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Lung adenocarcinoma (LUAD) is the most prevalent histologic type of lung cancer, associated with a high incidence rate and
substantial mortality rate worldwide. Accumulating evidence shows that the aberrant expression of neuromedin U (NMU)
contributes to the initiation and progression of cancer. Herein, we explored whether NMU could be adopted as a new diagnostic
and therapeutic marker in LUAD. The UALCAN and GEPIA web resources were employed to assess data on the NMU
expression in LUAD. The STRING web resource was used to develop the PPI (protein-protein interaction) network of NMU,
whereas Cytoscape was applied for module analysis. The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses of NMU and the interacting proteins were examined using the WebGestalt tool. Survival analysis
was performed with the Kaplan-Meier plotter tool. Results revealed that the NMU expression in LUAD was significantly higher
than in the nonmalignant tissues. Moreover, higher NMU levels were dramatically related to shorter overall survival, first
progression survival, and postprogression survival. The specific gene mutations G45V, R143T, and F152L of NMU occurred in
LUAD samples and were associated with a worse prognosis in patients. KEGG and western blot analyses demonstrated an
association of NMU with the cell cycle and the cAMP signaling cascade. Bioinformatic analysis and the in vitro experiments
implicated NMU as a promising prognostic signature and treatment target for LUAD.

1. Introduction

Lung cancer is among the malignant tumors associated with
high incidence and mortality rates worldwide [1]. Lung ade-
nocarcinoma (LUAD) is the most prevalent histologic type of
lung cancer that accounts for about 40% of lung cancer cases
[2]. Over the past decade, great advancements in the treat-
ment of patients with lung adenocarcinoma have been made,
including surgery, radiotherapy, chemotherapy, or targeted
therapy [3]. However, the prognosis of relapsed patients with
LUAD remains poor. Recent studies have revealed the poten-
tial of targeted therapy in the repression of the growth of lung
cancer cells by inhibiting the activation of key oncogenic
molecules which drive LUAD progression [4–6]. Although
targeted therapy yields promising results in early treatment,
the development of drug resistance is linked to treatment

failure [7]. There is a need to uncover critical genes and
signaling cascades that mediate tumor progression of LUAD
to develop advanced therapeutic strategies for LUAD
management.

Several novel prognostic and therapeutic biomarkers for
LUAD have been recently identified through bioinformatic
analysis. For instance, Sun et al. reported higher expression
levels of transcription factors (E2F1, E2F2, E2F5, E2F6,
E2F7, and E2F8) in LUAD tissues than in normal lung tis-
sues. Furthermore, bioinformatic analysis revealed that high
transcription levels of these transcription factors were associ-
ated with poor prognosis in LUAD patients [8]. Elsewhere,
Lu et al., through integrated bioinformatic analysis, revealed
a reduction in the expression of tripartite motif-containing
56 (TRIM56) in LUAD and were associated with dismal
prognosis. In addition, the increased TRIM56 expression
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repressed the migration and infiltration of LUAD cells [9]. A
study by Tang et al. reported a remarkable overexpression of
maternal embryonic leucine zipper kinase (MELK) in lung
cancer which was inversely linked to the survival of LUAD
patients following the bioinformatic analysis [10]. Addition-
ally, Wang et al. identified five key genes (CCNB1, MAD2L1,
CDC20, BUB1B, and TTK) linked to worse prognosis based
on the bioinformatic analysis [11]. Therefore, bioinformatic
analysis of various datasets can assist in the determination
of several valuable genes in the prediction of a new prognos-
tic signature and prospective treatment target. However, it is
unclear whether these predictions via bioinformatic analysis
accurately reflect the real situation in vivo. There is a need
for verification of the results of bioinformatic analysis via
biochemical experiments.

Neuromedin U (NMU) neuropeptide is expressed in
numerous organs and tissues and plays diverse physiological
and pathophysiological roles including contraction of
smooth muscles, the balance of energy, and tumorigenesis
[12]. Recent studies have implicated NMU as a key gene in
the prediction of disease status and prognosis in cancers
[13–15]. However, the role of NMU in LUAD remains elu-
sive. Much more details on NMU, such a critical gene, in
clinical application value with LUAD should be explored.
Herein, we purposely explore the expression level of NMU
in LUAD and its potential clinical application value.

