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Background. Epithelial-mesenchymal transition (EMT) is significantly associated with the invasion and development of
esophageal squamous cell carcinoma (ESCC). However, the importance of EMT-related long noncoding RNA (lncRNA) is
little known in ESCC. Methods. GSE53624 (N = 119) and GSE53622 (N = 60) datasets retrieved from the Gene Expression
Omnibus (GEO) database were used as training and external validation cohorts, respectively. GSE53624 and GSE53622
datasets were all sampled from China. Then, the prognostic value of EMT-related lncRNA was comprehensively investigated
by weighted coexpression network analysis (WGCNA) and COX regression model. Results. High expression of PLA2G4E-AS1,
AC063976.1, and LINC01592 significantly correlated with the favorable overall survival (OS) of ESCC patients, and
LINC01592 had the greatest contribution to OS. Importantly, ESCC patients were divided into low- and high-risk groups
based on the optimal cut-off value of risk score estimated by the multivariate COX regression model of these three lncRNA.
Patients with high risk had a shorter OS rate and restricted mean survival time (RMST) than those with low risk. Moreover,
univariate and multivariate COX regression revealed that risk stratification, age, and TNM were independent prognostic
predictors, which were used to construct a nomogram model for individualized and visualized prognosis prediction of ESCC
patients. The calibration curves and time-dependent ROC curves in the training and validation cohorts suggested that the
nomogram model had a good performance. Interestingly, clear trends indicated that risk score positively correlated with tumor
microenvironment (TME) scores and immune checkpoints TIGIT, CTLA4, and BTLA. In addition, the Kyoto Encyclopedia of
Genes and Genomes (KEGG) showed that PLA2G4E-AS1, AC063976.1, and LINC01592 were primarily associated with TNF
signaling pathway, NF-kappa B signaling pathway, and ECM-receptor interaction. Conclusion. We developed EMT-related
lncRNA PLA2G4E-AS1, AC063976.1, and LINC01592 for prognostic prediction and risk stratification of Chinese ESCC
patients, which might provide deep insight for personalized prognosis prediction in Chinese ESCC patients and be potential
biomarkers for designing novel therapy.

1. Introduction

Esophageal cancer is one of the top ten malignant tumors
globally and the sixth leading cause of cancer-related deaths.
Esophageal cancer is mainly prevalent in eastern Asia and
eastern and southern Africa [1, 2]. Esophageal squamous cell
carcinoma (ESCC) is the most common histological subtype
of esophageal cancer, accounting for about 90%. ESCC has a
high tendency to be aggressive and metastatic, as well as a
high chance of recurrence. Even with multimodality treat-

ments (surgery, radiotherapy, chemotherapy, and targeted
therapy), the prognosis of ESCC patients remains poor [3].
Insight into the molecules and mechanisms behind ESCC
invasion and metastasis helps deepen the understanding of
the disease. It is also urgent to discover novel biomarkers to
develop new therapeutic strategies and improve the progno-
sis of ESCC patients.

Long noncoding RNA (LncRNA) is a group of evolu-
tionarily conserved RNA molecules with more than 200
nucleotides in length, lacking protein-coding ability [4].
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Abnormal expression of LncRNA plays a vital role in the
occurrence and development of various tumors [5–9],
including ESCC [10, 11]. Many studies have shown that
lncRNA plays multiple roles in malignant behaviors such
as tumor formation, invasion, migration, and immunogenic-
ity. LncRNA BRCAT54 inhibits the tumorigenesis of non-
small -ell lung cancer by binding to RPS9 to regulate JAK-
STAT and calcium pathways [12]. Moreover, lncRNA
LINC00472 regulates cell stiffness and inhibits the migration
and invasion of lung adenocarcinoma by binding to YBX1
[13]. In addition, a study found that LIMIT may be a target
for cancer immunotherapy [14]. LncRNA can participate in
the occurrence and development of tumors by affecting
chromatin remodeling, histone modification, DNA methyla-
tion, gene transcription, translation, etc.

