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Objective. Uncovering genetic and immunologic tumor features is critical to gain insights into the mechanisms of
immunotherapeutic response. Herein, this study observed the functions of CXCR2 in prognosis and immunology of ovarian
cancer. Methods. Expression, prognostic significance, and genetic mutations of CXCR2 were analyzed in diverse cancer types
based on TCGA and GTEx datasets. Associations of CXCR2 expression with immune checkpoints, neoantigens, tumor
mutational burden (TMB), and microsatellite instability (MSI) were evaluated across pancancer. CXCR2-relevant genes were
identified, and their biological functions were investigated in ovarian cancer. Through three algorithms (TIMER, quanTIseq,
and xCell), we assessed the relationships of CXCR2 with immune cell infiltration in ovarian cancer. GSEA was adopted for
inferring KEGG and hallmark pathways involved in CXCR2. Results. CXCR2 presented abnormal expression in tumors than
paired normal tissues across pancancer. Higher expression of CXCR2 was found in ovarian cancer. Moreover, its expression
was in relation to overall survival and progression including ovarian cancer. Prominent associations of CXCR2 with immune
checkpoints, neoantigens, TMB, and MSI were observed in human cancers. Somatic mutations of CXCR2 frequently occurred
across pancancer. Amplification was the main mutational type of CXCR2 in ovarian cancer. CXCR2-relevant genes were
markedly enriched in immunity activation and carcinogenic pathways in ovarian cancer. Moreover, it participated in
modulating immune cell infiltration in the tumor microenvironment of ovarian cancer such as macrophage and immune
response was prominently modulated by CXCR2. Conclusion. Collectively, CXCR2 acts as a promising prognostic and
immunological biomarker as well as a novel immunotherapeutic target of ovarian cancer.

1. Introduction

Ovarian cancer represents the major cause of deaths of gyne-
cological malignancies [1, 2]. Epithelial ovarian cancer is the
most common form [3]. The five-year survival rate is <35%
globally [3]. 70% of affected patients have advanced-stage
disease [4]. The present first-line standards of care include
debulking surgery plus platinum–taxane maintenance che-
motherapeutic strategy [5]. Following the first-line treat-
ment, cancer may relapse among 60–70% of patients with
first-rank debulking as well as 80–85% of patients with sub-

optimal debulking [6]. The high mortality of ovarian cancer
patients can be attributed to chemotherapy resistance, exten-
sive intraperitoneal metastasis, and other factors [7]. Awful
mortality may be attributed chemotherapeutic resistance,
extensive intraperitoneal metastases, etc. [8]. Tumor micro-
environment exerts a critical role in the progression and
clinical outcomes of ovarian cancer [9]. Emerging immuno-
therapeutic strategies enhance the antitumor immune
response by diverse methods such as immunostimulatory
cytokine and tumor antigen vaccine as well as monoclonal
antibody [10]. Though immunotherapy-relevant agents like
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olaparib may ameliorate ovarian cancer progression, there is
no prominent breakthrough for its effective therapy [11].
The presence and absence of tumor-infiltrating lymphocytes
are separately judged as “hot” tumor and “cold” tumor [12].
Therefore, because of high infiltration levels of tumor-
infiltrating lymphocytes, “hot” tumor can respond to immu-
nosuppressive checkpoint inhibitors. Nevertheless, despite
the relatively increased tumor mutation burden (TMB) of
ovarian cancer, it is still a “cold” tumor [13]. Thus, it is of
importance to explore how to activate the immune system
in “cold” tumor such as T cell and tumor-associated
macrophage.

Chemokine receptor (CXCR) family (including CXCR1-
7) is a type of G-protein-coupled receptors, abundant in 7
transmembrane motifs containing hydrophobic amino acids
[14]. Among them, CXCR2 was originally thought to be a G
protein-coupled transmembrane chemokine receptor
expressed on neutrophil [15]. It possesses the functions in
various leukocytes such as neutrophil, eosinophil, and mono-
cyte as well as macrophage, which is related to immune
response [16]. Targeting CXCR2 in myeloid-derived sup-
pressor cells may improve antitumor immune response
[17]. Emerging evidence suggests that CXCR2 is involved in
the recruitment of immune cells as well as promotes angio-
genesis, tumor growth, and metastases [18]. It exhibits high
affinity for IL-8 and Gro-1 but low affinity for Gro-2, Gro-3,
and epithelial neutrophil-activating peptide-78 [18]. More-
over, high expression of CXCR2 contributes to carcinogene-
sis in diverse cancer types, especially ovarian cancer [19].
Also, CXCR2-expressing ovarian cancer is aggressive with
undesirable clinical outcomes [20]. CXCR2 is crucial for
the acquisition of cisplatin chemoresistance of ovarian can-
cer cells [21]. Despite this, the functions of CXCR2 in prog-
nosis and immunology in ovarian cancer remain ambiguous.
In this study, we aimed to evaluate the prognostic and
immunological significance of CXCR2 in ovarian cancer.

