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Pancreatic adenocarcinoma (PAAD) is an extremely lethal disease worldwide. Brain-derived neurotrophic factor (BDNF) is a
critical member of the neurotrophin polypeptide superfamily that plays an important role in multiple cancers. However, the
association among BDNF expression, tumor immunity, and PAAD prognosis remains unclear. BDNF expression and its
influence on patient prognosis were explored based on The Cancer Genome Atlas, Cancer Cell Line Encyclopedia, Genotype-
Tissue Expression, and Kaplan-Meier plotter. Gene set enrichment analysis was performed to understand the biological roles of
BDNF. The role of BDNF in tumor-infiltrating immune cells was determined using the Tumor Immune Estimation Resource
database and the single-sample gene set enrichment analysis and xCell algorithm. The correlation among BDNF and
chemokines, chemokine receptors, chemotherapeutic efficacy, and immune checkpoints was analyzed based on RStudio. BDNF
expression was remarkably higher in PAAD compared to their paired normal tissues, and high BDNF expression was
associated with unfavorable prognosis. Enrichment analysis revealed that BDNF was significantly enriched in major oncogenic
pathways in PAAD. BDNF expression was positively correlated with immune infiltration, especially Th2 cells. Moreover,
BDNF expression was positively correlated with Th2 cell-related chemokine/chemokine receptors, indicating that BDNF might
modulate the migration of Th2 cells in PAAD. We also found that BDNF expression was correlated with high
chemotherapeutics sensitivity and highly expressed immune checkpoints, making it a valuable biomarker in predicting the
therapeutic benefits for chemotherapy and immunotherapy in cancer patients. In summary, BDNF might affect patient
prognosis by interacting with tumor-infiltrating Th2 cells, thus serving as a potential prognostic biomarker in PAAD.

1. Introduction

Pancreatic adenocarcinoma (PAAD) is an extremely lethal
disease found in the digestive system, ranking as the seventh
leading cause of cancer-related death in both men and
women worldwide [1]. Despite the morbidity and mortality
rates of other malignant tumors gradually declining, the
morbidity rates of and number of cancer-related deaths
caused by PAAD are still increasing [2]. Due to the indis-
tinct symptoms of early-stage PAAD, rapid tumor progres-

sion, and limited efficacy of early diagnostic methods, the
majority of PAAD patients present with unresectable or
metastatic tumors, with their 5-year survival rates less than
10% [2]. Multiagent conventional chemotherapy regimens
are the mainstay of treatment for individuals diagnosed with
advanced or metastatic PAAD, providing only months of
overall survival (OS) benefit [3–5]. Such unfavorable clinical
outcomes have fueled ongoing efforts to explore the complex
feature of the tumor microenvironment (TME) and the
molecular mechanisms underlying pancreatic carcinogenesis,
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and evidence has recently shown that immunotherapy target-
ing the interaction between tumor-infiltrating lymphocytes
and tumor cells has been proposed as a promising therapy
for PAAD [6, 7]. The use of immune checkpoint blockade
has demonstrated robust results in many malignancies, but
unfortunately, it is not yet translated to PAAD, possibly attrib-
uting to the immunosuppressive TME [7–10]. Accumulating
evidence has demonstrated that immune cells, the key compo-
nent of TME, are of particular relevance in patient prognosis
and the antitumor efficacy of chemotherapy and immunother-
apy [11, 12]. Therefore, it is highly important to elucidate the
complicated and multifaceted roles of the complex TME com-
ponents in pancreatic carcinogenesis and progression and
identify novel therapeutic biomarkers associated with tumor
infiltration in PAAD.

Brain-derived neurotrophic factor (BDNF), a member of
neurotrophins (NTs) originally known for its well-
documented functions on the development and regeneration
of central nervous system, has aroused attention because of
its critical roles in human malignancies [13]. BDNF and its
high-affinity tyrosine kinase receptor, tropomyosin receptor
kinase B (TrkB), have been demonstrated to be overex-
pressed in multiple cancers, such as neuroblastoma, oral,
breast, lung, and colorectal cancer. Moreover, its upregu-
lated expression is proven to be remarkably correlated with
adverse clinical outcomes [14–18]. There is now extensive
literature demonstrating that BDNF/TrkB signaling is
involved in regulating several aspects of tumor cell physiol-
ogy, including neovascularization [19], tumor proliferation
[20], epithelial-to-mesenchymal transition [21], apoptosis
resistance [22], and cytotoxic drug resistance [23]. Thus
far, a detailed understanding of the precise mechanisms
and functions of BDNF in PAAD is lacking. Intriguingly,
BDNF has been reported to be related to immune modula-
tion in neurogenic and nonneurogenic tissues. For example,
BDNF can regulate local inflammation by modulating the
level of transcription factors and cellular cytokines in brain
tissues of patients suffering from ischemic stroke [24]. Xiao
et al. have shown that environmental and genetic activation
of hypothalamic BDNF could lead to a decreased peripheral
CD4 :CD8 ratio, whereas knockdown of hypothalamic
BDNF could eliminate the change [25]. Regarding non-
neurogenic tissues, BDNF is implicated in T cell maturation,
B cell survival, and eosinophilic granulocyte activation,
implying that BDNF is a potential factor in modulating
immune homeostasis [26–28]. However, there is limiting
evidence regarding the BDNF-correlated functions in tumor
immunology, and more comprehensive analysis of BDNF
profile in PAAD is expected to understand the precise func-
tions of BDNF in prognosis and tumor immune infiltration.

Advancements in sequencing technologies largely
enhance our understanding of cancer genomics, making it
possible to explore the molecular mechanisms of multiple
carcinomas through bioinformatics analysis in publicly
available genomic datasets. Thus, this study is broadly aimed
at studying the mechanisms underpinning the oncogenic
role of BDNF in PAAD by combining available information
from several public databases, including Cancer Cell Line
Encyclopedia (CCLE), The Cancer Genome Atlas (TCGA),

Gene Expression Omnibus (GEO), Genotype-Tissue Expres-
sion (GTEx), International Cancer Genome Consortium
(ICGC), Tumor Immune Estimation Resource (TIMER),
Gene Expression Profiling Interactive Analysis (GEPIA),
and Kaplan-Meier plotter. First, the profile of BDNF was
estimated in human cancer cell lines, human normal tissues,
and multiple cancer types. Subsequently, the associations
between BDNF expression and patients’ prognosis and
clinicopathological characteristics were evaluated based on
the TCGA database and Kaplan-Meier plotter. Identifica-
tion of similar genes correlated with BDNF and gene set
enrichment analysis were applied to understand the biolog-
ical roles of BDNF in PAAD. Subsequently, the role of
BDNF in tumor-infiltrating immune cells was determined
using the TIMER database and the single-sample gene set
enrichment analysis (ssGSEA) and xCell algorithm. Finally,
we estimated the correlation among BDNF and chemo-
kines, chemokine receptors, chemotherapeutic efficacy,
and immune checkpoints.