Notably, the effect of lncRNA on the epithelial-
mesenchymal transition (EMT) of tumor cells has also been
confirmed in recent studies [15, 16]. EMT is an essential step
in the metastasis of malignant tumors, which can transform
epithelial-like cells into a mesenchymal-like cell state. By mod-
ifying the adhesion molecules expressed in cells, EMT reduces
the adhesion ability of epithelial-derived tumor cells, thereby
causing epithelial cells to separate from each other, increasing
the metastatic potential of tumor cells, and further resisting
antitumor treatments [17, 18]. Accordingly, EMT plays a
crucial role in the metastasis of epithelial tumors. Few studies
have explored the prognostic value of EMT-related lncRNA in
cancer patients [19]. The role of EMT-related lncRNA in ESCC
and related mechanisms is little known.

This study comprehensively investigated and validated
the prognostic value of EMT-related lncRNA in Chinese
ESCC patients from the Gene Expression Omnibus (GEO)
database by weighted gene coexpression network analysis
(WGCNA), COX proportional hazard regression, and
Kaplan-Meier survival analysis. Furthermore, risk stratifica-
tion and a nomogram model were constructed to personalize
and visualize the overall survival (OS) rates of ESCC patients.
Additionally, the correlation between weighted EMT-related
lncRNA with tumor microenvironment (TME) scores,
immune checkpoints (ICs), and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways was further explored.

2. Materials and Methods

2.1. ESCC Patients. The transcriptome data of 119 and 60
newly diagnosed ESCC patients in the GSE53624 and
GSE53622 datasetswere downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/), assigned as training
and validation cohorts, respectively. GSE53624 and
GSE53622 datasets were all sampled from China. The clini-
cal characteristics, including age, gender, tumor invasion
depth (T), lymph node metastasis (N), tumor node metasta-
sis (TNM) staging, tumor grade, overall survival (OS) time,
and events, were obtained and listed in Table S1. The
workflow of data analysis in this study was performed
according to Figure 1. Since the GEO database is publicly
available, no approval from the local ethics committee was
required.

2.2. Acquisition of lncRNA and EMT-Related mRNA.A total of
17,936 lncRNA (version 35) were downloaded from the GEN-
CODE database (https://www.gencodegenes.org/human/)
[20]. Furthermore, the 50 hallmark gene sets and the
“HALLMARK_EPITHELIAL_MESENCHYMAL_ TRANSI-
TION” gene list, including 200 EMT-related mRNA, were
obtained from the Gene Set Enrichment Analysis (GSEA)
database (http://www.gsea-msigdb.org/gsea/msigdb/collections
.jsp#H) [21, 22].

2.3. Weighted Gene Coexpression Network Analysis
(WGCNA). As an unsupervised machine learning, WGCNA
was applied for investigating the correlation between genes.
The R package “WGCNA” in R software (version 4.0.2,
https://www.r-project.org/) was used to construct a weighted
coexpression network between the lncRNA and EMT-
related mRNA [23]. In the network, the pairwise Pearson
coefficient was used to evaluate the coexpression weight
among all genes. The power β of the soft threshold was used
to confirm a scale-free network. Notably, the genes with sim-
ilar expression patterns were clustered into the same color
module in the unsupervised coexpression network.

2.4. Nomogram Model. The R packages “foreign” and “rms”
in R software (version 4.0.2, https://www.r-project.org/)
were used to construct a nomogram model to personalize
and visualize the OS rate of ESCC patients [24, 25]. Each
variable was assigned a point according to the nomogram
model. Then, the total points were obtained by summing
the points of all variables for determining the OS rate of an
ESCC patient. Finally, time-dependent receiver operating
characteristic (ROC) and calibration curves of the training
and validation cohort were used to evaluate the accuracy of
the nomogram model that predicted the OS rate.

2.5. Estimation of Tumor Microenvironment (TME) Score.
The ESTIMATE algorithm was used to calculate the fraction
of immune and stromal cells in ESCC tissues based on gene
expression levels [26]. The ESTIMATE algorithm was
performed using R package “estimate” to calculate TME,
immune, and stromal scores in each ESCC patient.