2. Materials and Methods

2.1. Data Acquisition. This study acquired the transcriptome
data, follow-up information, and genetic mutation data of
pancancer samples from The Cancer Genome Atlas (TCGA)
project via Genomic Data Commons (GDC) web server [22].
Meanwhile, we curated transcriptome profiles of normal
specimens from Genotype-Tissue Expression (GTEx) pro-
jects [23]. Gene Expression Profiling Interactive Analysis 2
(GEPIA2) web server (http://gepia2.cancer-pku.cn/) pro-
vides an accessible resource for gene expression analysis in
tumor and normal specimens from TCGA and GTEx pro-
jects. CXCR2 expression was compared between tumor and
normal specimens with the Wilcoxon test. “Survival”module
of GEPIA was applied for assessing the correlations of
CXCR2 expression with overall survival (OS) of diverse can-
cer types. CXCR2 expression was analyzed across distinct
cancer pathological stages. Univariate cox regression analyses
were presented for investigating the associations of CXCR2
expression with OS and disease-specific survival (DSS) for
diverse cancer types in TCGA cohort.

2.2. Analysis of Associations between CXCR2 Expression and
Immune Checkpoints, Neoantigens, TMB, and Microsatellite
Instability (MSI). The known immune checkpoints were
curated from previous research [24]. TMB was calculated
as the number of somatic, coding, base substitutions, and
insert-deletion alterations per megabase of the genome
detected utilizing nonsynonymous and code-shifting indels
with the detection limit of 5% [25]. The formula of TMB
was as follows: TMB = Sn × 1,000,000/n, where Sn repre-
sented the absolute number of somatic alterations while
n represented the number of exon base coverage depth ≥
100 × . The number of neoantigens [26] as well as MSI
[27] was separately counted across pancancer. Through
the Spearman correlation test, we assessed the associations
of CXCR2 expression with immune checkpoints, neoanti-
gens, TMB, and MSI in diverse cancer types.

2.3. Somatic Mutation Analysis. Somatic mutations were
visualized across ovarian cancer specimens from TCGA
dataset utilizingMaftools package [28]. Through cBio Cancer
Genomics Portal (cBioPortal) platform (http://cbioportal
.org/) [29], alteration frequency of CXCR2 was analyzed in
diverse cancer types. Genomic mutations of CXCR2 con-
tained copy number amplification, deep deletion, and mis-
sense mutation.

2.4. Differential Expression Analysis. In line with the median
value of CXCR2 expression, ovarian cancer specimens in
TCGA dataset were classified into high- and low-expression
groups. Limma package (version 3.40.2) was adopted for dif-
ferential expression analysis between two groups [30]. With
∣log 2fold change ∣ >1 and false discovery rate ðFDRÞ < 0:05,
CXCR2-relevant genes were identified in ovarian cancer.

2.5. Function Enrichment Analysis. Biological processes of
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways enriched by CXCR2-
relevant genes were analyzed with clusterProfiler package
[31]. Terms with FDR < 0:05 were significantly enriched.

2.6. Analysis of Immune Cell Infiltration. Three algorithms
including Tumor Immune Estimation Resource (TIMER;
http://cistrome.shinyapps.io/timer) [32], quanTIseq (http://
icbi.at/quantiseq) [33], and xCell (http://xCell.ucsf.edu/) [34]
were employed for inferring the infiltration levels of immune
cells in ovarian cancer from TCGA dataset. The Spearman
correlation test was utilized to evaluate the relationships of
CXCR2 expression with immune cell infiltrations.

2.7. Gene Set Enrichment Analysis (GSEA). For exploring
the biological signaling pathways involved in CXCR2, GSEA
software (version 4.0.3) [35] was adopted carried out
between high- and low-expression groups with the median
value of CXCR2 expression as the cutoff value. The first
three or four terms of KEGG and hallmark were visualized.
The gene sets of KEGG and hallmark pathways were
curated from the Molecular Signature Database (MsigDB;
http://www.broadinstitute.org/msigdb) [36]. KEGG or hall-
mark pathways with ∣nominal enrichment score ðNESÞ ∣ >
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Figure 1: Continued.
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1:7 and nominal p < 0:05 were considered to have signifi-
cant enrichment.

2.8. Statistical Analysis. All statistics were presented with R
software (version 4.0.3; https://www.R-project.org) and its
packages. Comparisons between groups were conducted
with Student’s t-test, the Wilcoxon test, or one-way variance
analyses. The Spearman or Pearson correlation test was
utilized for evaluating correlations between variables. A p
value < 0.05 was set as statistically significant.

