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Background. This bioinformatics study was aimed to investigate the relationship between periodontitis (PD) and Down Syndrome
(DS) regarding potential crosstalk genes, related neuropeptides, and biological processes. Methods. Data for PD (GSE23586,
GSE10334 and GSE16134) and DS (GSE35665) were downloaded from NCBI Gene Expression Omnibus (GEO). Following
normalization and merging of PD data, differential expression analysis was performed (p value < 0.05 and ∣ log FC∣ ≥ 0:5).
The common deregulated genes between PD and DS were considered as crosstalk genes. The significantly differentially
expressed genes were used to construct the coexpression network and to further identify coexpression gene modules. To
acquire the significant modules, the significant expression level of genes in the module was used to analyze the enrichment
of genes in each module. Neuropeptides were assessed from NeuroPedia database. Neuropeptide genes and crosstalk genes
were merged and mapped into PPI network, and the correlation coefficient (Spearman) was determined for the crosstalk
genes. Results. 138 crosstalk genes were predicted. According to the functional enrichment analysis, these genes
significantly regulated different biological processes and pathways. In enrichment analysis, the significant module of DS was
pink module, and turquoise module was significant in PD. Four common crosstalk genes were acquired, i.e., CD19,
FCRL5, FCRLA, and HLA-DOB. In the complex network, INS and IGF2 interacted with CASP3 and TP53, which
commonly regulated the MAPK signaling pathway. Moreover, the results showed that TP53 interacted with IGF2 and INS
inducing the dysregulation of PI3K-Akt signaling pathway. UBL was positively correlated with crosstalk genes in both
diseases. LEP was revealed to be both a neuropeptide and crosstalk gene and was positively correlated with other crosstalk
genes. Conclusion. Different crosstalk genes, related neuropeptides, and biological pathways and processes were revealed
between PD and DS, which can serve as a theoretical basis for future research.

1. Background

Periodontitis is an inflammatory disease of the tooth sur-
rounding periodontal tissues, including marginal gingiva,
periodontal ligament, and alveolar bone [1]. This primarily
biofilm-associated multifactorial disease leads to a destruc-
tion of the respective soft and hard tissues, finally resulting
in tooth loss [1]. Beside of the dysbiosis of oral microbiota,
several general factors can influence the development and

progression of periodontal diseases; thereby, systemic
diseases can play a key role, and thus, periodontal manifes-
tations of systemic diseases are defined in the recent classifi-
cation of periodontal diseases [2]. Among others, Down
Syndrome (DS) is included as a disease associated with
immunologic disorders, which has a large influence on peri-
odontal bone loss due to affected periodontal inflammation
[2]. Thereby, patients with DS often suffer from an early
onset of aggressive periodontitis, leading to tooth loss at a
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young age [3, 4]. This might be caused by several reasons.
First, the altered microbiological composition of the oral
cavity has been reported, whereby both, well-known poten-
tial periodontal pathogenic bacteria, e.g., Porphyromonas
gingivalis or Fusobacterium nucleatum alongside with newly
proposed taxa, e.g., Filifactor, Fretibacterium, or Desulfobul-
bus genera were found [5, 6]. This has even been reported in
children aged 3-7 years [7]. Second, a different expression of
genes in patients with DS can be related to periodontal
inflammation, including inflammation-related genes [8],
interferon-alpha and interferon-gamma related genes [9],
or interleukin-10 signaling pathway genes [10]. Additionally,
several immunological features like the altered relationship
between MMP-8 and TIMP-2 [11] or oxidative burst activity
of peripheral monocytes [12] have been reported. Moreover,
the effect of co-factors, e.g., obesity might have an additional
effect on periodontal disease severity and progression [13].

Altogether, the relationship between periodontitis and
DS appears plausible, but complex. Thereby, a recent sys-
tematic review article stated that most of studies regarding
associations between periodontitis and DS had methodolog-
ical problems, making further research in the field necessary
[14]. Therefore, this current study was aimed in assessing
the crosstalk between periodontitis and DS by applying
bioinformatics analysis. The topic should be examined from
the perspective of potential crosstalk genes and examining
different related neuropeptides in the interlink between the
two diseases. It was hypothesized that there would be a
crosstalk between periodontitis and DS, in which neuropep-
tides play a potential role.

2. Materials and Methods

2.1. Datasets. First, data for periodontitis (PD) and DS
were downloaded from NCBI Gene Expression Omnibus
(GEO). Thereby, the peripheral blood monocytes (PBM)
samples within three datasets of PD (GSE23586, GSE10334,
and GSE16134) and one dataset of DS (GSE35665) were
acquired (Table 1).

