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Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer. Currently, targeting therapy makes great
advances for the treatment of TNBC, whereas more effective therapeutic targets are urgently needed. Cyclin B2 (CCNB2), which
belongs to B-type cyclins, is known as a cell cycle regulator. CCNB2 is synthesized at G1 phase in cancer cells and
downregulated at anaphase. The defects of CCNB2 led to the abnormal cell cycle and tumorigenesis. Though there are wide
effects of CCNB2 on multiple types of tumors, the potential role of CCNB2 in TNBC progression is still unclear. Herein, we
found that CCNB2 was highly expressed in human TNBC tissues and correlated with the prognosis and clinical pathological
features including tumor size (p = 0:022∗) and pTNM stage (p = 0:021∗) of patients with TNBC. CCNB2 could promote the
proliferation of TNBC cells in vitro and in mice. Our findings therefore confirmed the involvement of CCNB2 in TNBC
progression and provided the evidence that CCNB2 could serve as a promising molecular target of TNBC.

1. Introduction

Triple-negative breast cancer (TNBC), which accounts for
approximately 15% total incidence of breast cancer, is more
aggressive than other types of breast cancers [1]. TNBC was
highly metastatic, suggesting that TNBC was prone to recur-
rence average 2 years after surgery [2]. Notably, the standard
treatment methods for TNBC mainly included surgery, che-
motherapy, radiation treatment, and combination treatment.
However, most TNBC patients still died within 5 years after
therapy [3]. Currently, targeted therapy has great advantages
for the treatment of high-malignancy tumors, particularly
TNBC [4]. To combat this disease, more effective molecular
targets are urgently needed.

The cell cycle is tightly and precisely regulated by a vari-
ety of regulators, and its abnormalities might lead to tumor-
igenesis. During the cell cycle, cyclins could bind to the
cyclin-dependent kinases (CDKs) to affect expression and
the activity of CDKs, therefore mediating cell cycle [5].
Cyclin B2 (CCNB2), which belongs to B-type cyclins, is a cell

cycle regulator [6]. A previous study indicated that CCNB2
was synthesized at G1 phase and quickly downregulated at
anaphase [7]. During cell cycle, the defects of CCNB2 led to
the failure of G2/M checkpoint and stimulated gene muta-
tions and tumorigenesis [8]. CCNB2 was also involved in
meiosis progression in mouse oocytes [9].

The role of CCNB2 in cancer progression and metastasis
has also been widely revealed [10, 11]. CCNB2 was abnor-
mally expressed in several types of cancers, such as lung can-
cer, bladder cancer, and breast cancer [11, 12]. Its
overexpression led to the poor prognosis of patients with
hepatocellular carcinoma (HCC) [13]. A microRNA, miR-
582-3p, could suppress the proliferation of acute myeloid
leukemia via targeting CCNB2 [14]. Though there are wide
effects of CCNB2 on cancer progression, its potential role
in breast cancer is still unclear. Currently, there is no effective
therapeutic target for the treatment of TNBC, a type of breast
cancer which is highly metastatic. Targeting cell cycle regula-
tors may be an effective method to combat TNBC [13]. Var-
ious cell cycle regulators have previously been found to affect
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TNBC progression and could serve as potential targets [14].
However, the effect of cyclins on TNBC progression is still
worth further study.

This study was aimed at assessing the expression of
CCNB2 in human TNBC tissues and investigated the corre-
lation between its expression and the prognosis and clinical
features of TNBC patients. We further detected the effects
of CCNB2 on the proliferation of TNBC cells in vitro and
in vivo and assessed the effects of CCNB2 in on tumor growth
of TNBC cells. We therefore provided a promising molecular
target for TNBC treatment.

2. Materials and Methods

2.1. Antibodies, Primers, and shRNA Plasmids. Anti-CCNB2
antibody (for IHC assays, 1 : 500 dilution, for immunoblot
assays, 1 : 1000 dilution, ab6185622, Abcam, Cambridge,
UK) and anti-β-actin antibody (1 : 2000 dilution, ab8226,
Abcam, Cambridge, UK) were used.