2. Materials and Methods

2.1. BDNF Gene Expression Analysis. Gene expression data
were downloaded from the four publicly available datasets,
CCLE database, TCGA database, GEO database, GTEx pro-
ject, and ICGC database. Missing and duplicated results
were removed from the preprocessed data, which were sub-
sequently normalized by log 2ðTPM + 1Þ based on the “rma”
function in affy (v1.68) package. Gene expression data in
normal tissues were extracted from the GTEx project and
were used to compare the mRNA levels of BDNF among dif-
ferent tissues/organs. The CCLE dataset, a publicly available
genomic dataset that includes gene expression profiles from
917 human cancer cell lines spanning 36 cancer types, was
used to present the distribution of BDNF expression in dif-
ferent types of human cancer cell lines from various organi-
zations [29]. The Kruskal-Wallis test was conducted to
determine the differences among organs. Moreover, gene
expression profiles from the GTEx and TCGA project were
utilized to investigate BDNF expression across different can-
cer types compared to TCGA and GTEx normal tissues.

2.2. Prognosis Analysis of BDNF in PAAD. From the TCGA-
PAAD dataset, gene mRNA expression data and the corre-
sponding clinical information from 179 tumor tissues and
4 paracancerous tissues were downloaded, in which the
acquisition and application procedures aligned to the proto-
col. PAAD patients were firstly divided into the high and low
expression subgroups based on the median value of the
BDNF expression. Afterward, the Kaplan-Meier curves were
plotted using the online tool Sangerbox to explore the asso-
ciation between BDNF expression and progression-free sur-
vival (PFS). The analysis of overall survival (OS) and
relapse-free survival (RFS) between the high and low BDNF
expression subgroups in PAAD patients was also performed
using the Kaplan-Meier plotter (https://kmplot.com/
analysis/), a web-based platform capable of assessing the
effectiveness of a wide array of genes on patients’ survival
rates in 21 cancer types. The survival difference between
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the high and low BDNF expression subgroups was calculated
by the hazard ratios (HRs) and log-rank p value.

2.3. Correlation Analysis between BDNF and
Clinicopathological Features. To explore the association
between BDNF expression and clinicopathological charac-
teristics of PAAD patients, patients with complete informa-
tion on clinicopathological variables, including histological
grade, age, sex, and American Joint Committee on Cancer
(AJCC) stage, were selected from the TCGA database.
Subsequently, a series of chi-squared tests were performed
to verify the association between BDNF levels and clinico-
pathological parameters in PAAD, and the R package “Com-
plexHeatmap” (v2.6.2) was utilized for comprehensive visual
presentation. We further used Wilcoxon rank-sum tests to
compare the difference in BDNF expression among different
subgroups of clinicopathological variables, and these results
were presented as box diagrams.

2.4. Determination of BDNF Functions in PAAD. Before
identifying the biological functions of BDNF, similar genes
that have a similar expression pattern with BDNF in PAAD
were extracted from the GEPIA database (http://gepia
.cancer-pku.cn/). The GEPIA database is a web-based tool
for analyzing RNA sequencing expression data and provid-
ing customizable functions such as patient survival analysis,
correlation analysis, and similar gene detection, which
includes 9736 tumors and 8587 normal samples from the
TCGA and GTEx data [30]. Pathway enrichment analysis
including Gene Ontology (GO) terms and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathways was per-
formed using the “clusterProfiler” (v3.18.0) package and
“org.Hs.eg.db” (v3.12.0) package to elucidate the underlying
biological mechanisms of BDNF and its top 100 similar
genes. Moreover, the results of GO and KEGG pathway
analyses were considered to indicate significance at a cut-
off threshold of p < 0:05 and q < 0:05. To further validate
the enrichment results, the associations between BDNF
and tumor-associated genes in PAAD were analyzed using
Pearson correlation analysis based on the TCGA data. The
“ggplot2” (v3.3.2) package in R software was applied to visu-
alize the enrichment results to help interpret these results.

2.5. Correlation Analysis between BDNF and Immune-
Infiltrating Cells. The association between BDNF expression
and tumor-infiltrating immune cells was determined using
the ssGSEA algorithm. ssGSEA is a rank-based algorithm
that requires an input matrix of gene signatures expressed
by immune cell populations and accurately determines the
relative immune cell infiltration levels of individual cancer
samples [31]. Based on RNA-Seq expression data, the R
package “gsva” (v1.38.0) was utilized to quantify the relative
levels of immune cells in each patient included in the TCGA
project, and Pearson’s correlation was employed to assess
how BDNF expression correlated with the levels of infiltrat-
ing immune cell subtypes.

2.6. Protein-Protein Interaction Network Analysis. A protein-
protein interaction (PPI) network was constructed based on
top 100 similar genes that significantly correlated with

BDNF by using Search Tool for the Retrieval of Interacting
Genes (STRING, version 11.5, http://string-db.org) data-
base. STRING is an online tool used to predict the functional
interactions between proteins, which is essential for recog-
nizing the mechanisms of cell activities at the molecular
levels in cancer progression. The disconnected nodes were
hided in the network. Then, the PPI network was visualized
by the Cytoscape software (version 3.7.2, http://www
.cytoscape.org/).