2.6. Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathways. “DOSE,” “http://org.Hs.eg.db,” “topGO,” and
“clusterProfiler” packages in R software (version 4.0.2,
https://www.r-project.org/) were used to obtain the KEGG
pathways of EMT-related lncRNA in ESCC patients.

2.7. Statistical Analysis. All statistical analysis was performed
using R software (version 4.0.2, https://www.r-project.org/).
A chi-square and Fisher tests were used to compare differ-
ences between two groups of categorical variables, as
appropriate. Univariate and multivariate Cox proportional
hazard regression analysis was performed using package
“survival.” The “surv_cutpoint” function in the R package
“survminer” was used to determine the optimal cut-point of
a gene (Figure S1). Kaplan-Meier curves were compared by
the log-rank test. The R package “survRM2” was used to
obtain the restricted mean survival time (RMST).
Correlation coefficients between two quantitative variables

2 Disease Markers

https://www.ncbi.nlm.nih.gov/geo/
https://www.gencodegenes.org/human/
http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp#H
http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp#H
https://www.r-project.org/
https://www.r-project.org/
http://org.hs.eg/
https://www.r-project.org/
https://www.r-project.org/


were obtained by Pearson’s method. The “survivalROC”
package determined the area under the curve (AUC) in the
time-dependent ROC curve. A two-tailed P value <0.05 and
a P value <0.1 were considered statistically significant and a
clear trend, respectively.

3. Results

3.1. WGCNA for lncRNA and EMT-Related mRNA in ESCC
Patients. As shown in Table S1, the clinical characteristics
were balanced between GSE53624 and GSE53622 datasets
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Figure 1: Schematic diagram of the study. The transcriptome sequencing data and clinical information of patients with esophageal
squamous cell carcinoma (ESCC) were downloaded from the Gene Expression Omnibus (GEO) database. Different datasets were
assigned as training and validation cohorts for weighted coexpression network analysis (WGCNA) and univariate COX proportional
hazards regression analysis. Then, the epithelial-mesenchymal transition- (EMT-) related lncRNA determined by multivariate COX
regression analysis was used for risk stratification and constructing a nomogram model. Finally, the pathways of EMT-related lncRNA
and the correlation between lncRNA and tumor microenvironment (TME) or immune checkpoints (ICs) were explored.
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(P > 0:05). To identify EMT-related lncRNA in ESCC
patients, 188 EMT-related mRNA and 5,506 lncRNA were
included in the construction of WGCNA, and the
workflow for data analysis was shown in Figure 1. The soft
thresholds for building a scale-free network of training and
validation cohorts were set to 4 and 5, respectively
(Figures 2(a) and 2(b)). Then, a total of 3,900 lncRNA
were coexpressed with EMT-related mRNA in the training
cohort, which was distributed in 6 modules, including
black, blue, brown, green, grey, and turquoise modules
(Figure 2(a)). Moreover, 3,742 lncRNA and EMT-related
mRNA were showed in 11 coexpression modules, including
black, blue, green, greenyellow, grey, magenta, pink, purple,
red, turquoise, and yellow, in the validation cohort
(Figure 2(b)). Therefore, 3,900 and 3,742 EMT-related
lncRNA in the training and validation cohorts, respectively,
were used for the following univariate and multivariate
COX regression analysis. Notably, the percent of
overlapping EMT-related lncRNA between training and
validation cohorts was 78.1% (3,045/3,900) and 81.4%
(3,045/3,742), respectively.

