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Aims. The lack of primary ophthalmologists in China results in the inability of basic-level hospitals to diagnose pterygium patients.
To solve this problem, an intelligent-assisted lightweight pterygium diagnosis model based on anterior segment images is proposed
in this study.Methods. Pterygium is a common and frequently occurring disease in ophthalmology, and fibrous tissue hyperplasia is
both a diagnostic biomarker and a surgical biomarker. The model diagnosed pterygium based on biomarkers of pterygium. First, a
total of 436 anterior segment images were collected; then, two intelligent-assisted lightweight pterygium diagnosis models
(MobileNet 1 and MobileNet 2) based on raw data and augmented data were trained via transfer learning. The results of the
lightweight models were compared with the clinical results. The classic models (AlexNet, VGG16 and ResNet18) were also used
for training and testing, and their results were compared with the lightweight models. A total of 188 anterior segment images
were used for testing. Sensitivity, specificity, F1-score, accuracy, kappa, area under the concentration-time curve (AUC), 95% CI,
size, and parameters are the evaluation indicators in this study. Results. There are 188 anterior segment images that were used
for testing the five intelligent-assisted pterygium diagnosis models. The overall evaluation index for the MobileNet2 model was
the best. The sensitivity, specificity, F1-score, and AUC of the MobileNet2 model for the normal anterior segment image
diagnosis were 96.72%, 98.43%, 96.72%, and 0976, respectively; for the pterygium observation period anterior segment image
diagnosis, the sensitivity, specificity, F1-score, and AUC were 83.7%, 90.48%, 82.54%, and 0.872, respectively; for the surgery
period anterior segment image diagnosis, the sensitivity, specificity, F1-score, and AUC were 84.62%, 93.50%, 85.94%, and
0.891, respectively. The kappa value of the MobileNet2 model was 77.64%, the accuracy was 85.11%, the model size was 13.5M,
and the parameter size was 4.2M. Conclusion. This study used deep learning methods to propose a three-category intelligent
lightweight-assisted pterygium diagnosis model. The developed model can be used to screen patients for pterygium problems
initially, provide reasonable suggestions, and provide timely referrals. It can help primary doctors improve pterygium diagnoses,
confer social benefits, and lay the foundation for future models to be embedded in mobile devices.

1. Introduction

Pterygium is a common and frequently occurring disease in
ophthalmology. It is the degeneration and growth of con-
junctival fibrovascular tissue on the cornea, which usually
leads to astigmatism and dry eyes. Covering the pupil area
can cause a significant decrease in vision. The main treat-

ment is surgical resection [1]. Pterygium can usually be diag-
nosed by anterior segment images [1]. Anterior segment
images are taken with a slit lamp digital microscope and
obtained by the diffuse illumination method at a magnifica-
tion of 10x. Professional ophthalmologists often diagnose
ocular surface diseases by viewing the anterior segment
images. At present, the incidence of pterygium disease in
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China is 9.84% [2], and there are few professional ophthal-
mologists in county-level and lower hospitals and commu-
nity hospitals and other basic-level hospitals. Therefore, it is
difficult for the basic-level hospitals to meet the needs of
the huge number of pterygium patients. The problem was
to be solved; an intelligent lightweight-assisted diagnosis
model based on anterior segment images is proposed in the
study. The model can help nonprofessional ophthalmologists
in the primary hospital to make preliminary diagnoses of pte-
rygium patients and help them obtain pterygium grading
(three types of normal, observation, and surgery) to get an
accurate referral. The model can also be embedded in mobile
phones to assist users in self-screening. Some primary doc-
tors may not provide effective services to pterygium patients,
and this model can help to solve the problem.

The combination of ophthalmology and artificial intelli-
gence (AI) has become closer with the development of AI
[3–9]. In 2016, a deep learning model was proposed by the
Google team; it can diagnose DR automatically through fun-
dus images [10]. Deep learning models have been used by lots
of researchers to diagnose DR [11–14] since then. In addition
to DR, researchers have used deep learning methods to detect
common fundus diseases, including glaucoma [15–17], retinal
vein occlusion [18, 19], age-related macular degeneration [20–
22], and even research on the classification of multiple com-
mon fundus diseases [23]. These studies obtained good results.