2.7. Validating the Association between BDNF and Th2 Cells.
TIMER2.0 (https://cistrome.shinyapps.io/timer/) is a web-
based data-mining platform that includes 10,897 samples
across 32 cancer types and applies multiple immune decon-
volution methods to determine the relative levels of immune
infiltrates from their gene expression profiles [32]. We ini-
tially employed the TIMER2.0 database to explore the asso-
ciation between BDNF gene expression and the levels of Th2
cell infiltration. The correlations between BDNF expression
and the gene markers for Th2 cells were also assessed using
the TIMER2.0 database. The gene markers of Th2 cells were
selected from the website of R&D Systems (https://www
.rndsystems.com/cn/resources/cell-markers/immune-cells),
and the Spearman method was used to determine the corre-
lation coefficient. Furthermore, we performed further OS
analysis for combining the mRNA levels of BDNF and dif-
ferent abundances of Th2 cells in PAAD patients.

Two independent human PAAD datasets obtained from
publicly available genomic datasets were used as external
validation to further explore the impact of BDNF on the
abundance of Th2 cells in PAAD patients: GSE85916 and
ICGC PAAD-AU cohort. Original Series Matrix Files of
GSE85916 were collected from the Gene Expression
Omnibus database (https://www.ncbi.nlm.nih.gov/geo/).
GSE85916 was submitted by Puleo F and colleagues and
contained 80 PAAD tissues. Australian pancreatic cancer
RNA-sequencing data (ICGC PAAD-AU cohort) encom-
passing 242 samples were retrieved from the ICGC
(https://dcc.icgc.org/releases). The “xCell” (v1.1.0) package,
a high-resolution gene signature-based method that can gen-
erate a reliable score for up to 64 immune and stromal cell
types, was employed to calculate the cell type enrichment
scores of Th2 cell infiltration for each PAAD sample based
on the gene expression data [33]. Afterward, Wilcoxon
rank-sum tests were conducted to compare the difference
in Th2 cell infiltration between the high and low BDNF
expression subgroups in the TME of PAAD patients.

2.8. Exploration of the Significance of BDNF in Clinical
Treatment. To explore the role of BDNF in the medicinal
therapy for PAAD patients, drug sensitivity (lower half
inhibitory concentration [IC50]) in response to common
anticancer drugs such as paclitaxel, gemcitabine, rapamycin,
obatoclax mesylate, AKT inhibitor VIII, and c-Jun N-
terminal kinase (JNK) inhibitor VIII was calculated in the
TCGA-PAAD dataset. Next, the difference in drug sensitiv-
ity between the low and high BDNF expression subgroups
was compared using the Wilcoxon rank-sum tests and visu-
alized with the R package “pRRophetic” (v0.5) and “ggplot2”
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(v3.3.2). In addition, we performed a series of Pearson corre-
lation analyses to investigate the association between BDNF
expression and gene expression levels of immune check-
points (including but not limited to PDCD1, CD274, and
CTLA4) and chemokines and chemokine receptors based
on the TCGA-PAAD dataset.

2.9. Statistical Analyses. R software (version 3.6.1) was
employed to implement the statistical analyses in the study.
p values < 0.05 were considered significant unless otherwise
specified.

3. Results

3.1. Expression Levels of BDNF in Pan-Cancer. To achieve a
better understanding of the role of BDNF in cancers, the dis-
tribution of BDNF in various types of normal and tumor tis-
sues was analyzed using gene expression data from the
GTEx, CCLE, and TCGA projects. Using data from the
GTEx database comprising 31 normal tissues from healthy
people, BDNF was proven to be expressed at a low level
across most of the organs. Low BDNF expression was
observed in the blood, bone marrow, liver, and pancreas,
whereas the relatively high expression of BDNF was noted
in the blood vessel, bladder, and prostate (Figure 1(a)). The
Kruskal-Wallis test indicated that there were significant dif-
ferences in BDNF expression among the normal tissues
(Kruskal-Wallis test p = 0). Subsequently, we analyzed the
gene expression profiles of BDNF in nearly 1000 human
cancer cell lines extracted from the CCLE dataset, and the
results revealed that the mRNA expression levels of BDNF
not only were increased ubiquitously in contrast to the range
of expression in the normal tissues but also varied signifi-
cantly among different cancer cell lines (Kruskal-Wallis test
p = 8:2e − 33, Figure 1(b)). High mRNA expression of BDNF
was noted in many cancer lines, especially those originating
from the bone, pancreas, and pleura, whereas the relatively
low expression was observed in the breast, intestine, and
hematopoietic and lymphoid organs.

To confirm the above observation, we further plotted
BDNF expression distribution across multiple TCGA cancer
types and normal tissues. Considering that the number size
of normal samples in the TCGA database was significantly
small, we merged the data of normal samples in the GTEx
portal with the data of adjacent noncancerous tissues in
the TCGA dataset for pan-cancer analyses. As depicted in
Figure 1(c), the difference of BDNF expression between
tumor and normal tissues achieved significance in 24 out
of 27 cancer types, with the evident exception of kidney
chromophobe (KICH), ovarian serous cystadenocarcinoma,
and testicular germ cell tumor. BDNF expression was more
upregulated in many cancers compared to normal tissues,
including thyroid, ovary, liver, colorectal, gastric, kidney,
esophageal, and pancreatic cancers and acute myeloid leuke-
mia. However, skin, lung, prostate, breast, and brain tumors
showed the reverse results with significance. Taken together
with the results of CCLE and TCGA pan-cancer analysis,
BDNF was commonly overexpressed in digestive cancers
such as esophageal, stomach, colon, and pancreatic cancers,

which indicated that BDNF may serve as a potential
regulatory mechanism in tumor progression and patient
prognosis.

3.2. Prognostic Potential of BDNF in PAAD. Next, we inves-
tigated the prognostic value of BDNF for cancer patients in
different databases. We found that multiple cancer types
exhibited a significant association between BDNF expression
and PFS in the TCGA database, including bladder, colon,
kidney, and pancreatic cancers (Figure 2(a)). Notably, PFS
analysis revealed that BDNF played a protective role in kid-
ney renal clear cell carcinoma (KIRC) (PFS: HR = 0:90, 95
%confidence interval ½CI� = 0:82 – 0:98, p < 0:001). However,
BDNF played a detrimental role in bladder urothelial carci-
noma (PFS: HR = 1:06, 95%CI = 1:00 – 1:11, p < 0:001),
colon adenocarcinoma (PFS: HR = 1:44, 95%CI = 1:22 –
1:69, p < 0:001), and PAAD (PFS: HR = 1:29, 95%CI = 1:07
– 1:55, p < 0:001). Thus, we focused on PAAD in further
study. To further identify BDNF as an adverse prognostic
factor for PAAD patients, the Kaplan-Meier plotter database
was additionally employed to assess the effect of BDNF
expression on OS and RFS. Considering the results derived
from the TCGA database, the poorer prognosis was signifi-
cantly associated with the elevation of BDNF expression in
PAAD patients (OS: HR = 1:69, 95%CI = 1:09 – 2:55, p =
0:017; RFS : HR = 7:81, 95%CI = 2:19 – 27:87, p < 0:001;
Figure 2(b)). These results confirmed the notion the BDNF
expression has an impact on PAAD prognosis.