2. Materials and Methods

2.1. Analysis of the NMU Expression in LUAD. The data from
the TCGA data resource was used to explore the NMU
expression via the UALCAN web resource (http://ualcan
.path.uab.edu) [16]. Based on the UALCAN web resource,
the NMU transcription level was evaluated in different can-
cer subgroups including cancer stages, race, smoking habit,
and TP53 mutation status. Furthermore, GEPIA web
resource (http://gepia.cancer-pku.cn/) [17], an interactive
web tool, was employed to validate the NMU expression level
between LUAD and nonmalignant tissue from TCGA and
GTEx with a p value ≤0.05 and ∣log 2FC ∣ ≥2.

2.2. Survival Analysis of NMU in LUAD. We enrolled 719
LUAD patients for the survival analysis. The Kaplan-Meier
plot (https://kmplot.com) [18], an online data resource, was
applied to assess the OS (overall survival), FPS (first progres-
sion survival), and PPS (postprogression survival) differences
between high and low NMU expression groups stratified
according to the median expression score. p < 0:05 denoted
statistical significance.

2.3. Pathway and Gene Ontology Enrichment Analysis. We
used the STRING web resource (http://www.stringdb.org)
[19] in the prediction of the PPI (Protein-protein Interac-
tion) network whereby an interaction score > 0:9 denoted a
significant interactive relationship. The PPI network was
evaluated via the Cytoscape software package (version
3.7.2). Furthermore, WebGestalt (WEB-based GEne SeT
AnaLysis Toolkit) online toolkit [20] was employed to enrich

the KEGG pathway and gene ontology of all the genes that
interacted with NMU in STRING.

2.4. Mutation Analysis. The CBioPortal web resource
(https://www.cbioportal. org/) [21] with the data on DNA
mutations, methylations, and gene amplification was
employed to establish the association of genetic mutations
with the initiation of LUAD. Using the cBioPortal web
resource, we explored the top 10 genes that interacted with
NMU. In addition, the OS and PFS (progression-free sur-
vival) were examined between NMU with alternation and
without alternation.

2.5. Cell Lines and Antibodies. Lung adenocarcinoma cells
HCC827, H1975, H1650, and A549 and nonmalignant lung
cells 16HBE were purchased from Nanjing Cobioer Co.,
Ltd. HCC827, H1975, and H1650 were cultured in RPMI-
1640 medium enriched with 10% FBS and allowed to grow
under 37°C and 5% CO2 conditions. However, A549 and
16HBE were cultured in F12K and DMEM/high glucose
medium enriched with 10% FBS under 37°C and 5% CO2
conditions. We purchased the antibodies of NMU (Affinity,
Cat No. DF4238), p-Erk1/2 (Cell signaling technology
(CST), Cat No. 4370), Erk1/2 (GeneTex, Cat No.
GTX59618), p-FoxO3 (CST, Cat No. 13129), FoxO3 (CST,
Cat No. 2493), cyclin A2 (CST, Cat No. 4656), cyclin B1
(CST, Cat No. 12231), cyclin D1 (CST, Cat No. 2922), P21
(CST, Cat No. 2947), P27 (CST, Cat No. 3686), and beta-
actin (CST, Cat No. 58169).

2.6. RNA Extraction and qRT-PCR. The TRIzol Reagent (Cat
No.15596026, Invitrogen) was employed to extract total
RNA as described by the manufacturer. Then, cDNAs gener-
ated from 1μg of the total RNA were subjected to qRT-PCR
using TB Green™ Premix Ex Taq™ II (Cat No. RR820B,
Takara). The following primers were used for real-time
PCR: NMU_F (5′AGCTCGTTCCTCACCTGCATGA3′),
NMU_R (5′CTGCTGACCTTCTTCCATTCCG3′), beta-
actin_F (5’CACCATTGGCAATGAGCGGTTC3′), and
beta-actin_R (5′AGGTCTTTGCGGATGTCCACGT3′).
Fluorescence emitted by SYBR was examined via the Light-
Cycler96 detection system (Roche Molecular Systems, Inc.).
The relative mRNA level of NMU was quantified and stan-
dardized to beta-actin mRNA expression and denoted as
the fold change.