3.2. Univariate and Multivariate COX Regression Analysis.
After univariate COX regression analysis, 338 and 169
EMT-related lncRNA were significantly associated with
the OS of ESCC patients in the training and validation
cohorts, respectively (P < 0:05, Figure 3(a)). To further
confirm that EMT-related lncRNA had prognostic value in
both cohorts, lncRNA with a hazard ratio ðHRÞ > 1 or
HR<1 in the univariate regression model was overlapped
between the training and validation cohorts, and the results
showed that 3 EMT-related lncRNA expression, including
PLA2G4E-AS1, AC063976.1, and LINC01592, significantly
correlated with the favorable OS of ESCC patients (HR < 1,
Figure 3(b)). Then, multivariate COX regression analysis
was used for weighted combination of AC063976.1,
LINC01592, and PLA2G4E-AS1, which indicated that
LINC01592 contributed the greatest to the OS of ESCC
patients (coefficient = −0:54). Notably, the time-dependent
ROC curve results demonstrated that the multivariate COX
regression model performs well in the training cohort
(AUC > 0:60, Figure 3(c)). This finding was confirmed in
the validation cohort (AUC ≥ 0:70, Figure 3(c)).
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Figure 2: Construction of WGCNA between lncRNA and EMT-related genes in the training (a) and validation (b) cohorts. The soft
threshold was obtained when the scale-free topology model was fitted to 0.85 (a). The dendrogram was constructed by hierarchical
clustering of coexpressed genes (b). The different colors below the dendrogram represented the modules corresponding to the
coexpression of lncRNA and EMT-related genes.
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Figure 3: Continued.
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Figure 3: Univariate and multivariate COX regression analysis of EMT-related lncRNA in the training and validation cohorts. (a) The
heatmaps displayed the hazard ratio (HR) and 95% confidence interval (CI) of EMT-related lncRNA with P < 0:05 by univariate COX
regression analysis in the training (a) and validation (c) cohorts. Blue to red in the color scale represented HR from low to high.
HR.95 L: the low value in the 95% confidence interval of HR; HR.95H: the high value in the 95% confidence interval of HR. (b) The
overlapping number of EMT-related lncRNA with HR < 1 (a) or HR > 1 (c) in the training and validation cohorts. (c) Multivariate COX
regression analysis of EMT-related lncRNA. The contribution of EMT-related lncRNA to the overall survival (OS) of ESCC patients in
the training cohort (upper panel). The time-dependent receiver operator characteristic (ROC) curves of the training (b) and validation
(d) cohorts were used to evaluate the performance of the multivariate COX regression model.
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Figure 4: The weighted combination of AC063976.1, LINC01592, and PLA2G4E-AS1 was used for risk stratification of ESCC patients. (a, c)
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3.3. Establishment of Risk Stratification for ESCC Patients.
To establish a risk stratification for ESCC patients, we first
obtain the risk score based on the coefficients of multivariate
COX regression, and the formula for calculating the risk
score was as follows: risk score = −0:45 × ðexpression level
of AC063976:1Þ − 0:54 × ðexpression level of LINC01592Þ −
0:23 × ðexpression level of PLA2G4E −AS1Þ (Figure 3(c)).
Based on the optimal prognostic cut-point of risk score
-6.57, ESCC patients were divided into high- and low-risk

groups. ESCC patients with high risk were significantly asso-
ciated with poor OS in the training cohort (HR = 3:70, 95%
confidence interval (CI): 2.05 to 6.66, P < 0:001, Figure 4(a)).
This result was confirmed in the validation cohort
(HR = 2:54, 95% CI: 1.27 to 5.07, P = 0:007, Figure 4(c)).
Furthermore, high-risk ESCC patients had a shorter RMST
than low-risk patients in the training cohort (4-year RMST:
25 (95% CI: 22 to 29) vs. 40 (95% CI: 36 to 44) months)
(Figure 4(a)). This result was again confirmed in the
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Figure 5: The risk stratification was performed in GSE53624 (a) and GSE53622 (b) datasets based on the combination of AC063976.1,
LINC01592, and PLA2G4E-AS1. Microsoft Excel 2016 was used to randomly select a portion of samples in each dataset as training
cohort (a) and then treat the other samples as validation cohort (b).
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validation cohort (4-year RMST: 24 (95% CI: 17 to 31) vs. 37
(95% CI: 32 to 42) months) (Figure 4(c)). Interestingly, The
Kaplan-Meier curves indicated that high expression of
AC063976.1, LINC01592, and PLA2G4E-AS1 correlated
with the favorable OS of ESCC patients in both the training
and validation cohorts (P < 0:05, Figures 4(b) and 4(d)).
Importantly, risk stratification was an independent prognos-
tic predictor for ESCC patients by univariate and multivari-
ate COX regression analysis in the training cohort
(HR = 3:89, 95% CI: 2.13 to 7.11, P < 0:001, Table 1). This
was again confirmed in the validation cohort (HR = 2:73,
95% CI: 1.29 to 5.78, P = 0:008, Table 1). In order to deter-
mine whether risk stratification has prognostic significance
in a random population, Microsoft Excel 2016 was further
used to randomly select a portion of samples in each dataset
as a training cohort and then treat the other samples as a val-
idation cohort. Patients with a high-risk score were associ-