The quantitative PCR primer sequences of CCNB2 are
shown as follows: forward, 5′-CAACCCACCAAAACAA
CA-3′ and reverse, 5′-AGAGCAAGGCATCAGAAA-3′;
the quantitative PCR primer sequences of GAPDH are
shown as follows: 5′-TGACTTCAACAGCGACACCCA-3′
and 5′-CACCCTGTTGCTGTAGCCAAA-3′. CCNB2
shRNA plasmids were bought from Addgene. For CCNB2
depletion, cells were transfected with control or CCNB2
shRNA plasmids using Lipofectamine 2000 (Invitrogen;
Thermo Fisher Scientific, Inc.), and the in vitro assays were
performed 24h after the transfection.

For the infection of lentivirus, lentivirus packaging plas-
mids were all purchased from Shanghai HanBio Co. Ltd.
The virus was packaged in a 6-well plate; 1.5μg packaged
mixed plasmid and 0.5μg expressed plasmid were added,
together with 250μL serum-free medium. HEK293T cell
density reached 90% for virus encapsulation. Subsequently,
ultracentrifugation was used to harvest viral supernatant,
and all follow-up experiments were carried out according to
the instruction manual.

2.2. Bioinformatics Analysis. We conducted bioinformatics
analysis through GEPIA (http://gepia.cancer-pku.cn/detail
.php?gene=CCNB2/) to analyze the Cancer Genome Atlas
(TCGA) database (the Ensemble ID is ENSG0000
0157456.7) with a threshold of p < 0:05 and LogFC > 1 or
<-1 for the differential genes, and the median was used as
the basis for dividing the patients into two groups for
Kaplan-Meier (KM) survival analysis, and the 95% confi-
dence interval was marked with a dotted line.

2.3. Human Tissue Samples and Analysis. The total 114
human TNBC tissues and corresponding normal tissues in
this study were collected from the patients receiving surgical
treatment in the First Hospital of Shanxi Medical University
from 2016.6 to 2019.1. The corresponding normal tissues
were adjacent normal tissues 3mm far from tumor tissues
of TNBC patients. Our study was approved by the Ethics
Committee of the First Hospital of Shanxi Medical Univer-
sity, and all patients were informed of the study content

and signed a consent form. The clinical-pathological features,
including patient age, tumor grade, tumor size, pTNM stage,
and lymph node metastasis, are listed in Table 1.

To explore the possible correlations between the expres-
sion levels of CCNB2 and TNBC progression, immunohisto-
chemical (IHC) assays were performed. Briefly, tissues were
paraffin-embedded using Leica paraffin embedding agent.
The slices were sliced in 5 microns thick. Then, sections were
fixed with 4% PFA at room temperature for 30 min at room
temperature and subsequently blocked with 2% BSA for 20
min at room temperature. Slides were incubated with
CCNB2 antibodies (1 : 500 dilution, ab6185622, Abcam,
Cambridge, UK) at room temperature for another 2 h. After
washing with PBS, the sections were incubated with biotinyl-
ated secondary antibody for another 1 h at room temperature
(1 : 500, cat. no. ab201485; cat. no. ab99807, respectively;
Abcam), and diaminobenzidine was used as a chromogen
substrate. Finally, Leica EVOS fluorescence microscopy is
used for immunohistochemical imaging.

CCNB2 was located in the cytoplasm of TNBC tissues.
The scoring methods were shown as follows: 0: 0% stained
cells; 1: 1–20% stained cells; 2: 21–60% stained cells; and 3:
61–100% stained cells. The staining intensity was evaluated
on a score of 0 (negative or low-level staining), 1 (modest-
level staining), and 2 (high-level staining). The expression
levels of CCNB2 were divided according to the staining
index: score of staining intensity + score of staining cells per-
centage. Staining index < 2 was thought to be low expression,
while staining index 2 or >2 was thought to be high
expression.

Table 1: Relationships of CCNB2 and clinicopathological
characteristics in 114 patients with triple-negative breast cancer
(TNBC).

Feature
All n =
114

CCNB2
expression

χ2 p
Low High
n = 46 n = 68

Age (year) 2.165 0.141

<50 64 22 42

≥50 50 24 26

Tumor grade 1.972 0.160

Low 66 23 43

High 48 23 25

Tumor size 5.258 0.022∗

<2 62 31 31

≥2 52 15 37

pTNM stage 5.329 0.021∗

I-II 75 36 39

III-IV 39 10 29

Lymph node
metastasis

1.338 0.247

Yes 52 24 28

No 62 22 40
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2.4. Cell Culture and Transfection. The human TNBC cell
lines, MDA-MB-231 and HCC-1937, were all bought from
ATCC. MDA-MB-231 and HCC-1937 cells were all main-
tained in Dulbecco’s modified essential medium (DMEM),
supplemented with 10% fetal bovine serum (FBS, Gibco,
CA, USA), in a 5% CO2 incubator. The CCNB2 shRNA plas-
mids were transfected into both MDA-MB-231 and HCC-
1937 cells by Lipofectamine 2000 (Invitrogen, CA, USA).
The CCNB2 stably depleted MDA-MB-231 cells were manu-
ally screened through the infection of its shRNA plasmids
and further used for the in vivo tumor growth assays.