3.3. Associations between BDNF and Clinicopathological
Parameters of PAAD Patients. The correlation between
BDNF levels and clinicopathological parameters of PAAD
patients was assessed using two methods, including the
chi-squared and Wilcoxon rank-sum tests. The strip chart
obtained by the chi-squared tests showed that T stage was
significantly associated with BDNF expression (Figure 3(a)).
Scatter diagrams obtained by Wilcoxon rank-sum tests dem-
onstrated that high levels of BDNF were observed in PAAD
patients with the following characteristics (Figure 3(b)): aged
less than 65 years (p = 0:014) and AJCC T3–T4 stage
(p = 0:011). However, there were no significant differences
observed in the correlations of BDNF expression with sex
(p = 0:81), AJCC stage (p = 0:64), AJCC M stage (p = 0:33),
AJCC N stage (p = 0:46), or histological grade (p = 0:23).

3.4. Functional Enrichment Analyses of BDNF in PAAD. To
further clarify the underlying roles of BDNF in PAAD, we
firstly identified the top 100 similar genes that significantly
correlated with BDNF using the GEPIA database (Supple-
mentary Table 2). Then, these top 100 similar genes were
analyzed in the STRING database, and a PPI network was
constructed by the Cytoscape (Figure 4(a)). We found
BCL2L1, IRS1, MET, and TGFB2 interacted with BDNF
directly. Notably, these genes were highly expressed in
PAAD tissues compared with normal tissues, suggesting
that BDNF might exert its tumor-promoting effect through
these four genes in pancreatic tumor (Figure 4(b)).
Furthermore, the biological functions of BDNF and its
similar genes were determined by the KEGG pathway and
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Figure 1: Continued.
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GO annotation analyses, and the results demonstrated that
17 KEGG pathways (Supplementary Table 3) and 30 GO
terms (Supplementary Table 4) were enriched for these
genes (p value < 0.05 and q value < 0.05). KEGG
enrichment analysis demonstrated significant enrichment
of multiple cancers, such as hepatocellular carcinoma,
gastric cancer, renal cell carcinoma, pancreatic cancer,
colorectal cancer, and small cell lung cancer, which further
validated the pan-cancer analysis (Figure 4(c)). Moreover,
some of KEGG pathways were observed for their roles in
the development and progression of cancer, such as PI3K-
Akt signaling pathway, p53 signaling pathway, and Hippo
signaling pathway (Figure 4(c)). It was worth noting that
BDNF and its similar genes were notably associated with
EGFR tyrosine kinase inhibitor resistance, which might
provide evidence for their potential role in cancer-targeted
treatment. The top 10 terms in the GO results were
demonstrated in Figure 4(d). According to GO enrichment
analysis, these genes were primarily involved in regulating
multiple cancer-promoting signaling pathways, such as
protein kinase B signaling, Ras protein signal transduction,
and Rho protein signal transduction. All the above results

indicated that BDNF and its similar genes could
collectively affect tumor-related signaling pathways.

To gain deeper insights into the function of BDNF in the
development and progression of pancreatic tumors, we per-
formed correlation analyses to reveal the relevance between
BDNF and prooncogenic signaling pathways in PAAD. As
depicted in Figure 4(e), BDNF expression was positively cor-
related with tumor-associated genes, including Akt1, Akt2,
Akt3, mTOR, mitogen-activated protein kinase (MAPK) 8,
MAPK9, MAPK10, ACTRT3, CDA, BCL2, and MCL1.
These tumor-associated genes that seemed to be elevated
with BDNF expression level increased. Of note, abnormal
expression of BDNF might lead to pancreatic carcinogenesis,
resulting in poor survival in PAAD patients.

3.5. Associations between BDNF and Immune-Infiltrating
Cells. It is well known that the survival times of cancer
patients can be affected by the quantity and activity status
of tumor-infiltrating immune cells in the TME [11, 12]. As
the above results revealed that BDNF might play a prognos-
tic role in PAAD, it would be meaningful to analyze the cor-
relation between BDNF expression and immune cells. Thus,
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Figure 1: BDNF mRNA expression in GTEx normal tissues, human cancer cell lines, and TCGA cancer tissues. (a) BDNF mRNA
expression in GTEx normal tissues. (b) BDNF mRNA expression in various tumor cell lines, analyzed by the CCLE database. (c)
Expression level of BDNF across 27 TCGA tumors compared to TCGA normal and GTEx normal tissues. The key to all TCGA
abbreviations is shown in Supplementary Table 1. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001. GTEx: Genotype-Tissue Expression; TCGA: The
Cancer Genome Atlas. CCLE: Cancer Cell Line Encyclopedia.
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7Disease Markers



we used the ssGSEA algorithm to determine whether BDNF
levels were associated with immune cells in PAAD by calcu-
lating the Pearson correlation coefficient. These results indi-
cated that BDNF expression had significant correlations
with plasmacytoid dendritic cells and multiple types of T
cells, including type 2 T helper cell (Th2 cell), central mem-
ory CD8+ T cell, natural killer T cell, and central memory
CD4+ T cell (Figure 5(a)). Notably, Th2 cells were the
immune cell type most strongly associated with BDNF
expression in PAAD (r = 0:36, p < 0:01, Figure 5(a)). BDNF
expression was significantly correlated with CCL2-CCR2
(CCL2, r = 0:35, p < 0:01; CCR2, r = 0:28, p < 0:01,
Figure 5(b)) signaling axis in PAAD, which has been proven
to be associated with Th2 polarization and infiltration [34].
Since studies have shown that Th2 cells suppress the antitu-
mor immune response by producing various kinds of cyto-
kines, such as interleukin 6 (IL6) and interleukin 10 (IL10)
[35, 36], we further analyzed the relationship of BDNF with
IL6 and IL10 expressions in PAAD and found that BDNF
was positively associated with IL6 (r = 0:36, p < 0:01,
Figure 5(b)) and IL10 (r = 0:32, p < 0:01, Figure 5(b)). More-
over, we explored the association between Th2 cells and
BDNF expression in multiple cancer types. As shown in
Figure 5(c), BDNF expression was also significantly corre-
lated with the infiltration levels of Th2 cells in many cancers,
including esophageal carcinoma (r = 0:17, p = 0:02), KICH
(r = 0:46, p < 0:01), KIRC (r = 0:16, p < 0:01), brain lower-