ated with a poor OS in the training cohort of the GSE53624
dataset (HR = 2:67, 95% CI: 1.21 to 5.91, P = 0:012). This
result was confirmed in the validation cohort of GSE53624
dataset (HR = 5:16, 95% CI: 2.13 to 12.47, P < 0:001)
(Figure 5(a)). Interestingly, high-risk patients had a shorter
OS than low-risk patients in the training cohort of the
GSE53622 dataset; although, it is not statistically significant
at that point (HR = 2:46, 95% CI: 0.91 to 6.66, P = 0:067).
This finding was again confirmed in the validation cohort
of GSE53622 dataset (HR = 2:52, 95% CI: 0.96 to 6.62, P =
0:054) (Figure 5(b)). This might be due to the small sample
size in the GSE53622 dataset. To confirm the risk stratifica-
tion that could better predict prognosis in which part of the
population of ESCC patients, we conducted a subgroup
analysis. There is a clear trend in the training and validation
cohorts that risk stratification can better predict the progno-
sis in patients with TNM III/IV stage, N1-3, T3-4, male, and
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>60 years old. The prognosis can be predicted well through
risk stratification regardless of the tumor grade (Figure 6).

3.4. Construction of a Nomogram Visualizing and
Personalizing the OS Rate of ESCC Patients. Univariate and
multivariate COX regression analysis was used to identify
independent prognosis factors for constructing a nomogram
model. In addition to risk stratification, age and TNM stage
were independent prognostic factors for ESCC patients in
both the training and validation cohorts (HR > 1, P < 0:1,
Table 1). Accordingly, a nomogram model constructed by
the risk stratification, age, and TNM stage could visualize
and personalize the 1-, 2-, 3-, and 4-year OS rates of ESCC
patients (Figure 7(a)). Details of the points for the variables
and OS rates in the nomogram model were listed in
Table S2. The time-dependent ROC and calibration curves
were further used to evaluate the predicted performance of
the nomogram model. Notably, the time-dependent ROC
curves illustrated that all the AUCs were ≥0.70 in both the
training and validation cohorts (Figure 7(b)). Moreover,
calibration curves indicated that the 1-, 2-, 3-, and 4-year
OS rates predicted in the nomogram model were highly in
line with actual observations in both the training and
validation cohorts (Figures 7(c) and 7(d)). These results
suggested that the nomogram model had good performance
in predicting the OS rate of ESCC patients.

3.5. KEGG Pathways for EMT-Related lncRNA. Based on
WGCNA, 57 and 25 EMT-related genes were coexpressed
with AC063976.1, LINC01592, or PLA2G4E-AS1 in the train-
ing and validation cohorts, respectively (Figure 8(a)). Then,
the KEGG was applied to identify the significant pathway
associated with the AC063976.1, LINC01592, or PLA2G4E-
AS1 in ESCC patients. The results showed that in the training
and validation cohorts, a total of 7 and 8 pathways were
enriched, respectively. And three overlapped pathways,
including TNF signaling pathway, NF-kappa B signaling path-

way, and ECM-receptor interaction, were enriched in both
cohorts (Figures 8(c) and 8(d)).