2.5. Quantitative PCR Assays. Trizol (Invitrogen; Thermo
Fisher, USA) was used to isolate total RNA from two types
of TNBC cell lines. RNA was reverse transcribed using M-
MLV reverse transcriptase (M1701; Promega). Total mRNA
was reverse transcribed to produce cDNA using a cDNA syn-
thesis system (Takara, Japan). qPCR was performed using a
SYBR Ex Taq kit (Takara, Japan), which was used based on
the manufacturer’s protocol. The reaction conditions were
as follows: predenaturation, 95°C, 5 min; denaturation,
95°C, 30 s; annealing, 58°C, 30 s; and extension, 72°C, 30 s.
There were a total of 35 cycles. The method of 2 − ΔΔCq
Livak and Schmittgen was used. CCNB2 mRNA levels were
normalized to GAPDH.

2.6. Immunoblot Assays. TNBC cells or tissues were lysed by
RIPA. BSA method was used for the determination of total
proteins, and 15μL protein sample was loaded in the lane
at a protein concentration of 1mg/mL. Then, SDS-PAGE
(12% gel) was performed. After adding the transmembrane
onto NC membranes, membranes were blocked with 5%
fat-free milk in TBST at room temperature and subsequently
incubated with the primary antibodies of CCNB2 and β-actin
at room temperature for 1.5 h. Then, the NC membranes
were incubated with HRP-conjugate secondary antibodies
for 1 h at room temperature. Signals were detected using
ECL kit (Novex™ Chemiluminescent Substrate Reagent Kit,
Thermo Fisher).

2.7. Colony Formation Assays. TNBC cells were added into a
6-well culture plate and transfected with control or CCNB2
shRNA plasmids. After 2 weeks, cells were fixed with PFA
for 30min at room temperature and stained with 0.1% crystal
violet at room temperature for 20min, then washed with PBS
twice. The number of colonies was manually counted.

2.8. MTT Assays. TNBC cells were plated into 96-well plates
with a density of approximately 1000 cells, transfected with
control or CCNB2 shRNA plasmids, and maintained for
24 h. Cells were then incubated with MTT for 4 h at room
temperature and then removed the medium. 150μL dimethyl
sulfoxide (DMSO) was added into each well to extract the
cells, and the absorbance value was measured with a micro-
plate reader at 570nm wavelength.

2.9. Tumor Growth Assays. All animal assay processes were
approved by our Institutional Animal Care and Use Com-
mittee (IACUC) of the First Hospital of Shanxi Medical Uni-
versity (Approval number: SYXK 2019-0721). Bulb/C nude

mice were purchased from Viton Lihua, Beijing. The mice
were all female mice (8 weeks, 20-22 g). The mice were fed
with adequate food and water, alternating 12 h of light and
darkness, and their status was checked twice a day. There
were 8 mice in the control group and 8 mice in the experi-
mental group. Mice with tumors up to 1000 mm3 were con-
sidered to be killed. The tumor tissues were sacrificed by neck
breaking before removal.

To generate stable CCNB2-depletion TNBC cells, the
pGFP-V-RS-shCCNB2 plasmid and the packaging plasmids
pVSVG and pMLV-Gag-Pol were transfected into HEK293T
cells for 48 h. The virus-containing supernatant was har-
vested and filtered and concentrated using ultracentrifuga-
tion and transduced into MDA-MB-231 cells with
polybrene (Sigma-Aldrich). Stable CCNB2-knockdown cells
were then screened by puromycin (Invitrogen).

Subsequently, about 106 MDA-MB-231 cells stably trans-
fected with the indicated shRNA plasmids were subcutane-
ously implanted into athymic nude mice. After 14 days,
tumors began formation, and the volume of tumors was mea-
sured every 3 days. After 29 days, all tumors were isolated,
and the tumor growth curves were calculated and analyzed.