For the PD and DS datasets, probe id to gene symbol was
mapped based on GPL 570 and GPL5175, respectively. For
the same genes, the average values of samples were calcu-
lated as the unique value. If the expression value for some
genes was zero and the sample counts of this gene in case
samples or control samples was more than half of the total
number of samples, these genes were deleted. Subsequently,
the gene expression value was normalized with the scale
method of R project.

2.2. Differential Expression Analysis. For the PD, the com-
mon genes in GSE10334, GSE16134, and GSE23586 were
acquired. These datasets were merged with ComBat package
of R project. Then, the gene expression profile for the com-
mon genes was extracted. In order to reduce the differences
between batches of samples when combined, the Combat
method of “sva” package in R project was applied to make
batch correction of the combined data. Differential expres-
sion analysis was performed for PD and DS with the
“limma” package of R project. The genes with p value
<0.05 and ∣log FC ∣ ≥0:5 were considered as the differen-
tially expressed genes (DEG). Meanwhile, the function of
GO and KEGG pathway was analyzed with clusterProfiler
of R project and the function with p value < 0.05 was
significant.

2.3. Prediction of Crosstalk Genes. To predict the cross func-
tion between PD and DS, the DEGs of PD and DS were
firstly intersected, and the common DEGs were considered
as crosstalk genes. To expand the potential crosstalk genes,
the PD- or DS-related genes were downloaded from the Dis-
GeNET v6.0 (http://www.disgenet.org/). Finally, the known
disease-related genes and the common DEGs between PD
and DS were handled as the potential crosstalk genes.

2.4. Crosstalk Genes in the Weighted Gene Coexpression
Network. The genes with p value < 0.05 in the differential
expression analysis for PD and DS were selected, following
extraction of the gene expression value, whereby the com-
bined datasets of PD were used. The coexpression networks
were constructed for PD and DS, respectively. The “wgcna”
package of R program was used to construct the coexpres-
sion network and to further identify coexpression gene
modules. WGCNA analysis was performed with the fol-
lowing steps: First, an unsupervised coexpression relation-
ship was initially built based on the adjacency matrix of
connection strengths by using Pearson’s correlation coeffi-
cients for gene pairs. The power β was calculated, using the
“pickSoftThreshold” function. The arguments (corFnc =
“bicor”, corOptions = list ½maxPOutliers = 0:1�, network
type = “signed”, power = “β”) were chosen to meet the need
of scale-free topology property of the coexpression network.
Based on the scale-free topology criterion, the optimum
power β was selected to amplify the strong connections
between genes and penalize the weaker connections.

The hybrid dynamic tree cutting method was used to
cut branches and cluster coexpression modules in PD
(cutHeight = 0:94, minSize = 20) and DS (cutHeight = 0:93,
minSize = 20). To acquire the significant modules, the

Table 1: The datasets for the current study.

Data set Disease Platform Case samples Control samples Gene number

GSE10334 PD GPL570 183 64 24441

GSE16134 PD GPL570 241 69 24441

GSE23586 PD GPL570 3 3 23518

GSE35665 DS GPL5175 15 22 17300
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significant expression level of genes in the module was used
to analyze the enrichment of genes in each module. Subse-
quently, the crosstalk genes from the significant modules of
PD and DS were extracted. Afterwards, the functional
enrichment analysis was performed to identify the biological
processes and KEGG pathways with the clueGO of Cytoscape
software. The function with p value < 0.05 was significant.

2.5. Crosstalk and Neuropeptides. In order to explore the
role of crosstalk genes in the biological network, the
known PPI relationship from 7 databases was downloaded,
including HPRD (http://www.hprd.org/index_html), BIO-
GRID (http://thebiogrid.org/), DIP (http://dip.doe-mbi
.ucla.edu/dip/M ain.cgi), MINT (http://mint.bio.uniroma2
.it/mint/Welcome.do), menthe (http://mentha.uniroma2.it/
index.php), PINA (http://cbg.garvan.unsw.edu.au/pina/),
InnateDB (http://www.innatedb.com/), and Instruct (http://
instruct.yulab.org/index.html). The PPI relationships were
extracted for crosstalk genes, and the PPI network of cross-
talk genes was constructed with Cytoscape software.