3. Results

3.1. Expression Patterns of CXCR2 across Pancancer. Herein,
this study evaluated the expression of CXCR2 in diverse
tumor tissues and matched normal tissues. We collected
data from TCGA and GTEx datasets. In TCGA dataset,
we noticed high expression of CXCR2 in COAD, GBM,
KIRC, and LGG (Figure 1(a)). In contrast, CXCR2 dis-
played reduced expression in BLCA, BRCA, HNSC, KICH,
LIHC, LUAD, PAAD, PRAD, and STAD. Due to the rela-
tively small sample size of normal tissues in TCGA, we
integrated data from TCGA and GTEx datasets. There
was reduced expression of CXCR2 in BLCA, BRCA,
COAD, GBM, HNSC, LIHC, LUAD, LUSC, PRAD, and
SKCM (Figure 1(b)). Nevertheless, upregulation of CXCR2
expression was found in KIRC, LAML, LGG, OV, PAAD,
STAD, and TGCT. Using the GEPIA2 tool, the relation-
ships of CXCR2 expression with pathological staging were
evaluated in CHOL, COAD, ESCA, KIRC, OV, PAAD,
READ, and STAD (Figure 1(c)). Among them, CXCR2
displayed stage-specific expression alterations in STAD,
while no clear associations were found in most cancer
types.

3.2. Prognostic Significance of CXCR2 across Pancancer.
Through the GEPIA2 tool, we investigated the associations
of CXCR2 with OS across diverse cancer types. The results
demonstrated that CXCR2 upregulation was in relation to
worse OS of OV and LGG patients (Figures 2(a)–2(c)).
Oppositely, KIRC patients with high expression of CXCR2
displayed marked survival advantage in comparison to
those with low expression of CXCR2 (Figure 2(d)). Further-
more, univariate cox regression models were conducted for
investigating the correlations of CXCR2 with OS and DSS
in each cancer type. In Figure 2(e), we noticed CXCR2 as a
risk factor for OS of ACC, DLBC, LAML, LGG, OV, and
STAD. In contrast, CXCR2 acted as a protective factor of
MESO OS. Moreover, CXCR2 upregulation displayed worse
DSS for ACC, DLBC, LGG, OV, and STAD (Figure 2(f)).
Kaplan-Meier curves also demonstrated the prognostic sig-
nificance of CXCR2 in OS and DSS of diverse cancer types
(Supplementary figure 1A, B).

3.3. Analysis of Links between CXCR2 Expression and Tumor
Immune Response across Pancancer. Nowadays, several
genes have been recognized as immune checkpoints in tumor
immune response. We evaluated whether there is a link of
CXCR2 with immune checkpoint genes. The results demon-
strated markedly positive associations between CXCR2 and
immune checkpoint genes such as CD86, VSIR, CD28, and
CTLA4 across pancancer (Figure 3(a)). For uncovering the
function of CXCR2 in the immune mechanism and immune
response, this study evaluated the interactions of CXCR2
expression with neoantigens, TMB, and MSI. Neoantigens,
TMB, and MSI are in relation to antitumor immunity and
may predict therapeutic responses to immunotherapeutic
agents. Correlation between CXCR2 expression and neoanti-
gens was assessed in diverse cancer types. In Figure 3(b),
CXCR2 exhibited prominently negative associations with
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Figure 1: Expression patterns of CXCR2 across pancancer. (a) Expression levels of CXCR2 in tumor and normal tissues in TCGA dataset.
(b) Expression levels of CXCR2 in tumor and normal tissues in TCGA and GTEx datasets. Yellow fusiformis represented tumor samples
while blue fusiformis represented normal samples. The X-axis meant number of tumor and normal specimens. The Y-axis meant log 2ð
transcript permillion ðTPMÞ + 1Þ. ∗p < 0:05; ∗p < 0:01; ∗∗∗p < 0:001. (c) Expression levels of CXCR2 in different pathological stages across
pancancer.
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the number of neoantigens in BRCA, SKCM, BLCA, and
PRAD. Moreover, we noticed the negative links of CXCR2
expression with TMB in BLCA, BRCA, LIHC, LUAD,
PAAD, PRAD, and THCA (Figure 3(c)). However, CXCR2
expression displayed positive correlations to TMB in LGG
and OV. As depicted in Figure 3(d), there were negative
interactions between CXCR2 expression and MSI in CHOL,

ESCA, HNSC, KIRP, LGG, LUAD, LUSC, PAAD, PRAD,
SKCM, STAD, UCEC, and UCS. The above evidence high-
lighted the implications of CXCR2 expression in tumor
immune response.