2.7. Western Blot. The RIPA lysis buffer (Cat No. P0013B,
Beyotime Institute of Biotechnology, Jiangsu, China) was
enriched with a protease cocktail inhibitor (Cat No.
4693132001, Roche) that was employed to isolate total pro-
teins of the cells. The quantities of the isolated proteins were
determined using the BCA protein assay kit (Cat No. P0009,
Beyotime Institute of Biotechnology, Jiangsu, China). There-
after, 20μg of total proteins was fractionated on a 12% SDS-
PAGE gel and transfer embedded onto 0.22μMPVDF mem-
branes (Cat No. ISEQ00010, EMD Millipore). Subsequently,
the membranes were blocked with 5% nonfat milk at room
temperature (RT) for two hours and then incubated over-
night at 4°C overnight with the following specific primary
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antibodies: anti-NMU (1 : 200), anti-p-Erk1/2(1 : 1000), anti-
Erk1/2(1 : 1000), anti-p-FoxO3 (1 : 1000), anti-FoxO3 (1 :
1000), anti-cyclin A2 (1 : 1000), anti-cyclin B1 (1 : 1000),
anti-cyclin D1 (1 : 1000), anti-P21 (1 : 1000), anti-P27 (1 :

1000), and anti-beta-actin (1 : 5,000).After that, the mem-
branes were incubated with the corresponding IRDye®
800CW Goat anti-Rabbit IgG (H+L) (1 : 15,000; Cat No.
926-32211; LI-COR) or IRDye® 680RD Goat anti-Mouse
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Figure 1: The expression of NMU in patients with LUAD. (a) The expression of NMU in LUAD as evaluated in the UALCAN database
(∗∗∗p < 0:001 vs. normal). (b) The expression of NMU in LUAD, evaluated using the GEPIA online tool (∗p < 0:05 vs. normal, T: tumor;
N: normal). (c) Expression of NMU in LUAD based on race (∗p < 0:05 vs. Asian group, ∗∗∗p < 0:001 vs. normal), (d) individual cancer
grade (∗∗∗p < 0:001 vs. normal), (e) patient’s smoking habits (∗∗∗p < 0:001 vs. nonsmoker), and (f) TP53 mutation status (∗∗∗p < 0:001 vs.
nonmutation).
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IgG (H+L) (1 : 15,000; Cat No. 926-68070; LI-COR) at room
temperature (RT) for a further one hour. An Odyssey® CLx
imaging system (LI-COR) was employed to capture blot
images.

2.8. shRNA and Transfection. The shRNA was used to inhibit
the NMU expression. We used the following sequences:
NMU (5′CCGGCACAGAGCAATGCTATGGAATCTCG
AGATTCCATAGCATTGCTCTGTGTTTTTTG3′). The
control shRNA (Luciferase shRNA, shLuc) was obtained
from Sigma-Aldrich (Merck KGaA). The 293T cells were
used to package lentiviruses containing shRNA vectors.
A549 cells were inoculated into six-well culture plates at 5
× 105 cells/well. The culture medium was replaced by lenti-
viral particles mixed with polybrene (Cat No. TR-1003-G,
Sigma-Aldrich; Merck KGaA) for 24 hours. Subsequently,
the cells were selected for stable integration with 4μg
puromycin dihydrochloride for 2 weeks (2μg/ml; Sigma-
Aldrich; Merck KGaA).

2.9. BrdU Assay. Cell proliferation was explored using the
BrdU incorporation assay. Glass coverslips in 24-well plates
were inoculated with A549, A549-shLuc, or A549-shNMU
cells and incubated for 24 hours. After that, the growth
medium was replaced with a BrdU incorporation medium
after 6 hours. The coverslips were incubated with mouse
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Figure 2: Higher expression of NMU is associated with poorer OS (a), FPS(b), and PPS(c) in LUAD patients.
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Figure 3: PPI network of the top 10 interacted genes related toNMU.
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anti-BrdU antibody (Cat No.5292S, Cell signaling technol-
ogy) overnight at 4°C. The coverslips were rinsed and incu-
bated with Alex Flour 594-labeled anti-mouse IgG (Cat No.
A-21203, ThermoFisher) for 1 hour at room temperature.
Nuclei were labeled with DAPI. Images were captured using
an Olympus fluorescence microscope (model: IX73, Tokyo,
Japan). The numbers of BrdU-positive cells was counted
from 5 random fields.

2.10. Colony Formation. The A549, A549-shLuc, or A549-
shNMU cells were cultured in a 6-well plate (1,000 cells/well)
for 2 weeks. The cells were subsequently stained with 0.5%
crystal violet for 2 h at room temperature. The ImageJ soft-
ware (V.1.52a; NIH) was employed to quantify the clones.

2.11. Statistical Analyses. All statistical analyses were con-
ducted using GraphPad Prism V.7.0 (GraphPad Software,
Inc.). Data were represented as the mean ± standard

deviation, and the differences between group were analyzed
using Student’s t-test. p < 0:05 denoted statistical significance.