The human neuropeptides were assessed from NeuroPe-
dia (http://proteomics.ucsd.edu/Software/NeuroPedia/). To
explore the relationship between crosstalk genes and neuro-
peptides, neuropeptide genes and crosstalk genes were
merged and mapped into the PPI network. Moreover, the
pathways regulated by both, crosstalk genes and neuropep-
tides, were assessed. Finally, the PPI and pathway-gene rela-
tionship was integrated to build a functional complex
network for crosstalk genes and neuropeptides.

In addition, the role of TF in the regulation between
crosstalk genes and neuropeptides was analyzed. First, the
TF regulated genes were downloaded from TRRUST
(https://www.grnpedia.org/trrust), cGRNB (https://www
.scbit.org/cgrnb), HTRIdb (http://www.lbbc.ibb.unesp.br/
htri/), ORTI (http://orti.sydney.edu.au/about.html), and
TRANSFAC (http://gene-regulation.com/pub/databases.html).
Subsequently, the TF-target relationships for crosstalk
genes and neuropeptides were assessed in the complex net-
work, and the TF-target network of crosstalk genes and neu-
ropeptides was constructed using the Cytoscape software.
To further explore the role of neuropeptides and crosstalk
genes, the gene expression value of neuropeptides and
crosstalk genes was extracted in the disease samples of DS
and PD to calculate the correlation coefficient (Spearman).

3. Results

3.1. Identification of DEGs Dysregulated in PD and DS. It
was found that there were differences among GSE10334,
GSE16134, and GSE23586 before batch correction
(Figure 1(a)), while the differences among the samples in
the merged data after correction had significantly decreased
(Figure 1(b)). 1125 DEGs of PD (Figure 2(b)) and 897 DEGs
of DS (Figure 2(a)) were acquired. Moreover, 72 common
DEGs between PD and DS were confirmed as the potential
crosstalk genes (Figure 2(c)).

With the “clusterProfiler” packages of R project, the
results showed that the 72 common DEGs significantly reg-
ulated different biological and immunological pathways, e.g.,

antigen receptor-mediated signaling pathway and hemato-
poietic cell lineage (Figures 3(a) and 3(b)).

3.2. The Crosstalk Gene Prediction. The expression of PD-
related genes in DS samples is shown in Figure 4(a), and
the gene expression of DS-related genes in PD samples is
given in Figure 4B. Furthermore, any DS gene set and any
PD gene set of the four gene sets (known PD-related genes
and DEGs, known DS-related genes and DEGs) were com-
bined to obtain their intersection genes as the final crosstalk
gene set (Figure 4(c)). Finally, 138 crosstalk genes were
predicted. According to the functional enrichment analysis,
the 138 crosstalk genes significantly regulated different bio-
logical processes and pathways, which are presented in
Figures 4(d) and 4(e).

3.3. Coexpression Modules to Screen the Potential Crosstalk
Gene. To construct the WGCNA module of PD and DS,
the results showed that β = 15 was considered to obtain
scale-free topology by the fit index greater than 0.85 for DS
(Figure 5(a)), while β = 14 was suitable by the fit index
greater than 0.85 for PD (Figure 5(b)). Using the scaleFree-
Plot of WGCNA to plot a log-log plot of a histogram of
the given connectivity, and fit a linear model plus optionally
a truncated exponential model, the R2 of the fit can be con-
sidered an index of the scale freedom of the network topol-
ogy for DS and PD (Figures 5(c) and 5(c)). Finally, the
acquired modules of DS and PD are shown in Figures 5(e)
and 5(f), respectively. Subsequently, the differently expressed
level was enriched into each module. From the enrichment
analysis, it was found that the significant module of DS
(Figure 5(g)) was the pink module, and the turquoise module
was significant in PD (Figure 5(h)).

For the interaction of genes in module, the constructed
PPI network for DS and PD is shown in Figures 6(a) and
6(b), which marked the crosstalk genes in each significant
module. In the significant modules of PD and DS, 16 cross-
talk genes and 4 common crosstalk genes were acquired
(CD19, FCRL5, FCRLA, HLA-DOB). Subsequently, it was
found that the 16 crosstalk genes significantly regulated the
B-cell activation, Phagosome, PI3K-Akt signaling pathway,
and Hematopoietic cell lineage (Figure 6(c)). Furthermore,
the results of ROC analysis showed that the prediction accu-
racy of HLA−DOB in both, DS and PD, was higher than for
the other three genes (Figures 6(d) and 6(e)).