2.10. Statistical Analysis. GraphPad 6.0 was used in this study
for all statistical analysis in this study. The results in this
study were represented as mean ± SD. The correlations
between clinical pathological features of TNBC patients and
CCNB2 expression were analyzed using χ2 analysis. Stu-
dent’s t-test was used for statistical comparisons. ∗ indicated
that p < 0:05 and was considered as a statistically significant
difference.

3. Results

3.1. CCNB2 Was Highly Expressed in Human TNBC Tissues
and Correlated with the Prognosis of TNBC Patients. Since
there are wide effects of CCNB2 on the progression of multi-
ple types of cancers, we therefore speculate that CCNB2 has a
potential regulatory role in the progression of TNBC. We
investigated the expression levels of CCNB2 in human breast
cancer tissues according to TCGA database. A total of 1085
tumor tissues and 291 normal tissues were used to assess
the expression of CCNB2 in these tissues. We noticed
CCNB2 expression was obviously enhanced in tumor tissues
(Figure 1(a)). Furthermore, through the K-M survival analy-
sis in TCGA database, we found that the expression of
CCNB2 was obviously correlated with the disease-free sur-
vival rates of 2 sets of patients with breast cancer collected
in different times (Figure 1(b), n = 803 and n = 963, respec-
tively). Therefore, these data indicated the high expression
of CCNB2 in human breast cancer tissues and correlated
with the prognosis of patients.

3.2. CCNB2 Expression Was Upregulated in Human TNBC
Tissues and Correlated with the Clinical Pathological
Features of TNBC Patients. We then performed IHC assays
to further evaluate the expression of CCNB2 in a total of
114 TNBC tissues and the corresponding adjacent tissues
collected in our hospital. We found that CCNB2 was mainly
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located in the cytoplasm (Figure 2). Importantly, we also
noticed that CCNB2 was highly expressed in TNBC tissues
(Figure 2(a)), compared to normal tissues (Figure 2(b)).
Our data therefore confirmed the high expression of CCNB2
in human TNBC tissues.

We subsequently analyzed the correlations between
CCNB2 expression and clinical pathological features of
patients with TNBC. The total of 114 patients was divided
into CCNB2 low- and high-expression groups according to
the expression levels of CCNB2 in tumor tissues; we noticed
that 46 patients showed CCNB2 low expression (40.3%,
Table 1), and the remaining 68 patients (59.7%) showed high
CCNB2 expression. The clinical features, including patient
age, tumor grade, tumor size, pTNM stage, and lymph node

metastasis, were analyzed. We found no obvious correlations
between CCNB2 expression and patient age (p = 0:141),
tumor grade (p = 0:160), and lymph node metastasis
(p = 0:247) of TNBC patients. Importantly, we noticed that
CCNB2 expression was obviously correlated with tumor size
(p = 0:022∗) and pTNM stage (p = 0:021∗) of patients with
TNBC.

3.3. CCNB2 Promotes the Proliferation of TNBC Cells In
Vitro.Due to the high expression of CCNB2 in human TNBC
tissues, we next performed the in vitro assays to investigate
the possible role of CCNB2 in TNBC progression. The
shRNA plasmids of CCNB2 were transfected into two types
of TNBC cell lines, MDA-MB-231 and HCC-1937, to deplete
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Figure 1: The CCNB2mRNA level was upregulated in TNBC tissues and correlated with the prognosis of TNBC patients. (a) CCNB2mRNA
level in 1085 TNBC tissues was significantly higher than that in 291 normal tissues according to TCGA database. (b) CCNB2 expression level
was associated with the disease-free survival rates of two groups of TNBC patients (n = 803 and n = 963, respectively). Results are presented as
mean ± SD, ∗∗p < 0:01.
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Figure 2: CCNB2 expression was enhanced in human TNBC tissues. (a) Immunohistochemical (IHC) assays were performed, and the
CCNB2 expression levels in human TNBC tissues were shown (100x and 200x magnification, respectively). (b) IHC assays confirmed the
relative low expression of CCNB2 in the corresponding adjacent tissues (100x and 200x magnification, respectively); scale bar indicates
100μm.
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its expression. We detected the expression of CCNB2 in
MDA-MB-231 and HCC-1937 cells after the transfection of
control or CCNB2 shRNA plasmids through quantitative
PCR assays and immunoblot assays. The results of quantita-
tive PCR assays confirmed that CCNB2 mRNA levels were
significantly decreased after the transfection of its shRNA
plasmids in MDA-MB-231 and HCC-1937 cells, respectively
(Figure 3(a)). Similarly, a decrease of CCNB2 protein levels
was also found in CCNB2 shRNA-transfected MDA-MB-
231 and HCC-1937 cells, respectively (Figure 3(b)).

