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Background. Renal cell carcinoma (RCC) is one of the most common aggressive malignant tumors in the urinary system, among
which the clear cell renal cell carcinoma (ccRCC) is the most common subtype. The immune-related long noncoding ribonucleic
acids (irlncRNAs) which are abundant in immune cells and immune microenvironment (IME) have potential significance in
evaluating the prognosis and effects of immunotherapy. The signature based on irlncRNA pairs and independent of the exact
expression level seems to have a latent predictive significance for the prognosis of patients with malignant tumors but has not
been applied in ccRCC yet. Method. In this article, we retrieved The Cancer Genome Atlas (TCGA) database for the
transcriptome profiling data of the ccRCC and performed coexpression analysis between known immune-related genes (ir-
genes) and lncRNAs to find differently expressed irlncRNA (DEirlncRNA). Then, we adopted a single-factor test and a
modified LASSO regression analysis to screen out ideal DEirlncRNAs and constructed a Cox proportional hazard model. We
have sifted 28 DEirlncRNA pairs, 12 of which were included in this model. Next, we compared the area under the curve
(AUC), found the cutoff point by using the Akaike information criterion (AIC) value, and distinguished the patients with
ccRCC into a high-risk group and a low-risk group using this value. Finally, we tested this model by investigating the
relationship between risk score and survival, clinical pathological characteristics, cells in tumor immune microenvironment,
chemotherapy, and targeted checkpoint biomarkers. Results. A novel immune-related lncRNA pair signature consisting of 12
DEirlncRNA pairs was successfully constructed and tightly associated with overall survival, clinical pathological characteristics,
cells in tumor immune microenvironment, and reactiveness to immunotherapy and chemotherapy in patients with ccRCC.
Besides, the efficacy of this signature was verified in some commonly used clinicopathological subgroups and could serve as an
independent prognostic factor in patients with ccRCC. Conclusions. This signature was proven to have a potential predictive
significance for the prognosis of patients with ccRCC and the efficacy of immunotherapy.

1. Introduction

Kidney cancer is one of the 10 most common cancers around
the world, accounting for about 2% of all global cancer cases,
and the number of cases is rising year by year [1]. In the
United States, the expected new cases and deaths caused by
malignant tumors happening in the kidney and renal pelvis
are 73,750 and 14,830, respectively, in 2020 [2]. In Europe,
the estimated incidence and mortality for kidney cancer are

99,200 and 39,100 in 2018 [3]. As for Chinese patients, the
data is estimated to be 66,800 and 23,400, respectively, in
2015 [4]. Renal cell carcinoma (RCC), which originates from
the renal epithelium, accounts for >90% of the malignant
tumors happening in the kidney and has numerous histolog-
ical subtypes, among which clear cell renal cell carcinoma
(ccRCC) is the most common and accounts for about three
quarters of all cases [5]. Localized ccRCC can have a rela-
tively good prognosis through surgery, but the prognosis
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for metastatic ccRCC is poor and conventional chemother-
apy usually has no effect. However, the development of
targeted therapies and immunotherapy are benefiting more
and more patients over the last decades.

In United States and European Union, targeted agents
directed at vascular endothelial growth factor (VEGF) and
its receptors (VEGFRs) such as sorafenib, axitinib, sunitinib,
lenvatinib, pazopanib, and cabozantinib [6–10] are regarded
as the first-line and second-line medicine for metastatic
RCC. Other targeted agents, such as everolimus and temsir-
olimus, inhibitors of mTOR signaling, are proven effective
for patients with poor prognosis. As for immunotherapy, T
cell immune checkpoint inhibitors are also very popular
nowadays. Antibodies which inhibit programmed cell death
protein 1 ligand 1 (PDL1), programmed cell death protein 1
(PD1), and T cell checkpoint cytotoxic T-lymphocyte-
associated protein 4 (CTLA4) are thought to relieve T cells
from inhibition in the tumor microenvironment (TME)
and reactivate their function in tumor killing. Nivolumab
is proven to have longer overall survival and fewer adverse
reactions compared with everolimus among patients with
RCC who have failed previous treatment in the CheckMate
025 clinical trial [11]. In the future, the combination of
targeted therapy and immunotherapy may tremendously
improve the patients’ prognosis in metastatic RCC [1].