3. Results

3.1. The Expression of NMU in LUAD Patients. The UAL-
CAN and GEPIA web resources were employed to explore
the relative NMU expression between lung adenocarcinoma
tissues and nonmalignant lung tissues. The results showed
that NMU was remarkably elevated in LUAD tissues than
in nonmalignant tissues (p < 0:001, Figures 1(a) and 1(b)).
Furthermore, the association of the NMU expression levels
with clinicopathological features of LUAD patients was
explored via the UALCAN data resource. The results
revealed elevated NMU expression levels in Caucasian and
African-American patients relative to Asian patients
(p < 0:05) (Figure 1(c)). The NMU expression gradually
increased from grade 1 to grade 3 but noticeably decreased
in grade 4. These results demonstrated that NMU was partly
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Figure 4: GO and KEGG pathway analysis of NMU and its interacted genes in WebGestalt. Top 10 GO and KEGG enrichment analyses of
DEGs were displayed. (a) Biological process (BP). (b) Cellular component (CC). (c) Molecular function (MF). (d) KEGG pathway. FDR <
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associated with LUAD grades (Figure 1(d)). Figure 1(e) illus-
trates a remarkable increase in the NMU expression in
patients with smoking or reformed smoking in contrast with
that in patients with nonsmoking. In addition, LUAD
patients with TP53 mutation expressed higher levels of
NMU than those without TP53 mutation (Figure 1(f)).

3.2. High NMU Expression Level Is Associated with
Unfavorable Survival in LUAD Patients. In survival analysis,

the Kaplan-Meier plot was used to determine the relationship
of the NMU expression level with the fate of LUAD patients.
Based on the OS curves, LUAD patients who exhibited high
NMU expression were characterized by a remarkably low
survival probability (HR = 1:7, 95%CI = 15:4 − 2:95, p =
0:0074) (Figure 2(a)). Furthermore, the FPS and PPS curves
revealed that the elevated NMU expression reflected a dismal
prognosis. Elevated NMU contents were associated with dis-
mal FPS (HR = 2:13, 95%CI = 1:54 − 2:95, p = 0:0067) and
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Figure 5: CBioPortal database analysis of the mutation of NMU and its interacted genes. (a) A visual summary of genetic alterations shows
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PPS (HR = 1:5, 95%CI = 0:9 − 2:4, p = 0:089), respectively
(Figures 2(b) and 2(c)). Overall, survival curve analysis dem-
onstrated that the high NMU expression was suitable in the
prediction of worse prognosis in LUAD patients.

3.3. PPI Network and Process Enrichment Analysis of NMU.
The PPI network demonstrated the crosstalk between NMU
crosstalk and the following functional genes: GAL (galanin
peptides), NPY (proneuropeptide Y), NMUR1 (neuromedin
U receptor 1), NMUR2 (neuromedin U receptor 2), GHSR
(growth hormone secretagogue receptor type 1), NPS
(neuropeptide S), MLN (promotilin), NTS (neurotensin/-
neuromedin N), NTSR1 (neurotensin receptor type 1), and
NTSR2 (neurotensin receptor type 2) (Figure 3). The
prospective function of NMU in LUAD, GO, and KEGG
enrichment analysis was explored using WebGestalt. The
BP (biological process), CC (cellular component), and MF
(molecular function) of the genes involved in the top 10 were
analyzed (Figures 4(a)–4(c)). The data demonstrated that
those genes were linked to biological process, including neu-
ropeptide signaling cascade, G protein-coupled peptide
receptor signaling cascade, and feeding behavior. KEGG
enrichment results revealed that the genes in modules 1-2
were primarily abundant in neuroactive ligand-receptor
crosstalk and cAMP signaling cascade (Figure 4(d)).

3.4. Specific Mutations of NMU Genes in LUAD Patients. The
mutations of NMU and interactive genes (GAL, NPY,
NMUR1, NMUR2, GHSR, NPS, MLN, NTS, NTSR1,
NTSR2) were analyzed by the cBioPortal database. The
results showed that the NMU gene-altered was 1.4% in

2068 patients with LUAD, and its interacted gene alterations
were shown in Figure 5(a). Of note, there were 3 specific
mutations G45V, R143T, and F152L of NMU in the LUAD
samples (Figure 5(b)). Furthermore, the OS and PFS
(progress-free survival) curves showed a dramatically higher
survival probability in LUAD patients without NMU alter-
ations than those with the NMU alterations (Figures 5(c)
and 5(d), p < 0:05). Altogether, these results suggested that
NMU gene mutation could influence the prognosis of LUAD
patients.