3.6. The Risk Score Was Positively Correlated with the TME
Score and Immune Checkpoints (ICs). Ample reports found
that EMT-related genes were enriched in TME, whereas lit-
tle was known about these genes in ESCC. This prompted
us to investigate further the relationship between the risk
score based on EMT-related lncRNA and TME score and
the expression levels of ICs. TME score was composed of
stromal score and immune score. The results suggested that
risk score was positively correlated with TME score
(R = 0:25, P = 0:007). Further analysis found that the risk
score had a positive correlation with immune score
(R = 0:16, P = 0:081); although, statistical significance was
not reached at this point. Because ICs is closely related to
immune score, we further analyzed the correlation between
risk score and ICs. Notably, risk score had a significantly
positive correlation with BTLA (R = 0:26, P = 0:004) and
CTLA4 (R = 0:23, P = 0:012). What is more, there was a clear
trend suggested that the risk score was positively correlated
with TIGIT (R = 0:15, P = 0:093); although, statistical signif-
icance was not reached at this point. However, there was no
significant correlation between risk score and PD-1, PD-L1,
PD-L2, LAG3, and CD276 (P > 0:1). Interestingly, risk score
was also positively correlated with stromal scores (R = 0:31,
P < 0:001) (Figures 9(a) and 9(b)). We further analyzed the
correlation between risk score and cancer-associated fibro-
blast- (CAFs-) related genes. The results suggested that the
risk score had a significant positive correlation with MGP
(R = 0:43, P < 0:001), MFAP5 (R = 0:19, P = 0:036), ITGA11
(R = 0:18, P = 0:050), DCN (R = 0:34, P < 0:001), or ACTA2
(R = 0:36, P < 0:001). Moreover, there was a clear trend
showing that risk score was positively correlated with
COL11A1 (R = 0:16, P = 0:091) and BMP4 (R = 0:17, P =
0:060); although. the data were not yet significant enough
at this point. However, there is no significant correlation
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Figure 7: Construction of the nomogram model. (a) The combination of risk stratification, age, and TNM stage visualized and personalized
the OS rate of ESCC patients. After a point was assigned to risk stratification, age, and TNM stage of each patient according to the
nomogram model, the total points were obtained to predict the OS rate of ESCC patients. (b) The time-dependent receive operating
characteristic curve (ROC) curve was used to evaluate the performance of the nomogram model in the training (a, b) and validation (c,
d) cohorts. (c d) The calibration curves were used to evaluate the performance of the nomogram model in predicting the OS rate in
training (c) and validation (d) cohorts. The criterion for good performance of the nomogram model was that the predicted OS rate was
relatively consistent with the actual OS rate. AUC: the area under the curve.
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between risk score and SPHK1, CSPG4, TGFBI, and TNNC1
(P > 0:1) (Figures 9(a) and 9(b)).

4. Discussion

ESCC is the prevalent histological subtype of esophageal
cancer, with a poor prognosis and prone to distant metasta-
sis [3, 27]. Therefore, exploring potential biomarkers is
essential for managing and predicting the prognosis of ESCC
patients. Increasing evidence suggests that EMT is highly
correlated with cancer progression and metastasis [28]. In
recent years, a few studies have investigated the role of
EMT-related lncRNA in the prognosis and progression of
ESCC [29, 30]. However, based on next-generation tran-
scriptome sequencing, a comprehensive assessment of the
prognostic importance, risk stratification, and visualization
of OS rates by EMT-related lncRNA in ESCC was little
known.

In this study, based on the analysis of two large datasets
in the GEO database, the results suggested that the high
expression of AC063976.1, LINC01592, or PLA2G4E-AS1
was significantly associated with favorable OS in ESCC
patients. In addition, KEGG results indicated that
AC063976.1, LINC01592, or PLA2G4E-AS1 were mainly
enriched in the TNF signaling pathway, NF-kappa B signal-
ing pathway, and ECM-receptor interaction. AC063976.1, as
a novel EMT-related lncRNA, has not yet been explored in
cancer. For the first time, we revealed that upregulation of
AC063976.1 corrected with a favorable OS of ESCC patients.
Li et al. reported that LINC01592 was a protective factor for

ESCC patients [31], which was consistent with this study.
Furthermore, LINC01592 contributed the greatest to the
OS of ESCC patients. Although PLA2G4E-AS1 was down-
regulated in thyroid carcinoma, its prognostic importance
in cancer patients has not been elucidated [32]. The results
of this study demonstrated that the high expression of
PLA2G4E-AS1 could predict favorable OS of ESCC patients.
These findings will provide prognostic information for
further exploring the functions and mechanisms of
AC063976.1, LINC01592, or PLA2G4E-AS1 in ESCC in the
future.