Long noncoding RNAs (lncRNAs) are a series of RNAs
transcribed from the human genome, which are incapable
of coding peptide sequences and are larger than 200 nt in
length. Nowadays, more and more functions of lncRNAs
have been discovered, such as regulating gene expression;
posttranscriptional modification and splicing; translation;
interaction between DNA, RNA, and protein; protein mod-
ification; and cell signaling pathways [12]. Thus, they are
crucial to cell growth, differentiation, and development.
The occurrence and development of many diseases are
tightly connected with lncRNAs, among which cancers
have attracted the most attention. lncRNAs such as PVT1,
LET, HOTAIR, NBAT1, GAS5, CADM-AS1, linc00963,
RCCRT1, SPRY4-IT1, and HIF1A-AS seem to take part
in the tumorigenesis and development of renal cancer
[13]. Recent evidences indicate that lncRNAs play a crucial
role in both the innate and adaptive immune systems, such
as immune cell lineage development and immune cell acti-
vation, and they may affect the tumor immune cell micro-
environment by regulating tumor immune cell infiltration
[14]. For example, lncRNA SATB2-AS1 appears to have
the ability to regulate the proportion and density of immune
cells and the expression of TH1-type chemokines in the
tumor microenvironment of colorectal cancer, thus inhibit-
ing tumor metastasis and affecting the prognosis of patients
[15]. Therefore, signatures connected with the immune cell
microenvironment and tumor immune cell infiltration
provided by lncRNAs may have a significant function in pre-
dicting the diagnosis and prognosis of tumor and will help in
choosing the appropriate treatment. Zhu et al. have con-
structed an eight-lncRNA signature to evaluate the response
to immune checkpoint inhibitors in patients with esophageal
squamous cell carcinoma [16]. Moreover, Wang et al. estab-
lished a prognostic signature based on four immune-related

differentially expressed lncRNAs (DElncRNAs) for lung ade-
nocarcinoma [17]. As for renal clear cell carcinoma, a novel
five immune-related lncRNA signature has been constructed
by Sun et al. and is proven to have a predictive significance
for the prognosis [18].

However, all models previously established are based
on one biomarker and its expression level. It has been
reported that the combination of two biomarkers will pro-
vide a predictive model with higher accuracy [19]. Hong
et al. have constructed a novel irlncRNA signature based
on the combination of two irlncRNAs and not dependent
on their expression levels in hepatocellular carcinoma, and
this model has displayed good predictive significance and
may help screen out patients that can benefit from immuno-
therapy [20]. Thus, in this article, we established a similar
irlncRNA pair signature independent of specific expression
levels in ccRCC. Then, we applied this model in patients
suffering from ccRCC and assessed its predictive value and
diagnostic effectiveness. Ultimately, we estimated the predic-
tive power of the tumor immune microenvironment and
analyzed the interaction between this risk model and
chemotherapeutics.

2. Materials and Methods

2.1. Data Sources. The transcriptome profiles and corre-
sponding clinical characteristics of kidney clear cell carci-
noma were downloaded from the KIRC project in TCGA_
GDC (https://portal.gdc.cancer.gov/). The immune-related
gene list was retrieved from the IMMPORT database
(https://www.immport.org/home). The gene annotation file
used to annotate gene as protein-coding or lncRNA was
downloaded from the ENSEMBL database (https://asia
.ensembl.org/index.html).

2.2. Identification of Immune-Related lncRNA Pairs. We
firstly extracted two transcriptional expression atlases, includ-
ing the expression of immune genes and the expression of
lncRNAs; then, the Pearson correlation test was used to iden-
tify immune-related lncRNA. Notably, those lncRNAs with
absolute correlation coefficient ≥ 0:8 and adjusted p value <
0.001 were considered as immune-related lncRNAs for further
analysis. 0:8 ≤ correlation coefficient < 1 is considered to be a
very strong correlation in statistics. Adjusted p value < 0.001
can screen out lncRNAs with more significant correlations.
Subsequently, we conducted differential expression analysis
to identify those differentially expressed immune-related
lncRNAs with logFC ≥ 1 and FDR < 0:05. ∣LogFC∣ ≥ 1 refers
to genes which are differentially expressed twice or more
between normal tissues and tumor tissues. The p value
adjusted by FDR < 0:05 can further screen out lncRNAs that
are differentially expressed between tumor and normal tissues.
It is worth mentioning that logFC ≥ 1 and FDR < 0:05 are
commonly used criteria for identifying differentially expressed
genes in differential expression analysis [21]. Following this,
we performed cyclical single-paired analysis on these lncRNAs
to define immune-related lncRNA pairs. Moreover, only the
pair ratio was stable between 20% of the patients and 80% of
the patients, the lncRNA pairs were considered suitable for
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further analysis, and we got a matrix with 0 or 1 that for a
lncRNA pair A∣B, 0 means in this sample A expression was
lower than B, 1 means in this sample A expression was higher
than B. If the value of the lncRNA pair is 0 or 1 in all people,
that is, the expression levels of two lncRNAs in all people are
the same, then there is no need to pair and construct a predic-
tive model. Therefore, here we will consider the lncRNA pairs
that can obtain stable values in 20%-80% of the patients as
suitable lncRNA pairs for further analysis [20].