3.4. Analysis of Somatic Mutation of CXCR2 in Ovarian
Cancer. We analyzed the somatic mutation of CXCR2 in
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Figure 2: Evaluation of prognostic significance of CXCR2 across pancancer. (a) Survival map for the associations of CXCR2 with OS of
diverse cancer types. Red meant HR > 1 while blue meant HR < 1. (b–d) Kaplan-Meier curves of high and low expression of CXCR2
groups for OV, LGG, and KIRC patients. (e, f) Univariate cox regression analysis showing the associations of CXCR2 with OS and DSS
across diverse cancer types.
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Figure 3: Continued.
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ovarian cancer. As shown in Figure 4(a), the somatic muta-
tion rate was 0.46%. Among 436 ovarian cancer samples,
genetic mutations occurred in 261 (59.86%) (Figure 4(b)).
TP53 (56%), TTN (23%), CSMD3 (8%), MUC16 (7%),
FLG (6%), FAT3 (6%), DNAH3 (5%), SYNE1 (5%), USH2A
(5%), and HMCN1 (4%) were the most frequently mutated

genes across ovarian cancer. Moreover, missense mutation
was the major mutation type. However, no significant differ-
ence in genetic mutation was investigated between high and
low expression of CXCR2 groups. Through cBioPortal tool,
we evaluated the genetic mutation of CXCR2 across pancan-
cer. We noticed that amplification of CXCR2 occupied the
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Figure 3: Associations of CXCR2 expression with tumor immune response across pan-cancer. (a) Correlations of CXCR2 expression with
acknowledged immune checkpoint genes in diverse cancer types. The lower triangle meant coefficients calculated with Pearson’s correlation
test, while the upper triangle meant p value. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001. (b) Correlation analysis between CXCR2 expression and
the number of immune neoantigens across pancancer. (c) Association analysis of CXCR2 expression with TMB across pancancer utilizing
Spearman’s correlation test. (d) Association analysis of CXCR2 expression with MSI in diverse cancer types with Spearman’s correlation test.
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relatively high alteration frequency in ovarian cancer, which
could contribute to the upregulation of CXCR2 expression
(Figure 4(c)).

3.5. Identifying CXCR2-Relevant Genes and Their Biological
Significance. To identify CXCR2-relevant genes, we sepa-
rated ovarian cancer patients into high- and low-expression
groups in line with the median value of CXCR2 expression.
With ∣log 2fold change ∣ >1 and FDR < 0:05, we screened
734 CXCR2-relevant genes (Figures 5(a) and 5(b)). Among
them, 715 genes were upregulated while 19 genes were down-
regulated in the high-expression group (Tables 1 and 2).
Function enrichment analysis was presented for uncovering
the biological significance of CXCR2-relevant genes. In
Table 3 and Figure 5(c), upregulated genes were in relation
to KEGG pathways of immunity and inflammatory response
such as Th17 cell differentiation, cytokine-cytokine receptor
interaction, chemokine signaling pathway, antigen pro-
cessing and presentation, human T cell leukemia virus 1
infection, graft-versus-host disease, and allograft rejection.
Meanwhile, upregulated genes were prominently enriched by
immune response like regulation of mononuclear, lympho-
cyte, and leukocyte proliferation; leukocyte cell-cell adhesion;
T cell activation; myeloid leukocyte migration; neutrophil

degranulation; and neutrophil activation involved in immune
response (Table 4 and Figure 5(c)). Intriguingly, downregu-
lated genes displayed significant correlations to carcinogenic
pathways such as PPAR signaling pathway, neuroactive
ligand-receptor interaction, melanoma, gastric cancer, cell
adhesion molecules, and breast cancer (Table 5 and
Figure 5(c)). Also, we noticed that downregulated genes
were markedly associated with metabolic processes like tri-
glyceride metabolic and catabolic processes, neutral lipid
metabolic and catabolic processes, glycerolipid catabolic
process, and acylglycerol metabolic and catabolic processes
(Table 6 and Figure 5(c)).

3.6. Associations of CXCR2 with Immune Cell Infiltration in
Tumor Microenvironment. Three algorithms (TIMER, quan-
TIseq, and xCell) were adopted for inferring the infiltration
levels of immune cells in ovarian cancer. In Figure 6(a),
correlation analysis uncovered that CXCR2 was negatively
associated with the abundance of CD4+ T cell, neutrophil,
myeloid dendritic cell, and macrophage in ovarian cancer
tissues with TIMER algorithm. Using a quanTIseq method,
we noticed the negative associations of CXCR2 with T regu-
latory cell (Treg), M1 macrophage, and M2 macrophage
(Figure 6(b)). Oppositely, there were positive correlations
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Figure 4: Analysis of somatic mutation of CXCR2 in ovarian cancer. (a) Somatic mutation rate of CXCR2 across ovarian cancer. (b)
Landscape of genetic mutations across ovarian cancer specimens. Waterfall plots showed the mutational information of each gene in
each specimen. Diverse colors at the bottom represented diverse mutational types. The barplot above the legend displayed the number of
mutational burden. (c) Genetic mutation type and frequency of CXCR2 across pancancer via the cBioPortal tool. Histogram showed the
alteration frequencies of CXCR2 in diverse cancer types. Green, mutation; red, amplification; and blue, deletion.

10 Disease Markers



0

10

20

30

40

–0.584962500721156 0 0.584962500721156
Log2 (fold change)

–
Lo

g 10
 P

 v
al

ue

Downregulation
None
Upregulation

(a)

Group
3

2

1

0

–1

–2

–3

 High
Low

(b)

Figure 5: Continued.