3.5. In Vitro Validation of the NMU Expression. The NMU
expression was validated at the mRNA and protein level in
lung adenocarcinoma cells and nonmalignant lung cell line
via qRT-PCR and western blotting. The data illustrated that
the mRNA and protein contents of NMU in lung adenocar-
cinoma cells were higher in contrast with that of nonmalig-
nant lung cells (Figure 6).

3.6. Effect of NMU on Cell Proliferation and Growth. To
explore the impact of NMU on cell proliferation and growth
of lung adenocarcinoma, we transfected A549 cells with len-
tiviruses containing shNMU or shLuc. The protein expres-
sion of NMU was repressed after transfection with shNMU
(Figure 7(a)). The proliferation of A549 cells was inhibited
by treatment with shNMU (Figures 7(b) and 7(c)). Colony
formation assays revealed dramatically reduced cell growth
after knockdown of NMU (Figures 7(d) an(d) 7(e)). The
Erk1/2 and FoxO3 phosphorylation were inhibited in A549
cells treatment with shNMU, suggesting that NMU mainly
regulates the cAMP signaling pathway. In addition, cell
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Figure 6: The high NMU expression in LUAD cell lines. (a) qRT-PCR detection of the levels of NMU in LUAD cells and lung normal cells.
(b) Western blot analysis to detect the expression of NMU protein in LUAD cells and lung normal cells. (c) The bar chart showing the ratio of
the NMU protein to actin by densitometry in the different cells. (∗∗∗p < 0:001 vs. normal 16HBE cell).
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Figure 7: Knockdown of NMU inhibits LUAD cell proliferation and clone formation. (a) A549 cells are transfected with indicated shRNA,
and the protein expression is analyzed with indicated antibodies. (b) BrdU assay to assess the DNA synthesis of A549, A549-shLuc, and A549-
shNMU. (c) The percentage of BrdU-positive cells in the A549, A549-shLuc, and A549-shNMU cells (∗∗∗p < 0:001 vs. A549 or A549-shLuc
group). (d) Colony formation assay showing clone formation capacity of A549, A549-shLuc, and A549-shNMU. (e) The number of colonies
in each well was counted (∗∗∗p < 0:001 vs. A549 or A549-shLuc group).
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cycle-associated proteins were determined through western
blotting. The data demonstrated that the expression of cyclin
A2, cyclin D1, and cyclin B1 decreased in A549 cells trans-
fected with shNMU compared to that transfected with shLuc.
Moreover, P21 and P27 expression levels were elevated in
A549-shNMU cells than in A549-shLuc cells (Figure 8).
The findings demonstrate that NMU plays an indispensable
role in the proliferation of LUAD cells and presents a prom-
ising treatment target for LUAD.

4. Discussion

Studies have shown that bioinformatic methods can be
applied to assess gene expression levels and predict potential
therapeutic targets [22, 23]. The identification of novel key
genes associated with the development and progression of
LUAD is crucial for its diagnosis and treatment. Compelling
evidence indicates that NMU is upregulated in various cancer
types and is related to increased growth and invasion of can-
cer cells [24–26]. In the present study, we revealed a remark-
ably higher expression of NMU in LUAD patients than in
nonmalignant patients and was associated with LUAD stages
I to III. Interestingly, TP53 mutation and cigarette smoking
were associated with the high expression of NMU in LUAD
patients. The elevated NMU expression was related to the
remarkable dismal OS, FPS, and PPS in LUAD patients, sug-
gesting that NMU potentially plays an indispensable role in
LUAD prognosis. In addition, through the cBioPortal analy-
sis, we found 3 specific mutations G45V, R143T, and F152L
in LUAD patients; the mutations were associated with poor
prognosis in LUAD patients. According to the qRT-PCR
results, the mRNA expression of NMU was in most cases,
overexpressed (3 times higher expression) in the lung adeno-
carcinoma cells than in nonmalignant lung cells. Both the
western blotting and qRT-PCR analyses demonstrated an
elevation of the NMU protein expression in lung adenocarci-
noma cells. This elevated level of the NMU expression in
LUAD tumors was positively correlated with promoting cell
proliferation. Moreover, silencing of the NMU expression
by RNA interference decreased colony formation. The cAMP

signaling cascade mediated the modulation of lung adenocar-
cinoma cell proliferation by NMU. These findings implicate
NMU as a potential new prospective prognostic biomarker
and treatment target for LUAD.