There are many studies on the diagnosis of fundus-related
diseases using deep learningmethods but relatively few studies
on ocular surface diseases. Pterygium is a common disease on
the ocular surface. AI research on pterygium is mainly pteryg-
ium detection. Traditional learning methods mainly extract
the pterygium characteristics in anterior segment images to
detect pterygium. Related researchers have used the adaptive
nonlinear enhancement method, SVM, to segment pterygium
tissue to detect pterygium [24–26]. In recent years, researchers
such as Mohd Asyraf Zulkifley have used neural networks,
DeepLab V2, and other deep learning methods to detect and
segment pterygium [27–29]; researchers such as Zamani
et al. have used a variety of deep learning models to perform
two-class detection of pterygium [30]. Existing research on
pterygium detection ismostly based on the two-class detection
of pterygium based on anterior segment images. It has not
been further determined whether the pterygium is operated
on, which cannot meet the needs of precision medicine. The
deep learning models used for detecting pterygium are cur-
rently mostly classic; the excessive number of parameters
requires considerable space and cannot be used on mobile ter-
minals or low-configuration devices.

An intelligent lightweight-assisted pterygium diagnosis
model is designed by using transfer learning in this study.
The model detects normal images, pterygium observation
periods, and pterygium surgery periods from anterior seg-
ment images. Comparative research with classic models is
carried out simultaneously and reported as follows.

2. Materials and Methods

2.1. Data Source. The Affiliated Eye Hospital of Nanjing
Medical University provided anterior segment images for

this study. The images were obtained from two models of slit
lamp digital microscopy. In this study, 436 anterior segment
images were used to train an intelligent lightweight-assisted
pterygium diagnosis model. The dataset consists of 142,
144, and 150 anterior segment images for the normal, pteryg-
ium observation period, and pterygium surgery period,
respectively. There were 188 images for model testing, which
consisted of 61, 62, and 65 anterior segment images for the
normal condition, pterygium observation period, and pteryg-
ium surgery period, respectively. The patients’ gender and
age were not restricted when selecting the images. The per-
sonal information of patient-related was all removed from
the images to avoid infringing on patient privacy.

In this study, the images selected had high quality. Thus,
ophthalmologists can easily diagnose whether the image
shows a normal anterior segment or pterygium. The anterior
segment images were either normal or showed pterygium.
The image selected was diagnosed only as normal, pterygium
observation period, or pterygium surgery period. The mark-
ing standard was [31] as follows. The normal anterior seg-
ment image is characterized by no obvious conjunctival
hyperemia or proliferation, and the cornea is transparent;
the anterior segment image of the pterygium observation
period is characterized by the horizontal length of the pteryg-
ium head tissue invading the limbus of the cornea <3mm;
the anterior segment image of the pterygium surgery period
is characterized by the horizontal length of the pterygium
head tissue invading the limbus of the cornea ≥3mm. The
three types of anterior segment images were shown in
Figure 1. There were two professional ophthalmologists
who diagnosed the anterior segment images independently.
If the diagnostic results of two ophthalmologists were identi-
cal, the final clinical diagnosis result was achieved. If the
diagnostic results of two ophthalmologists were different,
the final clinical diagnostic result was given by an expert
ophthalmologist.

Figure 1(a) is the normal anterior segment image;
Figure 1(b) is the pterygium observation period anterior seg-
ment image; Figure 1(c) is the pterygium surgery period
anterior segment image.

2.2. Data Augmentation. The quantity of training data was
too small. Therefore, the original images were augmented
by flipping and rotating the original image. First, the original
image was flipped horizontally, and then, the original image
and the horizontally flipped image were rotated clockwise
and counterclockwise by 1° and 2°, respectively, so that the
augmented image maintained the original medical character-
istics. An original image and its augmented image are shown
in Figure 2.

2.3. Lightweight Model Training. The study uses a MobileNet
[32] model; the initial parameters used in the model were
pretrained on the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [33] dataset. A total of 436 original
anterior segment images and 4,360 augmented anterior seg-
ment images were used to train two intelligent lightweight
assisted diagnosis models for detecting pterygium grading.
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The network structure is not changed, and only the final out-
put is changed to 3 categories in the transfer learning process.

MobileNet is a lightweight model designed specifically
for mobile and embedded terminals. This study focuses on
the transfer learning of the MobileNet model with an
inverted residual structure. Its basic network structure
mainly includes convolutional layers, bottleneck layers, and
an average pooling layer. The structure of the bottleneck
layers is shown in Figure 3 [32], it usually includes pointwise
convolution and depthwise convolution; when the stride is 1,
the input is added to the output. The structure of MobileNet
2 is shown in [32].