2.3. Development of lncRNA Pair-Based Prognostic Signature.
Having identified all immune-related lncRNA pairs, we per-
formed uni-Cox regression for each lncRNA pair to filter
those lncRNA pairs with prognostic value p < 0:05. Then,
we conducted LASSO regression to avoid overfitting and
acquire appropriate variables. Subsequently, the multivariate
Cox regression was used to construct a survival-predicting
signature, and each sample acquired a risk score according
to the formula developed by the multivariate Cox regression
as follows: riskScore =∑N

i=1ðvalueðiÞ∙coefðiÞÞ, where, N
means the total number of lncRNA pairs included in this
signature, valueðiÞ means the matrix value of this lncRNA
that is either 0 or 1, and coefðiÞ means the coefficient of this
lncRNA pair.

2.4. Validation of the Prognostic Signature. Having devel-
oped the immune-related lncRNA-based signature, the
ROC curve was plotted and the AUC was calculated to check
the efficacy of this signature. Besides, the multivariate time-
dependent ROC curve was used to compare this signature
with other commonly used clinicopathological characteris-
tics like age, gender, stage, and grade. Also, the cutoff with
the most AUC was regarded as the threshold to distinguish
each sample as high/low risk. Then, the Kaplan-Meier was
performed to plot the survival curve, and the log-rank test
was used to test the survival differences between the risk
strata. Following this, we wondered about the relation
between risk strata and their clinicopathological characteris-
tics and performed a chi-square test to check its clinical
correlation. Besides, according to the clinical subgroups, we
separately conducted survival analysis and performed Wil-
coxon’s signed-rank test to check the differential distribution
of the risk score between clinical subgroups. Finally, we
performed univariate and multivariate Cox’s regression to
check whether this prognostic signature could serve as an
independent prognostic factor.

2.5. Immune Infiltration, Immune Checkpoint Expression,
and Drug Response. There were several acknowledged
methods to estimate the immune infiltration of samples
according to their transcriptional atlas. Here, we conducted
seven different methods to investigate the immune infiltration
status of KIRC patients precisely, including XCELL, TIMER,
QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS,
and CIBERSORT. Then, we applied the SPEARMAN correla-
tion test to explore the risk score that was significantly related
to the infiltrating immune cells with p < 0:05.

Additionally, we wondered whether the immune check-
points were differentially expressed between high-/low-risk

patients; thus, we separately extracted the expression of
PDCD1 (PD1), CD247 (PDL1), CTLA4, TIGIT, and LAG3,
and then we compared their differential expression using the
Wilcoxon signed-rank test.

Finally, the drug response of first-line targeted therapy
for KIRC was evaluated by applying the R package “pRRo-
phetic” to predict each patient’s drug sensitivity to sunitinib.
The drug sensitivity between high-risk and low-risk patients
was compared using the Wilcoxon signed-rank test.

3. Results

3.1. Identification of Differentially Expressed irlncRNAs
(DEirlncRNAs). First, we retrieved the kidney clear cell renal
cell carcinoma (KIRC) project of The Cancer Genome Atlas
(TCGA) database for the transcriptome profiling data of the
kidney clear cell renal cell carcinoma and found 539 tumor
samples and 72 normal samples. Then, we annotated the
data according to Ensembl’s gene transfer format (GTF) file
and performed coexpression analysis between 2483 known
ir-genes from IMMPORT and 13,162 lncRNAs after annota-
tion. Finally, we found 95 irlncRNAs in total, among which
55 were classified as DEirlncRNAs (Figures 1(a) and 1(b)).
Among these irlncRNAs, 47 were upregulated and 8 were
downregulated (Figure 1(b)).