Subsequently, the colony formation and MTT assays
were performed to assess the effects of CCNB2 on the prolif-
eration of TNBC cells. After the depletion of CCNB2, an
obvious decrease of colony number in both MDA-MB-231
and HCC-1937 cells was found through colony formation
assays (Figure 4(a)). Similarly, through MTT assays, we also
noticed that CCNB2 knockdown led to the decrease of cell
proliferation in MDA-MB-231 and HCC-1937 cells, respec-
tively (Figure 4(b)). In addition, we noticed that the expres-
sion of two cell proliferation markers, Ki67 and PCNA, is
obviously decreased after CCNB2 depletion in MDA-MB-
231 and HCC-1937 cells.

3.4. CCNB2 Contributed to Tumor Growth of TNBC Cells in
Mice. To further confirm our previous in vitro results, we
detected whether CCNB2 promoted tumor growth of TNBC
cells through an in vivomodel. MDA-MB-231 cells were sta-
bly transfected with control or CCNB2 shRNA plasmids and
subcutaneously injected into nude mice. After 14 days,
tumors began formation; we measured the volume of tumors
every 3 days. After 29 days, all tumors were isolated. The rep-

resentative images of tumors and the tumor growth curves
are shown in Figure 5(a). We found that the volume of
CCNB2-depleted tumors was significantly decreased than that
in control tumors. We further performed immunoblot assays
to confirm the alteration of CCNB2 expression in tumor
tissues from mice. We found that CCNB2 expression was
decreased in CCNB2-depleted tumor tissues (Figure 5(b)).
Collectively, we thought CCNB2 could contribute to tumor
growth of TNBC cells in mice.

4. Discussion

Due to the lack of effective targeted therapy drugs, TNBC was
an aggressive malignant tumor [15]. Also, the survival rates
of TNBC patients are still the shortest among all breast can-
cer subtypes [16]. TNBC is prone to bone metastasis, and the
liposome-mediated targeted therapy has a good effect [17,
18]. Currently, treatment for TNBC mainly includes surgical
resection and chemoradiotherapy [19]. CAR-T immunother-
apy also had the potential, but still at the initial stage [20].
Developing novel molecular targets and new promising
drugs is urgently needed [21]. Interestingly, we identified that
a cyclin protein, CCNB2, was abnormal highly expressed in
human TNBC tissues. We further found the correlations
between TNBC patients’ prognosis, clinical pathological fea-
tures, and CCNB2 expression in tumor tissues. According to
these results, we thought CCNB2 could act as a promising
therapeutic target for TNBC treatment.

Through the colony formation and MTT assays, we
found that CCNB2 contributed to the proliferation of TNBC
cells in vitro. Consistent with the in vitro data, we further
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Figure 3: CCNB2 expression was decreased in both MDA-MB-231 and HCC-1937 cells after the transfection of its shRNA plasmids. (a)
Quantitative PCR assays exhibited the decreased mRNA levels of CCNB2 after the transfection of its shRNA plasmids in MDA-MB-231
and HCC-1937 cells, respectively. (b) Immunoblot assays showed the decrease of CCNB2 expression after the transfection of CCNB2
shRNA plasmids in both MDA-MB-231 and HCC-1937 cells. Results are presented as mean ± SD, ∗∗p < 0:01.
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noticed that CCNB2 promoted tumor growth of TNBC cells
in vivo. Taken together, these studies demonstrated the
involvement of CCNB2 in the progression of TNBC. Simi-
larly, several studies indicated the critical role of CCNB2 in
tumorigenesis and metastasis [12, 22]. CCNB2 was abnor-
mally expressed in multiple types of tumors, such as lung
cancer and gastric cancer, and correlated with the prognosis
and clinical features of patients [23, 24]. CCNB2 was also
overexpressed in human hepatocellular carcinoma (HCC)
tissues and associated with the poor prognosis [10]. Addi-
tionally, CCNB2 was also a biomarker for the diagnosis of

lung adenocarcinoma [24]. These studies confirmed the crit-
ical role of CCNB2 in cancer progression. Developing its spe-
cific inhibitors was a promising and usefulness manner for
TNBC treatment.

