR-129 KD and low miR-129, consistent with the sup-
pressive role for the miR-126 in Bcl2 gene expression [72,
73]. In agreement with the results shown in Figures 1 and
3, HIF-1α induction by hypoxia was reduced under the H/
A condition and unaffected by OE or KD of miR-126 pre-
miR (OE) or antagomiR (KD).

4. Discussion

We provide novel evidence for a dominant role of the miR-
126 suppression by acidosis in the regulation of the HMGB1
gene expression and its downstream inflammation media-
tors in endothelial cells subjected to simulated chronic ische-
mia. The regulation is transmitted via a contextually
responsive miR-126 target in the HMGB1 3′UTR. We also
describe enhanced activation of the prosurvival, antiapopto-
sis protein Bcl2 by H/A via a slightly divergent signaling
pathway that involves a quantitative antagonism between
miR-126 and HIF-1α, whereas previous reports have docu-
mented negative regulation of both HMGB1 and Bcl2 by
miR-126, and the present study is the first to describe acido-
sis as a driving force behind such regulation in the context of
ischemia. Our findings that miR-126 levels increased 12-fold
under pH-neutral hypoxia in parallel with a 3.5-fold increase
of HIF-1α (Figures 1(a) and 1(e)) are consistent with previ-
ous reports that miR-126 is positively regulated by HIF-1α
[26, 28, 29]. Previous work has also shown that HIF-1α
can regulate micro-RNAs directly by binding to HRE-
motifs in the 5′ upstream sequences of host genes [74], or
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Figure 4: Context-dependent targeting of HMGB1 by miR-126. MirR-126 seed sequence and complementary binding site in the HMGB1 3′
UTR are highlighted (a). PMECs were untreated or transfected with premiR-126 or antagomiR-126. Luciferase activities were quantified
after subjection of cultures to H/A. Results are expressed as mean ± SEM. ∗∗p < 0:01; n = 4. Cont-WT-HMGB1: control (empty) vector
for WT- HMGB1; OE-WT-HMGB1: overexpression of premiR-126 for WT HMGB1; Cont-Mut-HMGB1: control (empty) vector for
mutant HMGB1; OE-Mut-HMGB1: overexpression of premiR-126 for mutant HMGB1; KD-WT-HMGB1: antagomiR-126 for WT-
HMGB1; KD-Mut-HMGB1: antagomiR-126 for mutant HMGB1.
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Figure 5: Continued.
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indirectly by regulating the activities of associated signal
intermediates, for example, c-Myc [75]. We found that the
incremental increase of miR-126 supported by neutral hyp-
oxia was reduced >70% under H/A, coincident with a simi-
lar >70% loss of the HIF1-α expression (Figures 1(a) and
1(e)), in parallel with a significant 50% augmentation of
the HMGB1 expression under H/A relative to neutral hyp-
oxia (p < 0:01). The results support an indirect role for
HIF-1α in the regulation of HMBG1 via downregulation of
miR-126. In contrast, the Bcl2 expression, optimally acti-
vated by neutral hypoxia, was reduced under H/A
(Figures 1(a) and 2(f)), most likely due to the opposing
effects of coincident downregulated HIF-1α and suppressed
miR-126 under H/A (see illustration, Figure 6).

Results of premiR/antagomiR transfections confirmed
the potent regulation of the HMGB1 gene expression by
miR-126 during exposure to H/A (Figure 3). The HMBG1
expression was low in cells transfected with premiRs and
maximally induced by antagomir (Figure 3(e) columns 2
and 4), whereas HIF-1α was unresponsive to premiR/anti-
miR-modulated expression of miR-126 (Figure 3(e)).
Cotransfection of PMECs with miR-126 premiR, antago-
miR, and expression vectors directing expression of Lucifer-
ase by 5′ wild type or mutated miR-126 target sites
confirmed an miR-126 target sequence in the HMGB1 3′
UTR, as previously reported [50] and its responsiveness
to H/A. Luciferase activity was differentially regulated by
a factor > 5 − fold by WT premiR over antagomiR in
transfected cells exposed to H/A (p < 0:01), and the regula-
tion was eliminated by mutation of the site (Figure 4(b)).
These results confirm the presence of a pH-regulable
miR-126 target on the HMGB1 3′UTR.