In this study, a total of 436 original anterior segment
images and 4,360 augmented anterior segment images were
selected to train the two lightweight models. The images
input to the two lightweight models were 224 × 224. Intelli-
gent lightweight-assisted diagnosis models were obtained
after training.

2.4. Classic Model Training. AlexNet [34], VGG16 [35], and
ResNet18 [36] are three classic deep learning classification
models. This study used 4,360 augmented anterior segment
images to train three intelligent classic-assisted diagnosis
models for detecting pterygium grading. The network struc-
ture of the three models with their initial parameters pre-
trained on the ILSVRC [33] dataset was used. The network
structure is not changed, and only the final output is changed
to 3 categories in the transfer learning process. The images
input to the three models were 224 × 224. Intelligent-
assisted diagnosis models were obtained after training. The
results of the three models were compared to the lightweight
models.

The server was used to train and test the five models. A
computer was also used to test the five models because the
basic hospitals usually do not have servers. The hardware
configuration of the server used in this study is Intel (R) Xeon
(R) Gold 5118 CPU, the main frequency is 2.3GHz, the
graphics card is Tesla V100, the video memory is 32GB,
and the operating system is Ubuntu 18.04. The hardware
configuration of the computer used in this study is Intel (R)
Core (TM) i5-4200M CPU, the main frequency is 2.5, the
augmentation method is GHz, NVIDIA GeForce GT 720M
x, the video memory is 1GB, and the operating system is
windows10.

2.5. Statistical Analysis. The SPSS 22.0 statistical software was
used to analyze the results. The accuracy, size and parameters

of models, time, sensitivity, specificity, F1-score, and AUC
for the pterygium diagnostic models were calculated for the
normal anterior segment image, pterygium observation

(a) (b) (c)

Figure 1: Three types of anterior segment images.

Original image Horizontally flipped image

Rotated clockwise by 1° of a

Rotated clockwise by 2° of a

Rotated clockwise by 1° of b

Rotated clockwise by 2° of b

Rotated counterclockwise by 1° of bRotated counterclockwise by 1° of a

Rotated counterclockwise by 2° of bRotated counterclockwise by 2° of b

 (a)  (b)

Figure 2: Original image and its augmented images.
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period anterior segment image, and surgery period anterior
segment image; then, ROC curves were plotted. The consis-
tency between the expert and the model was evaluated by
kappa value.

3. Results

A total of 188 anterior segment images were used to test the
intelligent lightweight-assisted pterygium diagnosis models
based on original data (MobileNet 1) and augmented data
(MobileNet 2) for pterygium. The expert diagnosed 61
images as normal anterior segment, 62 as pterygium observa-
tion period, and 65 as pterygium surgery period. MobileNet 1
diagnosed 64 images as normal anterior segment, 55 as pte-
rygium observation period, and 69 as pterygium surgery
period. MobileNet 2 diagnosed 61 images as normal anterior
segment, 64 as pterygium observation period, and 63 as pte-
rygium surgery period. The two models’ diagnostic results
are shown in Tables 1 and 2.

A total of 188 anterior segment images were used to test
the three classic intelligent-assisted pterygium diagnosis
models (AlexNet, VGG16, ResNet18) based on augmented
data (MobileNet 2) for pterygium. The three models’ diag-
nostic results were compared with MobileNet 1 and Mobile-
Net 2. Compared with the results of expert diagnosed, except
for ResNet18, the sensitivity of the other four models for
diagnosing the anterior segment image as normal was above
90%, the sensitivity of diagnosing the anterior segment image

as pterygium observation period was up to 83.87% (AlexNet
and MobileNet2), and the highest sensitivity of diagnosing
the anterior segment image as pterygium surgery period
was 86.15% (MobileNet1). The specificities of the five models
for diagnosing anterior segment images as normal, pteryg-
ium observation period, and pterygium surgery period were
mostly above 85%. Among them, the specificities of Mobile-
Net 2 for diagnosing anterior segment images as the three
grades were all above 90%, which showed that the models’
misdiagnosis rates were low. The AUC values of MobileNet
2 for diagnosing anterior segment images as normal, pteryg-
ium observation period, and pterygium surgery period were
the highest among the five models, which were 0.976, 0.872,
and 0.891, respectively. The five models’ evaluation results
are compared in Table 3.