11Disease Markers



of CXCR2 with uncharacterized cell and CD4+ T cell.
Through xCell algorithm, we investigated that CXCR2
displayed negative associations with stromal score, microen-
vironment score, immune score, CD8+ effector memory T
cell, CD4+ naïve T cell, CD4+ effector memory T cell, neu-
trophil, activated myeloid dendritic cell, myeloid dendritic
cell, monocyte, M1 macrophage, M2 macrophage, macro-
phage, hematopoietic stem cell, granulocyte-monocyte pro-
genitor, endothelial cell, and common myeloid progenitor
(Figure 6(c)). In contrast, we noticed the positive associa-
tions of CXCR2 with the abundance of CD8+ naïve T cell,
CD4+ central memory T cell, CD4+ Th2 T cell, CD4+ Th1
T cell, common lymphoid progenitor, and B cell plasma
across ovarian cancer. Based on three algorithms, CXCR2

expression negatively modulated macrophage infiltration in
ovarian cancer.

3.7. Analysis of Signaling Pathways Involved in CXCR2. For
observing the function of CXCR2 expression on tumor
progression, this study separated ovarian cancer specimens
into high- and low-expression groups in line with CXCR2
expression. Afterwards, we evaluated the enrichment of
KEGG and hallmark pathways in high- and low-expression
groups via GSEA. Our data suggested that CXCR2 exhibited
negative correlations to leishmania infection, chemokine
signaling pathway, and cytokine-cytokine receptor interaction
KEGG pathways (Figure 7(a)). Meanwhile, there were positive
relationships of CXCR2 with homologous recombination,
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Figure 5: Identifying CXCR2-relevant genes in ovarian cancer and their biological significance. (a, b) Volcano plots and heat map visualized
the expression patterns of CXCR2-relevant genes in high and low expression of CXCR2 groups. Red meant upregulation; blue meant
downregulation; and grey meant no significant difference. (c) KEGG pathways and biological processes enriched by upregulated CXCR2-
relevant genes or downregulated CXCR2-relevant genes.
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base excision repair, proteasome, and DNA replication
(Figure 7(b)). As depicted in Figure 7(c), hallmark pathways
of inflammatory response, complement, and KRAS signaling

up displayed negative interactions with CXCR2. In contrast,
CXCR2 was in positive relation to MYC targets v1, base exci-
sion repair, proteasome, and DNA replication (Figure 7(d)).

Table 1: The first 20 upregulated CXCR2-relevant genes ranked by |log2fold change|.

Genes log2fold change Average expression t p value FDR B

CYBB 1.626883 4.866193 13.2859 2.82E-33 3.13E-30 64.80304

CSF1R 1.580807 5.08034 13.53358 2.96E-34 4.76E-31 67.02763

ALOX5AP 1.572744 5.250381 11.77966 1.82E-27 4.82E-25 51.62072

LYZ 1.530011 6.245003 9.038626 8.60E-18 6.04E-16 29.71133

SLCO2B1 1.489949 3.454025 14.24883 4.06E-37 2.39E-33 73.52581

MPEG1 1.475656 3.816864 13.79154 2.78E-35 5.46E-32 69.35911

VSIG4 1.457472 5.213007 11.87514 7.96E-28 2.39E-25 52.43645

FPR3 1.439832 4.19429 11.74373 2.49E-27 6.48E-25 51.31448

LAPTM5 1.439653 7.33844 12.34081 1.35E-29 5.82E-27 56.45608

FCGR3A 1.435916 5.415789 11.59154 9.24E-27 2.07E-24 50.02226

CX3CR1 1.428444 3.051211 11.38818 5.27E-26 1.01E-23 48.30796

C3AR1 1.406321 4.279677 12.81774 1.93E-31 1.27E-28 60.6387

ITGB2 1.391398 4.898533 11.96583 3.62E-28 1.23E-25 53.21399

CD163 1.390154 4.016596 11.86577 8.64E-28 2.55E-25 52.35628

GPR34 1.38616 3.462056 13.89462 1.08E-35 2.91E-32 70.29467

FPR1 1.372222 2.86155 12.72349 4.49E-31 2.57E-28 59.80717

F13A1 1.352817 3.950676 10.18952 1.10E-21 1.22E-19 38.51989

SIGLEC1 1.343363 3.306899 11.83175 1.16E-27 3.17E-25 52.06539

FGL2 1.311918 3.734005 11.99986 2.69E-28 9.33E-26 53.50643

MNDA 1.30756 3.392344 13.16289 8.62E-33 8.98E-30 63.70358

Table 2: The downregulated CXCR2-relevant genes ranked by |log2fold change|.