3.4. Relationship between Crosstalk Genes and Neuropeptides.
Figure 7(a) shows the constructed PPI network of crosstalk
genes, including 3784 nodes and 5972 edges. The topological
characteristics of the top 30 nodes ranked in the descending
order of degree are displayed in Table 2. From the PPI network
of crosstalk genes, the results showed that TP53 and FN1
played important roles in the whole biological network.

To explore the relationship between crosstalk genes and
neuropeptides, the neuropeptide genes and 138 crosstalk
genes were merged. Subsequently, the merged genes were
mapped into the PPI network. Besides, the pathways regu-
lated by both of crosstalk genes and neuropeptides were
assessed. Finally, PPI and pathway-gene relationships were
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integrated to build a functional complex network for cross-
talk genes and neuropeptides (Figure 7(b)). In the complex
network, there were 10 neuropeptide genes, which interacted

with crosstalk genes. INS and IGF2 interacted with CASP3
and TP53, which commonly regulated the MAPK signaling
pathway. Moreover, the results showed that TP53 interacted
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Figure 1: The differential expressed gene analysis. (a, b) PCA analysis results of three periodontitis data sets before and after batch correction.
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Figure 2: The differential expressed gene analysis. (a, b) The Volcano plot for the DEG of DS and PD. (c) The heat map of common DEGs
between DS and PD.
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Figure 4: (a) Heat map of gene expression profiles of known PD genes in DS samples. (b) Heat map of gene expression profiles of known DS
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with IGF2 and INS to induce the dysregulation of the PI3K-
Akt signaling pathway.

To explore the role of TF in the regulation between
crosstalk genes and neuropeptides, the TF-target relation-
ships for 11 crosstalk genes and 10 neuropeptides in the
complex network were extracted, and the TF-target network
of crosstalk genes and neuropeptides was constructed with
Cytoscape software (Figure 7(c)). The results showed that
TP53 was regulated by more TF than other crosstalk genes.
Meanwhile, TP53 was also TF, which regulated other genes.

IGF2 and CLU were regulated by more TF than other
neuropeptides.

3.5. Correlation between Neuropeptides and Crosstalk Genes
in PD and DS. The 11 crosstalk genes and 10 neuropeptides
were merged in the complex network, and the four common
crosstalk genes in the significant module in PD and DS were
assessed. Finally, 25 genes were further analyzed. First, the
gene expression values of 25 genes in the disease samples
of DS and PD were extracted (Figure 8(a) and 8(b)). The
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CD180CD19
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Figure 6: (a, b) PPI network for significant modules of DS and PD. The color of the midpoint in the coexpression network represents the
difference in intramodular connectivity scores between a gene and other genes. Due to the large number of genes in the turquoise module for
PD, we show the top 10 genes in the intramodular connectivity score and the crosstalk gene in the module. The crosstalk gene was trapped
in different colored circles in different modules. (c) The function enrichment for the crosstalk genes in the significant module of DS and PD.
(d, e) The prediction of common crosstalk gene in the significant module of DS and PD.
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results showed that the gene expression level of neuropep-
tides in DS was higher than in PD. HLA-DOB and HLA-
DQA2 were crosstalk genes in DS and PD.

The correlation coefficient of neuropeptides and cross-
talk genes in DS and PD, analyzed with Spearman Correla-
tion Coefficient, is shown in Figure 8(c). Thereby, the
correlation of neuropeptide genes with crosstalk genes was
lower in PD than in DS. UBL was positively correlated with
crosstalk genes in both DS and PD and regulated the Neuro-
active ligand-receptor interaction. LEP is both a neuropep-
tide and crosstalk gene. The results showed that LEP was
negatively correlated with most of other neuropeptide genes
and positively correlated with crosstalk genes in DS and PD.

4. Discussion

4.1. Main Results. Four common crosstalk genes between
periodontitis and DS were acquired, i.e., CD19, FCRL5,
FCRLA, and HLA-DOB, of which the latter had the highest
prediction accuracy. B-cell activation, Phagosome, PI3K-Akt
signaling pathway, and Hematopoietic cell lineage were

identified as the most relevant pathways. The neuropeptides
INS and IGF2 interacted with CASP3 and TP53, potentially
affecting the MAPK signaling pathway, and TP53 interacted
with IGF2 and INS to induce the dysregulation of the PI3K-
Akt signaling pathway. LEP was found to be both, neuropep-
tide and crosstalk gene.