Risk stratification plays a vital role in guiding clinical
treatment and management of cancer patients [33]. Notably,
the risk stratification constructed by a weighted combination
of AC063976.1, LINC01592, and PLA2G4E-AS1 divided
ESCC patients into low- and high-risk groups, implying it
was also an independent prognostic predictor for ESCC
patients. Interestingly, a subgroup analysis found that risk
stratification was mainly performed in ESCC patients with
TNM III/IV stage, N1-3, T3-4, male, or >60 y. Furthermore,
the risk stratification could be used regardless of the tumor
grade. Notably, a nomogram model established by the risk
stratification, age, and TNM stage could display and visual-
ize the 1-, 2-, 3-, and 4-year OS rates of ESCC patients,
which might contribute to the management of individual-
ized treatment.

Previous studies reported that TME was associated with
EMT in cancers [34]. Moreover, the stromal microenviron-
ment and CAFs play an important role in EMT [35–38].
Hence, the relationship between risk scores calculated by
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Figure 8: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for the EMT-related lncRNA. (a, b) mRNA that coexpressed with
EMT-related lncRNA was obtained from WGCNA in the training (a) and validation (b) cohorts. (c, d) The KEGG pathways for the EMT-
related lncRNA in training (c) and validation (d) cohorts. The pathways marked in red represented the overlapped pathways enriched by
EMT-related lncRNA in both the training and validation cohorts.
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AC063976.1, LINC01592, and PLA2G4E-AS1 and TME was
further investigated. In this study, the risk score was posi-
tively correlated with TME, immune, and stromal scores.
Furthermore, the risk score had a significant positive corre-
lation with CAF genes, including MGP, ITGA11, DCN,
ACTA2, COL11A1, or BMP4. However, high expression
levels of ICs usually lead to T cell exhaustion in cancers
[39, 40]. Interestingly, there was also a positive correlation
between risk score and ICs, including BTLA, TIGIT, and
CTLA4. These results can be interpreted that the antitumor

effect of the high level of immune cell infiltration is offset by
the strong immunosuppressive pathway activated by upreg-
ulated IC proteins [34, 41] and might provide the likelihood
of immunotherapy for high-risk ESCC patients.

This study had several limitations: first, the results of the
analysis and validation of transcriptome sequencing data in
this study were based on publicly available datasets. There-
fore, some important clinical information was incomplete,
such as treatment options, which might produce potential
biases in conclusions. Secondly, this study did not provide
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Figure 9: The correlation between risk score estimated by nomogram and tumor microenvironment (TME) and immune checkpoints (ICs)
in the training cohort. (a) Distribution of risk score, TME score, ICs, and cancer-associated fibroblast (CAF) related gene expression level. R
package “estimate” was used to calculate TME, immune, and stromal scores in each ESCC patient based on gene expression levels. (b) The
relationship between risk score and TME, ICs (a) and CAFs (b). The size of the dot represents the size of the correlation coefficient, and the
color scale from blue to yellow represents the P value from large to small.
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additional validation by original ESCC samples from our
clinical center. Finally, EMT-related lncRNA should be vali-
dated through in vivo and in vitro experiments in the future.

5. Conclusions

We demonstrated that based on risk stratification con-
structed by PLA2G4E-AS1, AC063976.1, and LINC01592,
ESCC patients were divided into low- and high-risk groups.
Moreover, a nomogram model established by the risk strat-
ification, age, and TNM stage could display and visualize
the 1-, 2-, 3-, and 4-year OS rates of Chinese ESCC patients.
In addition, the risk score was positively correlated with the
TME score, ICs, and CAFs. These findings might provide
deep insight for personalized prognosis prediction by
EMT-related lncRNA in Chinese ESCC patients, and the
three lncRNAs might be potential biomarkers for designing
novel therapy.
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