grade glioma (r = 0:14, p < 0:01), breast invasive carcinoma
(r = 0:11, p < 0:01), liver hepatocellular carcinoma (r = 0:23
, p < 0:01), lung adenocarcinoma (r = 0:15, p < 0:01), meso-
thelioma (r = 0:29, p < 0:01), and stomach adenocarcinoma
(r = 0:19, p < 0:01). Collectively, these findings supported
the notion that BDNF might affect the survival time of can-
cer patients via interacting with Th2 cells.

3.6. Correlation between BDNF and Th2 Cells in PAAD. To
further explore the potential associations between BDNF
expression and the infiltrating levels of Th2 cells in PAAD,
we employed the xCell algorithm to estimate the association
between BDNF expression and Th2 cells using the TIMER
database. After adjusting the correlation for tumor purity,
BDNF expression was remarkably associated with immune
infiltration level of Th2 cells in PAAD patients (r = 0:214,
p = 0:005, Figure 6(a)). We also found significant association
between BDNF expression and Th2 cell markers, such as
CCR3 (r = 0:346, p < 0:001), STAT6 (r = 0:273, p < 0:001),
and GATA3 (r = 0:379, p < 0:001, Figure 6(b)). Moreover,
due to the importance of Th2 cells in the process of tumor
immunosuppression, we further investigated the association
between Th2 cells and patients’ prognosis in PAAD using
the TIMER database. Kaplan-Meier plots demonstrated that
high levels of Th2 cells were correlated with not only poorer
short-term OS rates but also unfavorable long-term OS rates
(Figure 6(c)). We also evaluated the difference of OS among
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Figure 2: The Kaplan-Meier survival curve analysis of the prognostic significance of high and low expression of BDNF in different cancer
types. (a) Kaplan-Meier survival curves comparing the high and low expression of BDNF in different cancer types using TCGA dataset. (b)
Kaplan-Meier survival curves comparing the high and low expression of BDNF in PAAD using the Kaplan-Meier plotter. TCGA: The
Cancer Genome Atlas; PFS: progression-free survival; OS: overall survival; RFS: relapse-free survival.
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patients stratified by both the estimated infiltration levels of
Th2 cells and BDNF expression levels. As illustrated in
Figure 6(d), there was no remarkable correlation between
Th2 cells and prognosis at short-term follow-up (up to 35
months) when combined with the expression patterns for
BDNF. Interestingly, at medium-term follow-up (up to 50
months), lower infiltration levels of Th2 cells predicted
favorable prognosis under the high expression levels of
BDNF (HR = 1:85, p = 0:0417), whereas no significant asso-
ciation between Th2 cells and prognosis was found under
the low expression levels of BDNF (HR = 1:54, p = 0:152).
In contrary with these results, patients with the combination
of high Th2 cell levels and low BDNF expression levels expe-
rienced worse outcomes at long-term follow-up (up to 100
months) (HR = 2:06, p = 0:0205). However, there was no sig-
nificant correlation between Th2 cells and prognosis under
the high BDNF levels at long-term follow-up (HR = 1:36,
p = 0:295). These results suggested that combining the expres-

sion levels of BDNFwith Th2 cells might play a vital role in the
accurate prediction of prognosis in PAAD patients.

To further verify the significant differential infiltration
levels of Th2 cells in PAAD patients stratified by BDNF
expression levels, the TCGA-PAAD cohort and GSE85916
and ICGC PAAD-AU cohort were used to evaluate the levels
of Th2 cells in the high BDNF expression and low expres-
sion subgroups as internal validation and external valida-
tion, respectively. As exhibited in Figure 7, the infiltration
levels of Th2 cells in the TCGA cohort were more remark-
ably upregulated in the high BDNF expression subgroup
compared to that in the low expression subgroup
(p = 0:037). Similar tendencies, albeit not statistically signif-
icant levels, were observed in the GSE85916 (p = 0:14) and
ICGC PAAD-AU cohort (p = 0:10).

3.7. Associations between BDNF and Chemokines and
Chemokine Receptors. To further clarify the potential role
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Figure 3: Correlation between BDNF mRNA expression and clinical characteristics of PAAD patients from TCGA database. (a) A strip
chart showed that T stage was significantly associated with BDNF expression. (b) Scatter diagrams showed that T stage and age were
significantly associated with BDNF expression. ∗p < 0:05; ns: not significant; TCGA: The Cancer Genome Atlas.
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Figure 4: Functional enrichment analysis of BDNF and its similar genes. (a) A PPI network based on top 100 similar genes that significantly
correlated with BDNF using Cytoscape. (b) Expression level of four genes extracted from PPI network in PAAD tissues compared to normal
tissues in TCGA datasets. (c) The Kyoto Encyclopedia of Genes and Genomes pathways in enrichment analysis of BDNF and its similar
genes; (d) top 10 of gene ontology enrichment analysis results of BDNF and its similar genes. Bubble color refers to the enrichment p
value, and the size of the bubble represents the gene number. (e) Correlation analysis between BDNF and tumor-associated genes in
PAAD. PPI: protein-protein interaction.
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of BDNF in cancer immunity, we estimated the correlation
of BDNF expression levels with chemokines and chemokine
receptors, which were best known for their ability to
orchestrate the proper movement of immune cells. As
Tables 1 and 2 demonstrated, BDNF expression was posi-
tively associated with Th2-associated chemokines and
chemokine receptors, including CCL17, CCL22, and CCR4.
Moreover, we found that BDNF expression was strongly cor-
related with CCR2, CXCR2, and CXCR4, and the inhibitors
of these chemokine receptors were already evaluated in
many preclinical studies and clinical trials for PAAD
[37–39]. Most of the chemokines and chemokine receptors
tended to be increased accompanied by the upregulation of
BDNF expression. Consequently, increased expression of
BDNF might lead to the migration of immune cells to tumor
tissues.