The expression levels of HMGB1-regulated inflamma-
tion markers in transfected cells subjected to conditions of

hypoxia and H/A followed patterns that are consistent with
positive and negative regulation by hypoxia and miR-126,
respectively (Figures 4(b)–4(e)). The HMGB1 gene is posi-
tively regulated by hypoxia through PI3K and YAP/Hippo
pathways, that are independent of HIF-1α, and HMGB1
positively regulates the expression of HIF-1α [76–81].
Consistent with this, the inflammatory marker expression
was only partially eliminated by miR-126 premiR transfec-
tion (OE) of cells under neutral hypoxia, compared with
aerobic cells (Figures 4(b)–4(e), columns 1, 2, and 4),
and the highest levels of inflammatory marker expression
were seen in antagomiR expressing cells under H/A, a
condition that drives maximal suppression of miR-126, sus-
tained hypoxia, and reduced HIF-1α. It is noteworthy that
Bcl2 expression, dually regulated in an antagonistic manner
by HIF-1α and miR-126, was increased under H/A compared
with neutral hypoxia only in antagomir-transfected cells
(compare Figures 2(f) and 4(g)), despite lower HIF-1α
(Figure 4(h)), suggesting an overriding role for miR-126 vs.
HIF-1α in Bcl2 regulation under these conditions of simu-
lated ischemia.

Taken together, the results support the scheme depicted
in Figure 6. Neutral hypoxia increases miR-126 by HIF-1α
dependent and independent pathways, and this induction
is largely reversed by H/A. HMGB1, its downstream inflam-
matory markers and Akt, induced by neutral hypoxia, is
super induced by HA due to H/A suppression of inhibitory
miR-126 and sustained regulation by hypoxia via YAP/
Hippo signaling. Repression of HIF-1α activity by H/A
may be partially alleviated in this condition via positive feed-
back regulation by HMGB1, as well as positive regulation by
miR-126 under some circumstances. Survival, antiapoptosis
factor Bcl2 is directly regulated by HIF-1α and negatively
regulated by miR-126; therefore, the relative levels of these
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Figure 5: Attenuation of inflammatory markers in PMECs by miR-126 during H/A. ECs were infected with premiR-126 or antagomiR-126
and cultured under H/A. miR-126 RNA was measured using RT-PCR (a) ROS were measured using an OxiSelect ROS assay kit (b) Western
blot analyses were performed to quantify TNFα, Akt, and Bcl2. (c)–(h) Results are expressed as mean ± SEM. ∗∗p < 0:01, ∗p < 0:01. Cont-
Air-OE, Hy-24 h-OE, and HA-72 h-OE: ECs were transfected with empty vector or premiR-126 and treated aerobically. Hypoxia 24 h or
H/A 72 h. Cont-Air-KD, Hy-24 h-KD, and HA-72 h-KD: ECs were transfected with control vector or antagomiR-126 and treated
aerobically. Hypoxia 24 h and H/A 72 h.
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regulators determine the Bcl2 expression. Consequently,
neutral hypoxia conferred higher expression of Bcl2 than
H/A, but H/A in the presence of miR-126 antagomiR con-
ferred the greatest level of the Bcl2 expression.

The studies are relevant to inflammation involving the
endothelium, especially during cardiovascular disease and
rapidly growing tumors wherein microenvironments of hyp-
oxia and acidosis are common [12–16, 82]. Previous work
has also shown that proinflammatory factors are increased
by an acidotic extracellular environment with or without
hypoxia [83, 84]. Development of inflammation during sever
chronic ischemia in both conditions is exacerbated by acidic
pH as well as by the underlying hypoxia. Such changes inter-
fere with a wide range of immunological functions confer-
ring increased levels of inflammatory cytokines, interleukin
IL-1β, IL-6, IL-8, IL-10, TNF-α, NADPH oxidase, and
ROS [12, 82, 85].