In Table 3, the sizes and parameters of the five models are
compared. MobileNet 1 and MobileNet 2 had the smallest
sizes and parameters among them, 13.5M and 4.2M, respec-
tively. VGG16 had the largest size and parameters, 527M and
138M, respectively. As shown in Table 3, MobileNet 2 had
the smallest space and the least number of parameters, and
the evaluation indicators, such as sensitivity, specificity, F1-
score, AUC, kappa value, and accuracy rate, still had good
results. The AUC, kappa value, accuracy, and test time were
the best among the 5 models. The five models’ ROC curves
of diagnosing the anterior segment image as normal, pteryg-
ium observation period, and pterygium surgery period are
compared in Figure 4.

Add

Conv 1×1, linear

Conv 1×1, linear

Dwise 3×3, Relu6

Dwise 3×3, stride = 2, Relu6

Conv 1×1, Relu6 Conv 1×1, Relu6 

Input Input

Stride = 1 block Stride = 2 block

Figure 3: Bottleneck structure.

Table 1: Diagnostic results of MobileNet 1 (original data).

Clinical
MobileNet diagnosis (original data)

Normal Observe Surgery Total

Normal 59 2 0 61

Observe 4 45 13 62

Surgery 1 8 56 65

Total 64 55 69 188

Table 2: Diagnostic results of MobileNet 1 (augmented data).

Clinical
MobileNet diagnosis (augmented data)

Normal Observe Surgery Total

Normal 59 2 0 61

Observe 2 52 8 62

Surgery 0 10 55 65

Total 61 64 63 188
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Table 3: The five models’ evaluation results.

Model Evaluation indicators Normal Observe Surgery

MobileNet (original data)

Sensitivity 96.72% 72.58% 86.15%

Specificity 96.06% 92.06% 89.43%

F1-score 94.40% 76.92% 83.58%

AUC 0.964 0.823 0.878

95% CI 0.931-0.996 0.751-0.895 0.820-0.936

Kappa 77.64%

Accuracy 85.11%

Size (MB) 13.5

Parameters (million) 4.2

Time-S (ms) 5.86

Time-C (ms) 473.37

MobileNet (augmented data)

Sensitivity 96.72% 83.87% 84.62%

Specificity 98.43% 90.48% 93.50%

F1-score 96.72% 82.54% 85.94%

AUC 0.976 0.872 0.891

95% CI 0.947-1 0.811-0.933 0.833-0.948

Kappa 82.44%

Accuracy 88.30%

Size (MB) 13.5

Parameters (million) 4.2

Time-S (ms) 5.75

Time-C (ms) 465.53

AlexNet

Sensitivity 91.80% 83.87% 84.62%

Specificity 98.43% 88.10% 77.61%

F1-score 94.12% 80.62% 85.94%

AUC 0.951 0.860 0.891

95% CI 0.909-0.993 0.797-0.922 0.833-0.948

Kappa 80.05%

Accuracy 86.70%

Size (MB) 233

Parameters (million) 60

Time-S (ms) 1.06

Time-C (ms) 64.63

VGG16

Sensitivity 96.72% 79.03% 67.69%

Specificity 92.13% 81.75% 97.56%

F1-score 90.77% 73.13% 78.57%

AUC 0.944 0.804 0.826

95% CI 0.907-0.982 0.733-0.874 0.754-0.899

Kappa 71.34%

Accuracy 80.85%

Size (MB) 527

Parameters (million) 138

Time-S (ms) 1.72

Time-C (ms) 1020.11
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Time-S means the time of testing one image based on
server; time-C means the time of testing one image based
on the computer.

4. Discussion

Pterygium is a common ocular surface disease that can cause
vision loss and affect appearance. It has a higher incidence
among people working outdoors in rural and remote areas
(such as fishermen and farmers). For vast rural and remote
areas that lack professional medical resources for ophthal-
mology, the intelligent-assisted diagnosis model can provide
a convenient method for screening pterygium for local
patients. It can avoid the rush of patients to go to county hos-
pitals or prefectural hospitals and reduce their financial bur-
den. Additionally, the model further provides treatment
suggestions to facilitate the referral of patients in need of sur-
gery at the basic-level hospital; it can also reasonably allocate
medical resources.