Genes log2fold change Average expression t p value FDR B

PCP4 -1.372 4.022248 -5.43074 1.01E-07 1.15E-06 7.096412

APOA1 -1.03739 6.955593 -4.73466 3.12E-06 2.29E-05 3.80636

CLDN6 -0.88582 6.125029 -3.11872 0.001957 0.006165 -2.2451

FXYD4 -0.86449 1.906169 -5.00148 8.76E-07 7.46E-06 5.021079

FGF17 -0.83534 1.148663 -4.85379 1.78E-06 1.40E-05 4.341469

SMIM24 -0.82416 2.673542 -4.64089 4.80E-06 3.34E-05 3.393485

SIX3 -0.76623 1.360529 -3.86787 0.000129 0.000589 0.274769

MAL -0.75402 6.521845 -3.25231 0.001249 0.004188 -1.833

FXYD7 -0.73799 2.355221 -4.24556 2.75E-05 0.000153 1.734303

LHX1 -0.68835 2.827502 -2.62669 0.008976 0.02269 -3.62052

PDCL2 -0.66398 1.539734 -3.70687 0.000241 0.001012 -0.3093

NUPR2 -0.65946 4.707309 -3.53281 0.000462 0.001776 -0.91478

SAMD11 -0.64936 3.063171 -3.35658 0.00087 0.003063 -1.5

FABP6 -0.64904 2.858451 -2.96587 0.003212 0.009419 -2.69647

NPW -0.63225 5.019634 -3.64286 0.000308 0.001243 -0.53513

CA9 -0.62153 4.176407 -3.36072 0.000857 0.003025 -1.48657

H3C11 -0.6192 2.105437 -4.39824 1.42E-05 8.64E-05 2.359317

PRSS1 -0.61512 3.467221 -3.50754 0.000507 0.001923 -1.00041

DEFB126 -0.61494 1.807047 -3.64746 0.000302 0.001224 -0.51901
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4. Discussion

Based on TCGA and GTEx datasets, we observed the abnor-
mal expression of CXCR2 in tumors and paired normal

tissues across pancancer. Survival analysis uncovered the
prominent prognostic significance of CXCR2 in diverse can-
cer types. Especially, CXCR2 expression presented marked
upregulation in ovarian cancer as well as its upregulation

Table 3: The information of the first 20 KEGG pathways enriched by upregulated CXCR2-relevant genes.

Description GeneRatio BgRatio p value FDR Size

Staphylococcus aureus infection 39/411 96/8009 7.16E-26 1.90E-23 39

Hematopoietic cell lineage 38/411 99/8009 3.70E-24 4.90E-22 38

Phagosome 44/411 152/8009 4.61E-22 3.62E-20 44

Rheumatoid arthritis 35/411 93/8009 5.46E-22 3.62E-20 35

Leishmaniasis 31/411 77/8009 1.26E-20 6.68E-19 31

Tuberculosis 45/411 180/8009 1.02E-19 4.52E-18 45

Viral protein interaction with cytokine and cytokine receptor 32/411 100/8009 9.47E-18 3.58E-16 32

Cytokine-cytokine receptor interaction 54/411 294/8009 5.80E-17 1.92E-15 54

Cell adhesion molecules (CAMs) 36/411 147/8009 1.17E-15 3.46E-14 36

Osteoclast differentiation 32/411 128/8009 2.59E-14 6.87E-13 32

Inflammatory bowel disease (IBD) 23/411 65/8009 3.66E-14 8.81E-13 23

Allograft rejection 18/411 38/8009 5.50E-14 1.22E-12 18

Chemokine signaling pathway 38/411 189/8009 1.71E-13 3.49E-12 38

Human T cell leukemia virus 1 infection 41/411 219/8009 2.24E-13 4.24E-12 41

Graft-versus-host disease 18/411 41/8009 2.87E-13 5.07E-12 18

Type I diabetes mellitus 18/411 43/8009 7.86E-13 1.30E-11 18

Th17 cell differentiation 27/411 107/8009 2.29E-12 3.57E-11 27

Antigen processing and presentation 23/411 78/8009 2.99E-12 4.40E-11 23

Influenza A 34/411 170/8009 4.03E-12 5.63E-11 34

Asthma 15/411 31/8009 4.95E-12 6.57E-11 15

Table 4: The information of the first 20 biological processes enriched by upregulated CXCR2-relevant genes.

Description GeneRatio BgRatio p value FDR Size

T cell activation 98/670 483/18866 1.24E-46 4.26E-43 98

Leukocyte cell-cell adhesion 86/670 364/18866 1.85E-46 4.26E-43 86

Leukocyte proliferation 74/670 313/18866 5.29E-40 8.13E-37 74

Neutrophil activation involved in immune response 89/670 490/18866 2.89E-38 3.32E-35 89