3.8. Exploration of the Significance of BDNF in Clinical
Treatment. To verify the value of BDNF in clinical treatment
for PAAD, we explored the associations between BDNF
expression and the efficacy of common administrating che-
motherapeutic drugs, and the results revealed that higher
BDNF mRNA levels were remarkably correlated with IC50
of chemotherapeutics, such as gemcitabine (p = 0:037),
rapamycin (p = 0:027), obatoclax mesylate (p < 0:001),
AKT inhibitor VIII (p = 0:046), and JNK inhibitor VIII
(p = 0:021). Although there was no significant difference in
the drug sensitivity of paclitaxel between the high BDNF
and low BDNF subgroups, IC50 for paclitaxel tended to be
reduced with the upregulation of BDNF levels (p = 0:098,
Figure 8(a)). These findings suggested that high BDNF
expression could be predictive of increased chemosensitivity.
Since immunotherapy has been recently rapidly developing
as a therapeutic renaissance in PAAD, we aimed to deter-

mine whether BDNF expression was associated with
immune checkpoints and discovered that high BDNF
mRNA levels were strongly associated with high expression
of CD274, PDCD1, CTLA4, BTLA, CD276, HAVCR2,
IDO1, LAG3, TIGIT, and NRP1 (Figure 8(b)).

4. Discussion

BDNF is a critical member of the NT polypeptide superfam-
ily, which consists of nerve growth factor (NGF). NGF has
been reported to be highly expressed in pancreatic tumors
and to be able to promote the migration and invasion of
human pancreatic cancer cells [40]. Additionally, trkB, the
receptor of BDNF, has been demonstrated to be overex-
pressed in resected PAAD tissues, which are remarkably
associated with perineural invasion and shorter latency to
development of liver metastasis in PAAD patients [41].
Although considerable studies have been conducted to
understand the biological role of BDNF in various cancers
over the past two decades, the functions of BDNF and its
utility as a novel biomarker in PAAD have yet to be deter-
mined. In the present study, we found that aberrant expres-
sion of BDNF was significantly associated with patient
prognosis in several types of cancer, with a particularly
remarkable association of high BDNF expression with poor
prognosis and aggressive clinicopathological characteristics
of PAAD patients. Moreover, several cancer-related path-
ways and the infiltration of immune cells, especially Th2
cells, were significantly correlated with BDNF mRNA levels.
Intriguingly, our analyses revealed that the degree of BDNF
expression was correlated with high chemotherapeutics sen-
sitivity and highly expressed immune checkpoints, making it
a valuable biomarker in predicting the therapeutic benefits
for chemotherapy and immunotherapy in cancer patients.
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Figure 5: Correlation analysis between BDNF expression and tumor-infiltrating immune cells using the ssGSEA algorithm. (a) Pearson
correlations of BDNF expression with the infiltration levels of various types of immune cells (ssGSEA score) in PAAD tissues. (b)
Pearson correlations of BDNF expression with the infiltration-related and functional genes of Th2 cells. (c) Pearson correlations of
BDNF expression with the infiltration levels of Th2 cells (ssGSEA score) in different cancer types from TCGA dataset. ssGSEA: single-
sample gene set enrichment analysis; TCGA: The Cancer Genome Atlas.

14 Disease Markers



Purity T cell CD4+ Th2_XCELL

PA
A

D

0.25 0.50 0.75 1.00 0.0 0.1 0.2 0.3
0.0

0.5

1.0

1.5

2.0

2.5

Purity

BD
N

F 
ex

pr
es

sio
n 

le
ve

l (
lo

g2
 T

PM
)

Infiltration level

Rho = −0.103
p = 1.81e−01

Rho = 0.214
p = 5.05e−03

(a)

CCR3

0 3

2.0

1.5

1.0

0.5

0.0

2.5

2.0

1.5

1.0

0.5

0.0

2.5

2.0

1.5

1.0

0.5

0.0

2.5

1 2
Expression level

BD
N

F 
ex

pr
es

sio
n 

le
ve

l (
lo

g2
 T

PM
)

Purity GATA3

0.25 0.50 0.75 1.00 0 2 4

Partial.rho = 0.346
p = 3.6e−06

Rho = −0.103
p = 1.81e−01

Partial.rho = 0.379
p = 3.19e−07

Expression levelPurity

(b)

0 5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8

1.0

Time to follow−up (months)

Cu
m

ul
at

iv
e s

ur
vi

va
l

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e s

ur
vi

va
l

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e s

ur
vi

va
l

Low T cell CD4+ Th2_XCELL
High T cell CD4+ Th2_XCELL

HR = 1.26, p = 0.031

0 10 20 30 40 50 60
Time to follow−up (months)

HR = 1.27, p = 0.0235

0 20 40 60 80
Time to follow−up (months)

HR = 1.31, p = 0.0117

(c)

Figure 6: Continued.
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To the best of our knowledge, our study provided new
insights into understanding the potential role of BDNF in
tumor progression and TME of pancreatic cancer.

In the present study, we attempted to profile the pan-
cancer expression of BDNF at cell and mRNA level and
the association between its abnormal expression and patient
outcomes. At the cell detection level, the mRNA expression
of BDNF was detected in most of the cancer cell lines, show-
ing an increased tendency when compared to normal tissues.
At the mRNA expression level, BDNF expression was down-
regulated in nine types of tumors compared to normal tis-
sues, whereas others were remarkably elevated in tumor
tissues. These discrepant expressions of BDNF revealed that
the biological role of BDNF might be context-dependent and
serve different functions in different tumors. In the previous
study, it still remains unclear whether BDNF can be identi-
fied as oncogene or suppressor in different types of cancer.
For example, most of the available literature has demon-