In 2012, the AlexNet model [34] won the championship
of the classification in the ILSVRC competition. The network
structure of the AlexNet model has 7 layers, while the net-
work structure of the VGG model [35] has up to 19 layers
and researchers often use VGG 16, which has 16 layers.
The ResNet model [36] has up to 152 layers, but researchers
often use ResNet 18 and ResNet 50. The network structures
of the models almost are deep, so it is suitable for the extrac-
tion of more complex image features. The above models are

classic and occupy a large amount of space and have many
parameters. The MobileNet model is a lightweight model.
The depth of the separable convolution kernel and linear bot-
tleneck was used to reduce the number of parameters so that
the model occupies a small space. The complexity of the ante-
rior segment image is relatively low, so AlexNet obtained bet-
ter results than the three classic models. MobileNet is further
simplified based on the classic model and obtained the best
diagnosis results among these models.

MobileNet2 had the best overall diagnosis results among
the 5 models, but its sensitivity for diagnosing the pterygium
observation period and pterygium surgery period was only
83.87% and 84.62%, respectively. The sensitivity was low
because the number of the training samples was only 436.
Although the images were augmented by 10 times, the aug-
mented images were more similar to the original image.
The effect improved, but the improvement was small.

As shown in Table 2, the MobileNet 2 model did not
diagnose the pterygium surgery period images as normal
images. Only pterygium observation periods were diagnosed
as normal images. Most of the other errors were diagnosed
between the pterygium observation period and pterygium
surgery period. Patients diagnosed during the pterygium
observation period and pterygium surgery period were rec-
ommended to go to the superior hospital for further confir-
mation, and the correct diagnosis was obtained after
referral. Since the pterygium observation period images were
diagnosed as normal anterior segment images, the model

Table 3: Continued.

Model Evaluation indicators Normal Observe Surgery

ResNet18

Sensitivity 81.97% 66.13% 75.38%

Specificity 95.28% 81.75% 84.55%

F1-score 85.47% 65.08% 73.68%

AUC 0.886 0.739 0.800

95% CI 0.825-0.947 0.660-0.819 0.728-0.871

Kappa 61.67%

Accuracy 74.47%

Size (MB) 44.6

Parameters (million) 33

Time-S (ms) 2.53

Time-C (ms) 170.88
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Figure 4: ROC of the five models for normal, pterygium observation period, and surgery period.
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asked the user to diagnose again after obtaining the diagnosis
result of the normal anterior segment image or asked the user
whether to upload the image to the doctor. If the user had
doubts about the diagnosis result, the user could upload the
image, and a doctor confirmed the diagnosis result.

In this study, the parameters of the MobileNet light-
weight model were only 4.2M, and the model size was
13.5M, which was suitable for embedding in mobile devices
and offline operation of embedded devices. Users of basic-
level medical institutions can take photos of the anterior
segment through the camera so that the device and the local
medical computer can be simultaneously diagnosed. There-
fore, pterygium screening can be performed at the basic-
level hospital. The training images of the MobileNet2 model
were obtained from the slit lamp digital microscope, which
has a certain gap with the anterior segment images taken by
the mobile device camera. In the future, more images of the
anterior segment taken by the mobile device camera will be
collected to improve the model and make the model more
suitable for mobile applications. People in the vast rural areas
and remote mountainous areas of China have difficulty see-
ing a doctor. Mobile devices can realize self-screening, which
is convenient for users to pay attention to their ocular surface
health at any time.

5. Conclusion

This study used deep learning methods to propose a three-
category intelligent lightweight-assisted pterygium diagnosis
model, MobileNet, based on amplified data. Its results were
compared with three classic deep learning models (AlexNet,
VGG16, and ResNet18). The MobileNet 2 model had the
fewest parameters, and its overall evaluation index results
were the best. This model can be used on low-
configuration computers at basic-level hospitals, and it can
help primary doctors preliminarily screen pterygium prob-
lems in patients through anterior segment images. It can also
provide suitable recommendations and timely referrals,
improve the diagnosis level of primary ophthalmology, and
obtain good social benefits. Additionally, the small size and
few parameters of the lightweight model lay the foundation
for future models to be embedded in mobile devices so that
it is convenient for mobile users to screen themselves for
pterygium problems.
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