Cigarette smoking is a predisposing factor for most lung
cancers. Cigarettes have a mixture of over 7000 chemicals
with the potential to damage respiratory epithelium and
may increase the frequency of genomic alternations [27].
Castelletti et al. revealed that KRAS mutations were linked
to smoking [28]. Elsewhere, Mariyo et al. reported that smok-
ing resulted in the MUC4 positive expression and was related
to dismal prognosis in patients with LUAD [29]. Herein, we
revealed that the LUAD patients who are smoking cigarettes
exhibited a higher expression of NMU than their nonsmok-
ing counterparts. Previous studies reported that TP53 was
the most predominant mutation in EGFR/KRAS/ALK-nega-
tive lung adenocarcinomas in nonsmokers [30]. In addition,
TP53 mutations were associated with poor prognosis in
LUAD patients. In the present study, we established that
TP53 mutations were positively linked to elevated NMU
expression in LUAD patients. These results suggested that
cigarette smoking and TP53 mutations were related high
expression of NMU in LUAD patients.

Moreover, survival analysis illustrated that the high
NMU expression was associated with remarkably dismal
OS, FPS, and PPS in LUAD patients. The OS revealed that
elevated NMU expression resulted in a remarkably low sur-
vival probability (HR = 1:7, 95%CI = 15:4 − 2:95, p = 0:0074)
in LUAD patients. In a previous study, the level of the NMU
protein was found to be elevated in hepatocellular carcinoma
(HCC), and the prognosis of individuals with HCC with the
elevated NMU expression was remarkably worse in contrast
with that of individuals with low NMU expression [14]. We
also identified the proteins that interacted with NMU via
STRING and found 10 NMU interacted proteins: GAL,
NPY, NMUR1, NMUR2, GHSR, NPS, MLN, NTS, NTSR1,
and NTSR2. Previously, Qiu et al. found remarkably higher
levels of NTS, NTSR1, and NTSR2 in colorectal cancer
(CRC) tissue than in the surrounding nonmalignant tissue.
In addition, they revealed remarkably shorter disease-free

P-ERK1/2

ERK1/2

Actin

Cyclin B1

Cyclin D1

Cyclin A2

P21

P27

Actin

P-FoxO3

FoxO3

A
54

9-
sh

N
M

U

A
54

9-
sh

Lu
c

A
54

9

A
54

9-
sh

N
M

U

A
54

9-
sh

Lu
c

A
54

9

Figure 8: Western blot was for detection of the expression of cAMP signaling and cell cycle-related proteins in A549, A549-shLuc, and A549-
shNMU cells.
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survival in patients with CRC with a higher level of NTS than
those with lower levels of NTS [31]. Based on the above anal-
ysis, we suggest that the NMU interaction with NTS, NTSR1,
and NTSR2 is associated with a dismal prognosis in LUAD
patients.

KEGG pathway analysis revealed that NMU regulated
the cAMP signaling pathway which mediated lung adenocar-
cinoma development. The cAMP signaling cascade plays an
indispensable role in cell growth, cell proliferation, cell
differentiation, apoptosis, and metabolism. Yan et al. demon-
strated that dopamine and dopamine receptor D1 promoted
cell proliferation along with metastasis in hepatocellular car-
cinoma through the modulation of cAMP/PI3K/AKT/CREB
cascade [32]. Ai-wadei et al. found that nicotine stimulated
the growth of non-small-cell lung tumor xenografts via the
activation of the cAMP signaling cascade. Interestingly, inhi-
bition of cAMP signaling activation reversed the stimulatory
influence of nicotine on cancer growth [33]. In this study, we
found the high expression of NMU in lung cancer cells acti-
vated the cAMP signaling, whereas silencing of NMU inhib-
ited the cAMP signaling activation. Moreover, the cell
proliferation and colony formation were reduced in lung ade-
nocarcinoma cells treated with shNMU. The cell cycle-
related protein assay demonstrated that silencing NMU
decreased cyclin A2, cyclin B1, and cyclin D1 expression,
but increased P21 and P27 expression; this implied that
NMU knockdown triggered cell cycle arrest and suppressed
cell proliferation.

In conclusion, the present study has demonstrated that
the NMU expression in LUAD tissues is higher than in non-
malignant tissue. The high NMU expression is a potential
specific prognostic biomarker of worse prognosis in individ-
uals with LUAD. Furthermore, NMU regulates cell prolifera-
tion through cell cycle and cAMP signaling cascade.
Collectively, we have shown that NMU presents a potential
prospective prognostic marker and treatment target for
LUAD.
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