In addition to targeting HMGB1, a key driver of
inflammatory and immune responses in numerous disease

settings [86–89], miR-126 can target multiple other
disease-associated genes of relevance to this study, includ-
ing angiogenesis-related vascular endothelial growth factor
A, sprouty-related protein-1, phosphoinositidol-3 kinase
regulatory subunit-2 1, and the adapter molecule crk
[90–92]. Our discovery that acidosis exerts marked control
over HMBG1 and Bcl2 expression as well as downstream
inflammation responders and Akt, via miR-126 and HIF-1α
(summarized in Figure 6), in the context of chronic ischemia
is novel and represents important additions to our under-
standing of vascular inflammation and cell survival during
ischemic disease, including atherosclerosis and vasculatures
of solid tumors, wherein hypoxia and acidosis are integral
disease components.

4.1. Study Limitations. Our results support an overriding
role for miR-126 in optimally inducing expression of the
HMGB1 gene and its downstream mediators of inflamma-
tion and oxidative stress during exposure to conditions of
chronic simulated ischemia in cultured endothelial cells.
The proposed mechanism involves acidosis-mediated sup-
pression of HIF-1α activity and consequential blocking of
hypoxia-induced transcription of the miR-126 host genes,
thereby blocking HMGB1 suppression by mir-126. We
acknowledge that the relation of HIF-1α with miR-126 is
correlative, and we do not yet have a mechanism; however,
the results are consistent with other reports that have
described HIF-1α regulation of miR-126 in endothelial cells
[26, 28, 29]. Also, we do not know the mechanism of acido-
sis regulation of HIF-1α; indeed, early literature has docu-
mented positive regulation of the HIF pathway by driving
nuclear sequestration of the VLH factor [93]. Our unique
conditions of chronic H/A may account for the differences.
Finally, our use of a prolonged 72 h exposure time for H/A
to more closely simulate chronic ischemia with acidosis
introduces another variable. We contend that the compari-
son with 24h neutral hypoxia is valid at least in part because
previous reports by others and ourselves have shown that
the HIF pathway of cultured endothelial cells responds
rapidly to hypoxia, usually within 4-8 h, and is sustained
without significant change during exposure times of 24h
through 72h, and provided nutrients are replenished and
media pH controlled, as is the case in our incubations [10,
56, 61, 62]. Except miRNA, other types of noncoding RNA
may be associated with endothelial cell inflammation during
exposure to H/A, including Piwi RNA [94] and circular RNA
[95]. Further discussion is needed in future studies.
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Figure 6: Schematic of crosstalk regulation of HMGB1, Akt, and
Bcl2 expression and downstream inflammation mediators during
exposure of PMECs to simulated ischemia. Acidosis is usually
associated with severe, sustained ischemia when metabolic waste
products including lactic acid accumulate within ischemic tissues.
Hypoxia with or without acidosis rapidly activates HIF pathways,
and miR-126 is induced in parallel with accumulated nuclear
HIF-1α that increases the HMGB1 expression independently of
HIF via YAP/HIPPO signaling, an effect that is retained under H/
A (dashed line). By activating the PI3K/Akt pathway, HMGB1
also indirectly increases the HIF-1α expression in a hypoxia-
HMGB1-HIF amplifying loop. HIF-1α directly and positively
upregulates Bcl2, an effect that is countered via negative
regulation by miR-126. During H/A, HIF-1a and miR-126 both
decrease at least in part because acidosis blocks HIF-1α, the
principal pathway for hypoxia-mediated transcriptional induction
of miR-126. Reduced miR-126 during H/A relieves negative
regulation on HMGB1 while the positive regulation by hypoxia is
retained resulting in optimal activation of HMGB1 and its
downstream inflammatory intermediates by H/A. In contrast
because Bcl2 is positively regulated by HIF-1α and negatively
regulated by miR-126, the optimal expression occurs under
neutral hypoxia when HIF-1α is most active and predominates
over miR-126.
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