As a cell cycle regulator, CCNB2 was involved in main-
taining mitosis process [9]. It was known that the defects of
CCNB2 led to the abnormal cell division and cell cycle arrest,
and the expression of CCNB2 was also dependent on the cell
cycle process [25]. We here found that CCNB2 could affect
TNBC progression via regulating cell proliferation. Next,
we should detect the effects of CCNB2 on cell cycle in TNBC
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Figure 4: CCNB2 ablation suppressed the proliferation of TNBC cells in vitro. (a) Colony formation assays were performed by the use of
MDA-MB-231 and HCC-1937 cells transfected with control or CCNB2 shRNA plasmids, and the number of colony in each group was
counted. (b) MTT assay results showed the decrease OD value at 570 nm wavelength following CCNB2 depletion. (c) Ki67 expression
levels in MDA-MB-231 cells and HCC-137 cells upon the indicated treatment. (d) PCNA expression levels in MDA-MB-231 cells and
HCC-1937 cells upon the indicated treatment. Results are presented as mean ± SD, ∗p < 0:05 and ∗∗p < 0:01.
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cells. We here found the effects of CCNB2 on TNBC progres-
sion. In addition, we noticed that CCNB2 did not affect EMT
process in TNBC cells, with the moderate effects on the
expression of E-cadherin and N-cadherin (data not shown).
We found that CCNB2 promoted tumor growth in vivo,
and we further should assess the effects of CCNB2 on the
migration, invasion, and apoptosis of TNBC cells.

Except for CCNB2, multiple cyclins were involved in the
regulation of cancer progression and development [26].
Previous studies indicated that CCND1 participated in
miR-502-5p-mediated suppression of cell proliferation and
migration in bladder cancer [27]. Additionally, CCNA1 was
associated with the poor prognosis of patients with oesopha-
geal squamous cell carcinoma (OSCC) [28]. Another study
demonstrated that CCNB1 regulated cell cycle progression
in breast cancer [29]. These studies all demonstrated that
cyclins could serve as promising molecular targets for cancer
treatment. Developing inhibitors of the cyclins was a promis-
ing manner to combat cancers.

In this study, we found that CCNB2 was highly
expressed in human TNBC tissues through IHC and bio-
informatics analysis. However, the mechanism underlying
the high expression of CCNB2 promoting TNBC progres-
sion is still unclear. Notably, CCNB2 has been reported
for the abnormal expression in multiple types of cancers
[23, 24]. CCNB2 expression was also increased in invasive
breast carcinoma and associated with unfavorable clinical
outcome [30].

The limitation of this study is that the tumor sample size
is not large enough. Another key issue is that the mechanism
by which CCNB2 regulates the progress of TNBC is still
unknown. Although, as a cell cycle regulator, CCNB2 may
further influence the development of TNBC through its
influence on the cycle, we still need to confirm the signaling
pathway through which CCNB2 influences the development
of TNBC. In addition, we need to expand the number of
tumor samples and conduct long-term follow-up on the sur-
vival of patients in order to further clarify the relationship
between CCNB2 and TNBC. We need to design a series of
experiments in vitro and in vivo, combined with tran-
scriptome analysis, to clarify the molecular mechanism of
CCNB2 regulation of TNBC.

Notably, previous studies showed that cell cycle regula-
tors affected the progression of multiple types of tumors.
Seven cell cycle-related genes have been identified with unfa-
vorable prognosis of their TF-miRNA-mRNA regulatory
network in breast cancer [31]. For TNBC, the correlation
and mechanism between cell cycle regulators and TNBC pro-
gression need further in-depth study [32, 33].

In conclusion, we found the high expression of CCNB2 in
human TNBC tissues, and the expression of CCNB2 was cor-
related with the prognosis and clinical features of TNBC
patients. We further found that CCNB2 contributed to
TNBC cell proliferation in vitro and in mice and therefore
thought CCNB2 could serve as a promising molecular target
for TNBC treatment.
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Figure 5: CCNB2 promotes tumor growth of TNBC cells in mice. (a) MDA-MB-231 cells infected with control or CCNB2 shRNA plasmids
were subcutaneously implanted into nude mice. After 14 days, tumors began formation, and the volume of tumor in each group was measured
every 3 days. After 29 days, all tumors were isolated, and the growth curves were shown. (b) Immunoblot assays showed the expression levels
of CCNB2 in control or CCNB2 depletion tumors frommice. Results are presented asmean ± SD, ∗p < 0:05 and ∗∗p < 0:01. Scale bar indicates
5mm.
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