4.2. Comparison with Literature and Interpretation. This is
the first bioinformatics study, which investigated the poten-
tial crosstalk between DS and periodontitis. A genetic cross-
talk between periodontitis and DS has been repeatedly
discussed in literature [8–10, 15, 16]. This has been evalu-
ated in the current study, whereby the hypothesis of a poten-
tial crosstalk between these two diseases was confirmed.
Thereby, a recent case-control study identified single nucle-
otide polymorphisms (SNP) to be significantly associated to
periodontal disease in DS individuals, underlining the rele-
vance of shared genetic mechanisms [15]. It has also been
found in that clinical study that different metabolic path-
ways, including the PI3K-Akt signaling pathway, would play
an important role in this context [15]. This was also a result

(c)

Figure 7: (a) The PPI network of crosstalk gene. The node size indicates the degree. The larger node showed that the degree of genes was
higher than other genes. (b) The pathway-gene interaction network between crosstalk gene and neuropeptide. (c) TF-crosstalk/neuropeptide
gene regulation network. The blue triangular node refers to the TF gene. TP53 is both of crosstalk gene and TF which marked the deep
yellow diamond.
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of the current study, where crosstalk gene TP53 and inter-
acting neuropeptides IGF2 and INS were related to the
PI3K-Akt signaling pathway. It was shown that the PI3K-
Akt signaling pathway would be related to virulence factors
(gingipains) of Porphyromonas gingivalis (P.g.), a common
potential periodontal pathogen [17]. An altered microbio-
logical composition of the oral cavity from patients with
DS has been reported in clinical studies [5, 6]. A compara-
tive clinical trial found increased presence of P.g. in DS
patients with periodontitis [18]. The role of INS can be
supported by the fact that supernatants of potential peri-
odontal pathogens, i.e., P.g. and Tanerella forsythia were
found to potentially stimulate insulin secretion in pancre-
atic β-cells, promoting the induction of proinflammatory
molecules by activating the PI3K/AKT signaling pathway
[19]. IGF2, which was also relevant in the current analysis,
was found to be involved in different biological processes
in periodontal ligament cells [20]. Moreover, TP53 has
an influence on cell proliferation and differentiation of

dental stem cells [21]. Accordingly, this revealed relation-
ship between neuropeptides, crosstalk gene, and pathway
might be associated to the action of common potential
periodontal pathogens and related immunological and
metabolical reactions.

LEP was found to be both, a crosstalk gene as well as a
relevant neuropeptide. Leptin is known as an important
player in metabolic control, alongside with reproduction
and neuroendocrine signaling [22]. As a relationship
between metabolic syndrome, obesity, and diabetes with
periodontal disease is well documented in literature, the role
of LEP has been repeatedly investigated in this context
[23–25]. While one case-control study did not find an asso-
ciation between LEP and periodontitis [23], another study
found positive correlations between LEP and worse peri-
odontal parameters [24]. Considering that, the findings of
a prospective observational study, which indicate an associ-
ation between obesity and periodontitis in individuals with
DS, appear of particular interest [13].

Table 2: The topological characteristics of the top 30 nodes with the greatest degree in the PPI.

Name Label Degree Average shortest path length Betweenness centrality Closeness centrality Topological coefficient