Leukocyte chemotaxis 63/670 232/18866 5.31E-38 4.89E-35 63

Neutrophil degranulation 88/670 487/18866 1.19E-37 9.12E-35 88

Cell chemotaxis 71/670 311/18866 2.56E-37 1.68E-34 71

Regulation of leukocyte proliferation 63/670 240/18866 4.88E-37 2.81E-34 63

Mononuclear cell proliferation 68/670 286/18866 5.87E-37 3.00E-34 68

Regulation of leukocyte cell-cell adhesion 72/670 329/18866 1.55E-36 7.13E-34 72

Positive regulation of cytokine production 83/670 447/18866 2.02E-36 8.45E-34 83

Lymphocyte proliferation 67/670 283/18866 2.69E-36 1.03E-33 67

Positive regulation of cell adhesion 81/670 428/18866 3.58E-36 1.27E-33 81

Myeloid leukocyte migration 60/670 222/18866 4.28E-36 1.41E-33 60

Response to molecule of bacterial origin 74/670 356/18866 6.20E-36 1.90E-33 74

Regulation of T cell activation 71/670 332/18866 2.43E-35 7.00E-33 71

Regulation of mononuclear cell proliferation 59/670 221/18866 3.54E-35 9.59E-33 59

Positive regulation of cell activation 79/670 421/18866 5.21E-35 1.33E-32 79

Regulation of cell-cell adhesion 80/670 439/18866 1.67E-34 4.05E-32 80

Regulation of lymphocyte proliferation 58/670 219/18866 2.19E-34 5.05E-32 58
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contributed to more undesirable survival outcomes. Hence,
CXCR2 might act as a promising prognostic predictor of
ovarian cancer. The response of ovarian cancer to immuno-
therapeutic agents remains limited. Although immunother-

apy may produce a long-lasting response in a few patients,
most of the patients do not respond to this therapy, covering
those with PD-L1-expressed tumors [37]. Nevertheless, eval-
uating the sensitivity or resistance to target therapeutic

Table 5: The information of the first 20 KEGG pathways enriched by downregulated CXCR2-relevant genes.

Description GeneRatio BgRatio p value FDR Size

PPAR signaling pathway 2/9 76/8009 0.003064 0.085799 2

Nitrogen metabolism 1/9 17/8009 0.018951 0.191907 1

Vitamin digestion and absorption 1/9 24/8009 0.026662 0.191907 1

Aldosterone-regulated sodium reabsorption 1/9 37/8009 0.040838 0.191907 1

African trypanosomiasis 1/9 37/8009 0.040838 0.191907 1

Fat digestion and absorption 1/9 41/8009 0.045163 0.191907 1

Neuroactive ligand-receptor interaction 2/9 340/8009 0.053093 0.191907 2

Cholesterol metabolism 1/9 50/8009 0.054831 0.191907 1

Melanoma 1/9 72/8009 0.078097 0.24297 1

Protein digestion and absorption 1/9 95/8009 0.101876 0.251426 1

Pancreatic secretion 1/9 102/8009 0.109004 0.251426 1

Leukocyte transendothelial migration 1/9 112/8009 0.119099 0.251426 1

Systemic lupus erythematosus 1/9 133/8009 0.13997 0.251426 1

Cell adhesion molecules (CAMs) 1/9 147/8009 0.153638 0.251426 1

Breast cancer 1/9 147/8009 0.153638 0.251426 1

Gastric cancer 1/9 149/8009 0.155575 0.251426 1

Hepatitis C 1/9 155/8009 0.161361 0.251426 1

Tight junction 1/9 169/8009 0.174727 0.251426 1

Influenza A 1/9 170/8009 0.175674 0.251426 1

Alcoholism 1/9 184/8009 0.188836 0.251426 1

Table 6: The information of the first 20 biological processes enriched by downregulated CXCR2-relevant genes.

Description GeneRatio BgRatio p value FDR Size

Forebrain regionalization 2/18 24/18866 0.000234 0.105833 2

Triglyceride catabolic process 2/18 38/18866 0.000592 0.105833 2

Regulation of gastrulation 2/18 43/18866 0.000759 0.105833 2

Neutral lipid catabolic process 2/18 48/18866 0.000945 0.105833 2

Acylglycerol catabolic process 2/18 48/18866 0.000945 0.105833 2

Regulation of sodium ion transmembrane transporter activity 2/18 55/18866 0.001239 0.110357 2

Regulation of sodium ion transmembrane transport 2/18 65/18866 0.001726 0.110357 2

Neural retina development 2/18 72/18866 0.002112 0.110357 2

Regulation of cardiac conduction 2/18 73/18866 0.002171 0.110357 2

Glycerolipid catabolic process 2/18 74/18866 0.00223 0.110357 2

Regulation of sodium ion transport 2/18 88/18866 0.003135 0.110357 2

Axis specification 2/18 88/18866 0.003135 0.110357 2

Regulation of neural precursor cell proliferation 2/18 91/18866 0.003348 0.110357 2