strated that BDNF can promote tumor development and
predict unfavorable prognosis in pan-cancer [14–18]. How-
ever, it can also induce cancer remission by eliciting an
increased antitumor immune response in multiple cancers
[25, 42]. Thus, we performed prognostic analysis of BDNF
to define BDNF as tumor oncogene or tumor suppressor,
and similar results had been achieved by our study. We
found the consistent adverse prognostic value of BDNF
expression in PAAD across different databases and BDNF
expression in PAAD was positively correlated with tumor
T stage, strongly indicating that BDNF served as an unfavor-
able prognostic biomarker in pancreatic tumors. It was
worth noting that BDNF expression levels were remarkably
decreased in PAAD patients aged older than 65 years, raising
the possibility that elderly patients with pancreatic cancer
might represent a heterogeneous subgroup with different
molecular characteristics that require individualized antitu-
mor therapy [43].
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Figure 6: Correlation analysis between BDNF expression and tumor infiltrating Th2 cells in PAAD by using the TIMER database. (a)
Spearman correlations of BDNF expression with the infiltration levels of Th2 cells in PAAD tissues. (b) Spearman correlations of BDNF
expression with the expression of marker genes of Th2 cells in PAAD tissues. (c) Overall survival analysis for Th2 cells in PAAD
patients. (d) Overall survival analysis for combining the expression of BDNF and Th2 cells in PAAD patients.
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To better understand the biological functions of BDNF
in the regulation of PAAD, functional annotation of BDNF
and its similar genes was conducted. Enrichment analysis
indicated that these genes were potentially associated with
several signaling pathways critical in the tumorigenesis and
progression of pancreatic tumors. Among the similar genes,
BCL2L1, IRS1, MET, and TGFB2 interacting with BDNF
directly was found to be elevated in PAAD tissues. Previous
literature revealed that the upregulation of TGFB2 expres-
sion can mediate epithelial-mesenchymal transition of
pancreatic ductal adenocarcinoma, and MET, IRS1, and
BCL2L1 are also demonstrated to be related to PAAD initi-
ation, progression, and metastasis [44–46]. These results
suggested that BDNF might exert its tumor-promoting effect
through multiple signaling pathways in pancreatic tumor.
Moreover, we also evaluated the close association between
BDNF expression and some critical pancreatic cancer-
promoting genes and found that most of these genes were
strongly related to BDNF expression in PAAD, including
Akt, mTOR, and MAPK. Previous studies have shown that
the phosphoinositide 3-kinase AKT mammalian target of
rapamycin (PI3K-AKT-mTOR) signaling pathway exhibits
a vital role in the pathogenesis of PAAD and is highly upreg-
ulated in pancreatic tumor [47]. RAS-stimulated signaling of
MAPK has been reported to be tightly activated in pancre-
atic cancer, responsible for the initiation and maintenance
of pancreatic carcinogenesis [48]. Therefore, we believe that
BDNF could regulate PAAD by modulating major onco-
genic pathways. In addition, we found that BDNF mRNA
levels were associated with several important nodes in apo-
ptosis signaling pathways, including p53, Bcl-1, and Mcl-2.
The evasion of apoptosis has been revealed as a novel hall-
mark of cancer, which can induce tumorigenesis and render
tumor cells resistant to multiple therapeutics [49]. In cancer,
apoptosis machinery is derived by two canonical
approaches: inactivation of the most important tumor sup-
pressor gene p53 and activation of antiapoptotic Bcl-2 family
proteins, which comprise Bcl-2 and Mcl-2 [49, 50]. Thus, we
hypothesized that BDNF would exert its antiapoptotic prop-
erty by targeting the two main apoptotic regulators. Intrigu-
ingly, there was a highly close association between BDNF
and cytidine deaminase (CDA) expression in PAAD based
on our correlation analysis. CDA is a cytoplasmic enzyme
involved in the metabolism of nucleoside analogs such as
gemcitabine, which has long been the backbone of PAAD
chemotherapy [3]. The association between CDA expression
and the sensitivity/resistance of tumor cells to treatment
with gemcitabine is well described [51, 52]. Moreover, severe
cellular gemcitabine toxicity has been observed in cancer
patients with low activity of CDA [53]. These results demon-
strated that BDNF overexpression in PAAD might be
another biomarker for determining the resistance to chemo-
therapy and cellular toxicity.

To the best of our knowledge, this study provides the
first evidence of correlation between BDNF and TME in
PAAD. Using the ssGSEA method, we found that BDNF
expression was positively associated with the abundance of
multiple types of T cells in PAAD including central memory
CD8+ T cells, central memory CD4+ T cells, and Th2 cells.

Table 1: Correlation between BDNF expression and chemokines in
PAAD.

Chemokine Correlation p value

CCL1 −0.046 0.542

CCL2 0.348 <0.001
CCL3 0.180 0.016

CCL4 0.277 <0.001
CCL5 0.317 <0.001
CCL7 0.370 <0.001
CCL8 0.290 <0.001
CCL11 0.432 <0.001
CCL13 0.309 <0.001
CCL14 0.012 0.874

CCL15 −0.161 0.032

CCL16 −0.134 0.075

CCL17 0.223 0.003

CCL18 0.299 <0.001
CCL19 0.194 0.009

CCL20 0.230 0.002

CCL21 0.139 0.064

CCL22 0.317 <0.001
CCL23 0.081 0.280

CCL24 −0.034 0.648

CCL25 −0.007 0.927

CCL26 0.053 0.479

CCL27 0.047 0.533

CCL28 0.327 <0.001
CX3CL1 0.373 <0.001

Table 2: Correlation between BDNF expression and chemokine
receptors in PAAD.

Chemokine receptor Correlation p value

CCR1 0.409 <0.001
CCR2 0.281 <0.001
CCR3 0.334 <0.001
CCR4 0.386 <0.001
CCR5 0.335 <0.001
CCR6 0.131 0.081

CCR7 0.263 <0.001
CCR8 0.408 <0.001
CCR9 0.291 <0.001
CCR10 0.077 0.304

CX3CR1 0.073 0.334

CXCR1 0.181 0.016

CXCR2 0.319 <0.001
CXCR3 0.305 <0.001
CXCR4 0.264 <0.001
CXCR5 0.260 <0.001
CXCR6 0.320 <0.001
XCR1 0.249 0.001
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Neoantigens accumulating on the surface of cancer cells
can elicit the antitumor responses through the activation
of CD8+ and CD4+ T cells in the TME, subsequently elim-
inating the tumor cells and thereby preventing cancer
development and progression [54]. Different from the con-
ventional view of T cells as a component of anticancer
immunity, Th2 cells can help tumor cells escape from the
immunosurveillance process by secreting various cytokines
[55]. For example, IL6 secreted from Th2 cells plays a crit-
ical role in promoting pancreatic cancer development [35].
IL10 produced by Th2 cells is associated with the suppres-
sion of the antitumor immune response through inhibiting
the antigen processing and presentation of dendritic cells