TP53 Cross 1079 2.251789 0.420797 0.444091 0.002318

FN1 Cross 818 2.451365 0.305578 0.407936 0.003156

HSPD1 Cross 275 2.381129 0.095272 0.419969 0.005405

CASP3 Cross 196 2.800159 0.058752 0.357123 0.009409

KAT2B Cross 194 2.632123 0.057222 0.379921 0.006785

TXN Cross 132 2.612775 0.037883 0.382735 0.009874

TNF Cross 129 2.909091 0.04546 0.34375 0.012626

TUBB2A Cross 124 2.68036 0.035164 0.373084 0.009755

CCND1 Cross 121 2.916247 0.028949 0.342906 0.01551

CLU Cross 116 2.814471 0.036914 0.355307 0.012297

TGFB1 Cross 105 2.953883 0.037888 0.338537 0.018972

PDGFRB Cross 100 3.001855 0.029277 0.333127 0.029775

ENO2 Cross 98 2.971376 0.025504 0.336544 0.019222

APPL1 Cross 94 2.7066 0.033818 0.369467 0.012009

WNK1 Cross 92 3.028359 0.029407 0.330212 0.027433

HYOU1 Cross 80 2.986483 0.020004 0.334842 0.023633

UBC Cross 72 2.118208 0.170684 0.472097 0.020807

APOE Cross 70 2.999205 0.022849 0.333422 0.027381

ITGB2 Cross 62 2.994699 0.01851 0.333923 0.03201

TSPAN5 Cross 61 3.040021 0.027445 0.328945 0.020492

NOD2 Cross 54 3.06626 0.015464 0.32613 0.032764

SERPINA1 Cross 52 2.786112 0.016528 0.358923 0.021452

ERCC2 Cross 51 2.750066 0.013578 0.363628 0.02154

NEFL Cross 49 2.994964 0.013643 0.333894 0.027498

RAB4A Cross 49 2.749536 0.016342 0.363698 0.021511

CCR5 Cross 47 3.181818 0.011847 0.314286 0.032499

GHR Cross 47 3.042937 0.009512 0.32863 0.043566

GZMB Cross 45 2.9022 0.009937 0.344566 0.024898

SLC1A5 Cross 45 3.067851 0.01041 0.325961 0.047009

CTSG Cross 41 2.967135 0.01082 0.337025 0.026546
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Figure 8: (a, b) Gene expression level of neuropeptides and crosstalk genes in DS and PD. The gene with red mark is neuropeptides. LEP is
both neuropeptide and crosstalk gene marked with “∗”. (c) The correlation coefficient of neuropeptides and crosstalk genes in DS and PD.
The gene marked with “∗” were neuropeptides. LEP is both neuropeptide and crosstalk gene marked with “∗∗”.
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Few previous studies revealed genes, which were differ-
entially expressed in patients with DS in the case of peri-
odontitis [8–10, 15]. Within these studies, none out of the
four crosstalk genes revealed in the current study (CD19,
FCRL5, FCRLA, and HLA-DOB) was found, too. However,
while three studies only examined selected genes, excluding
the crosstalk genes from the current study [8–10], the other
available study examined salivary samples [15], making the
comparability with the current study questionable. Nonethe-
less, there is a certain plausibility for the clinical relevance of
the detected crosstalk genes in the current study. HLA-DOB
has been demonstrated to be related to autoimmunity in
celiac disease and ankylosing spondylitis [26, 27]. Because
periodontitis is related to autoinflammatory diseases [28],
the relevance of this crosstalk gene appears reasonable. The
potential relevance of HLA class antigens in DS patients
with periodontitis has already been highlighted in a com-
parative study [16]. Thus, an increase in (auto)inflamma-
tory activity in patients with DS could be a further
explanation for their high periodontal burden. This could
be supported by the role of CD19 as crosstalk gene;
CD19 positive breg cells were found to be associated with
periodontal disease progression and were reported to be a
possible link between periodontal and systemic inflammation
[29]. Similarly, CD19 was already examined in context of
premature aging of the immune system and proinflamma-
tory profile of DS [30].

Taken together, three potential ways of an interlink
between periodontitis and DS could be assumed based on
the current study’s findings: (i) patients with DS have an
altered microbiological environment in the oral cavity.
Increased level of potentially periodontal pathogens and their
virulence factors might affect an interaction of TP53 with
IGF2 and INS to induce the dysregulation of the PI3K-Akt sig-
naling pathway. (ii) Obesity, metabolic syndrome, and LEP
could play a role in the relationship between periodontitis
and DS. (iii) A proinflammatory or autoinflammatory profile
of patients with DS induced an early on setting severe peri-
odontitis. Probably, a combination of these mechanisms could
exist; however, this remains speculative.

4.3. Strengths and Limitations. This is the first bioinformat-
ics study on the interlink between periodontitis and DS.
The combination of crosstalk genes, neuropeptides, and
pathways was very comprehensive and is up until now
unique in literature. Other working groups [31, 32] have
already successfully applied similar methodology previously
to reveal the link between periodontal and systemic diseases.
However, several limitations exist. The sample size of DS
patients was quite small and far smaller than for periodonti-
tis samples. Moreover, the groups were very heterogeneous
regarding age, gender, and comorbidities. Thereby, different
patients with DS or periodontitis were analyzed, respectively.
Only peripheral blood samples were considered, which is a
further limitation. The main point that needs to be men-
tioned here is that these findings need clinical validation to
be confirmed. Besides these limitations, the current study’s
results can serve as a good theoretical basis for future
research in the field.

5. Conclusion

Different crosstalk genes, related neuropeptides, biological
pathways, and processes were revealed between periodontitis
and DS. Thereby, the PI3K-Akt signaling pathway, leptin-
associated metabolic processes, and a proinflammatory
profile of the immune system might predict patients with
DS to develop an early on setting, severe aggressive peri-
odontitis. These approaches need further clinical validation
to be confirmed.
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