Dorsal/ventral pattern formation 2/18 92/18866 0.003421 0.110357 2

Triglyceride metabolic process 2/18 110/18866 0.004849 0.110357 2

Endocrine system development 2/18 125/18866 0.006216 0.110357 2

Camera-type eye morphogenesis 2/18 125/18866 0.006216 0.110357 2

Regulation of embryonic development 2/18 134/18866 0.007111 0.110357 2

Neutral lipid metabolic process 2/18 138/18866 0.007527 0.110357 2

Acylglycerol metabolic process 2/18 138/18866 0.007527 0.110357 2
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populations according to stratification by cancer markers
including TMB, PD-L1, tumor-infiltrating lymphocytes,
and neoantigens can enhance the predictive efficacy of
immunotherapeutic response [38]. Our pancancer analysis
demonstrated the close interactions of CXCR2 with immune
checkpoints, neoantigen, TMB, and MSI, indicating that
CXCR2 could participate in modulating immune response.
Our genetic mutation analysis uncovered that there occurred
widespread mutations of CXCR2 across pancancer. Amplifi-
cation was the major mutational type of CXCR2 in ovarian
cancer. This indicated that CXCR2 amplification contrib-
uted to its overexpression in ovarian cancer.

Under the cutoffs of ∣log 2fold change ∣ >1 and FDR <
0:05, we identified 734 CXCR2-relevant genes. We noticed
that CXCR2-relevant genes were markedly enriched in
immunity activation such as Th17 cell differentiation,
cytokine-cytokine receptor interaction, chemokine signaling

pathway, and antigen processing and presentation as well as
carcinogenic pathways such as PPAR signaling pathway. For
instance, PARP inhibitor has emerged as a therapeutic agent
against ovarian cancer according to the DNA repair vulner-
ability in ovarian cancer cells, which prevents the repair of
DNA single-strand break as well as has generated double-
strand break that is unable to be precisely repaired in tumor
cells [39].

Based on three algorithms (TIMER, quanTIseq, and
xCell), we noticed the prominent interaction between
CXCR2 and macrophage in ovarian cancer tissues. Macro-
phage constitutes a key component of the tumor microenvi-
ronment [13]. Tumor-associated macrophage is macrophage
produced by the infiltrations of peripheral blood mononu-
clear cells into solid tumor tissues, occupying a large part of
tumor stromal cells [13]. Because of the increased plasticity
and heterogeneity of macrophage, it has distinct biological
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Figure 6: Analysis of interactions between CXCR2 and immune cell infiltration in tumor microenvironment. (a) Correlations of CXCR2
with the abundance of immune cells in ovarian cancer through TIMER algorithm. (b) Associations of CXCR2 with the abundance of
immune cells across ovarian cancer tissues with quanTIseq algorithm. (c) Associations between CXCR2 and infiltration levels of immune
cells in ovarian cancer utilizing xCell algorithm. Red meant positive correlation while blue meant negative correlation. ∗p < 0:05; ∗∗p <
0:01; ∗∗∗p < 0:001.
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functions in diverse tumor microenvironment, including two
major phenotypes: M1 and M2 macrophages [40]. Tumor-
associated macrophage is abundant in the ovarian cancer
microenvironment and affects patients’ survival outcomes
[40]. The relationship of CXCR2 with macrophage has been

reported in several cancer types. For instance, macrophage
reeducation by CXCR2 inhibitors may drive senescence as
well as suppress tumor progression in advanced prostate
cancer [41]. CXCR2-dominated interplays between cancer
cells and macrophages drive gastric cancer metastases [42].
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Figure 7: GSEA of CXCR2 linked with KEGG and hallmark pathways. (a) GSEA results of CXCR2 ranked in the first three for its negative
associations with KEGG pathways. (b) GSEA results of CXCR2 ranked in the first four for its positive associations with KEGG pathways. (c)
GSEA results of CXCR2 ranked in the first three for its negative associations with hallmark pathways. (d) GSEA results of CXCR2 ranked in
the first four or its positive associations with hallmark pathways. ES: enrichment score; NES: nominal enrichment score; FDR: false discovery
rate.
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CXCR2 was mainly involved in modulating chemokine
signaling pathway, cytokine-cytokine receptor interaction,
inflammatory response, and complement as well as DNA
damage repair. CXCR2 produced by cancer cells induce neu-
trophil extracellular traps, which interferes with immune
cytotoxicity [43]. CXCR2-modified CAR-T cells enhance
trafficking capacity, which improves therapeutic response
in hepatocellular carcinoma [44]. Blockage of CXCR2 may
enhance the sensitivity and effectiveness of immunotherapy
and suppress tumor progression [18]. Combining previous
evidence, CXCR2 may exert a critical role in modulating
immune response. Nevertheless, there are several limitations
in our study. The regulatory functions of CXCR2 in ovarian
carcinogenesis and tumor immunity will be investigated in
in vitro and in vivo experiments. Moreover, prognostic
significance of CXCR2 expression should be verified in a
larger ovarian cancer cohort.

5. Conclusion

Collectively, our integrative analysis of CXCR2 uncovered
the prominent associations of CXCR2 expression with
survival outcomes, immune cell infiltration, and immune
response in ovarian cancer, which could contribute to explain
the function of CXCR2 in carcinogenesis and immunothera-
peutic response from various perspectives.
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