and activating the immunosuppressive regulatory T cells
[36, 56]. We found that BDNF was positively related to
IL6 and IL10, revealing that BDNF had the potential to
modulate the balance of antitumor immune response and
immune escape mechanisms in the TME. Besides, Th2
cells showed strong correlation with BDNF expression
not only in PAAD but also in multiple cancers. This raised
a preliminary assumption that the association between
BDNF and Th2 cells might play an important role in
tumor immunity. To confirm this notion, we further ana-
lyzed the association between BDNF and Th2 cells to illus-
trate the potential immune-related mechanisms of BDNF
in PAAD.
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Figure 8: Exploration of the role of brain-derived neurotrophic factor (BDNF) in the medicinal therapy for pancreatic adenocarcinoma
(PAAD) patients. (a) Comparisons of the efficacy of common chemotherapeutics in treating PAAD between the low and high BDNF
expression subgroups in the Cancer Genome Atlas- (TCGA-) PAAD dataset. (b) Analysis of the correlation between BDNF expression
and the expression level of genes related to immune checkpoints in the TCGA-PAAD dataset.
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First, a strong association was found between BDNF
expression and Th2 cells and their gene markers in the
TIMER2.0 database. Furthermore, the levels of Th2 cells
were identified to be significantly upregulated in the high
BDNF expression group of the TCGA-PAAD cohort. Simi-
lar trends were observed in another two independent PAAD
cohorts, although there was no statistical significance owing
to the restriction of the number of samples and the dynamic
changes of tumor immunity during tumor initiation, pro-
gression, and metastasis. These findings revealed that Th2
cells had the potential to be activated by BDNF. Second,
BDNF was proven to be correlated with chemotaxis in
PAAD tissues. Chemokines present at the TME can control
the positioning and movements of immune cells. For
instance, CCL17 and CCL22, acting on CCR4, can directly
recruit Th2 cells at the tumor site, thus participating in the
development of cancers [57]. By interacting with CCR2,
CCL2 is able to recruit Th2 cells to create an immunosup-
pression microenvironment [34]. Thus, BDNF might
increase the infiltration levels of Th2 cells by regulating the
migration of Th2 cells in PAAD. Additionally, the TIMER
analysis revealed that Th2 cells predicted worse outcomes
in PAAD patients, which was in concordance with the result
of a previous study in clear cell renal cell carcinoma and lung
squamous cell carcinoma [58, 59]. Finally, we found that
there was significant association between Th2 cells and
short-term prognosis of PAAD patients under a high expres-
sion level of BDNF and between Th2 cells and long-term
prognosis under a low expression level of BDNF. We
hypothesized that the association between BDNF and Th2
cells might play a tactic role in TME. In the early phase of
carcinogenesis, BDNF might promote the growth of cancer
by activating Th2 cells and therefore affect the survival of
PAAD patients. Once a tumor progresses past this early
stage, Th2 cells gradually played a predominant role in
supporting pancreatic cancer cells. Future mechanistic
investigation focusing on BDNF expression and Th2 cell
infiltration in the TME of PAAD is needed to prove this
assumption. The above data suggested that BDNF might be
involved in the immune response via interacting with Th2
cells, contributing to pancreatic carcinogenesis and progres-
sion, thus resulting in an unfavorable prognosis of PAAD
patients.

Another important finding of this study was the signifi-
cance of BDNF in the clinical treatment for PAAD. As is
well known, tumor-infiltrating immune cells can affect the
response to immunotherapy and chemotherapy [11, 12].
Since BDNF was proven to be significantly associated with
immune cells in PAAD, we elaborated the association
between BDNF expression and the immunosuppressive mol-
ecules expressing immune checkpoint inhibitors (ICIs) and
found that BDNF was positively correlated with ICI-related
biomarkers. Thus, we suspected that combining BDNF
blockade and ICIs might be a feasible approach to eliminate
cancer cells. Furthermore, our study demonstrated that
BDNF was associated with sensitivity to several chemother-
apeutic drugs, which are recommended for PAAD treatment
by the AJCC guidelines. These results revealed that BDNF
might be a potential biomarker for predicting the efficacy

of chemotherapeutics and ICIs for PAAD treatment.
Although most studies identified BDNF as a universal atten-
uator of chemotherapeutic efficacy in vitro [60, 61], the role
of BDNF in modulating the resistance to chemotherapy
in vivo remains largely unknown. Thus, prospective clinical
studies are required.

Despite some strengths of the current study, it has some
limitations. First, our study assessing the association
between BDNF and PAAD was conducted based on infor-
mation extracted from open-access databases, and no exper-
imental validation was performed to confirm these predicted
results. Second, exploration of BDNF expression was based
entirely on the mRNA levels reported in the TCGA, GEO,
GTEx, and CCLE databases. However, this could not predict
protein expression and reflect posttranslational modification
of BDNF. Further studies should pay attention to validate
the protein levels of BDNF in PAAD using immunohisto-
chemistry, immunocytochemistry, or immunoblotting.
Finally, despite our analyses revealing that the mRNA levels
of BDNF were significantly associated with Th2 cell infiltra-
tion and patient prognosis in PAAD, we still could not con-
clude that BDNF directly influenced patient outcomes by
activating Th2 cells. Additionally, whether the therapy
patients have received in the current study could influence
the association of BDNF and immune cell infiltration or
not remained unclear. In vivo/in vitro mechanistic investiga-
tion and even clinical trials should be conducted to clarify
the underlying mechanism.

5. Conclusion

To the best of our knowledge, this was the first study to
depict the potential functions of BDNF in tumor immunity
and its predicted value in pancreatic cancer by applying
integrated bioinformatics approaches. BDNF might affect
patient prognosis by mediating the infiltration levels of
Th2 cells, providing a novel direction to explore the patho-
genesis and malignancy of PAAD. Our study also revealed
that BDNF was positively correlated with chemotherapeutics
efficacy and immunosuppressed biomarkers, suggesting that
BDNF is an antitumor target in pancreatic cancer.
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