3.2. Establishment of DEirlncRNA Pairs and a Risk
Assessment Model. We used an iterative loop and a 0-or-1
matrix and successfully sifted 918 valid DEirlncRNA pairs
from 55 DEirlncRNAs. We adopted a single-factor test and
a modified LASSO regression analysis to screen out 28 pairs
of DEirlncRNAs (Figures 1(c) and 1(d)) and then con-
structed a multivariate Cox proportional hazard model using
12 pairs of them by a stepwise method (Figure 1(f), Table 1).
The univariate Cox regression of these 12 lncRNA pairs are
shown as Figure 1(e). Next, we drew the receiver operating
characteristic (ROC) curve of all the 12 DEirlncRNA pairs
and calculated the area under the curve (AUC), the maxi-
mum of which is 0.764 (Figure 2(a)). And this DEirlncRNA
pair with the maximum AUC value was thought to be the
optimal choice. Then, we drew the 1-year, 2-year, and 3-
year ROC curves and found that all the values were greater
than 0.73 (Figure 2(b)). Next, we plotted the ROC curves
of the other clinical features like age, gender, grade, and
stage and compared them with the ROC curve drawn by
the DEirlncRNA pair, which showed that only the AUC of
the ROC curve drawn by stage is greater than the one using
the DEirlncRNA pair (Figure 2(c)). All these above have
revealed that this model is reasonable and has a comparable
clinical significance as the other clinical characteristics.
Then, a cutoff point was found by using the Akaike Informa-
tion Criterion (AIC) value in the one-year ROC curve
(Figure 2(a)). Afterwards, we used the data of 530 appropri-
ate ccRCC patients collected from TCGA and figured out the
risk scores for all patients. Then, we used the cutoff value
calculated above to divide the patients into two groups: the
high-risk and low-risk groups, for further verification. The
high-risk group included 220 cases, and the low-risk one
included 310 cases (Table 2).
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Figure 1: Continued.
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3.3. Clinical Evaluation by Risk Assessment Model.We calcu-
lated the risk scores for each patient, and they are shown in
Figure 3(a). The survival time of each case is also displayed
in Figure 3(b). These figures revealed that patients with
low-risk scores would have a better clinical outcome than
the ones with high-risk scores. Then, we plotted the survi-
vorship curves for each group and used Kaplan-Meier’s
analysis to figure out if the difference had statistical signif-
icance. The outcome showed that the patients in the high-
risk group had a shorter survival time than those in the
low-risk group (p < 0:001) (Figure 3(c)). Next, we further
explored the interaction between the risk of kidney clear
cell renal cell carcinoma and several clinicopathological
characteristics by using chi-square tests and acquiring a strip
chart (Figure 4(a)). Then, we also performed a series of
Wilcoxon’s signed-rank tests and obtained several scatter
diagrams, finding that tumor grade (Figure 4(d)), T stage

(Figure 4(e)), N stage (Figure 4(f)), M stage (Figure 4(g)),
and clinical stage (Figure 4(h)) interacted significantly with
the risk, but age (Figure 4(b)) and gender (Figure 4(c)) were
not significantly related to the risk. At last, we found that age
(p < 0:001; HR = 1:032; 95% CI (1.018–1.045)), tumor grade
(p < 0:001; HR = 2:279; 95% CI (1.859–2.795)), clinical stage
(p < 0:001;HR = 1:863; 95% CI (1.633–2.126)), and riskScore
(p < 0:001; HR = 1:389; 95% CI (1.316–1.465)) displayed sta-
tistical differences by the univariate Cox regression analysis
(Figure 4(i)), and age (p < 0:001; HR = 1:035; 95% CI
(1.021–1.050)), tumor grade (p = 0:004; HR = 1:394; 95% CI
(1.111–1.750)), clinical stage (p < 0:001; HR = 1:534; 95%
CI (1.316–1.789)), and riskScore (p < 0:001; HR = 1:301;
95% CI (1.224–1.384)) also showed statistical differences by
the multivariate Cox regression analysis (Figure 4(j)). All
these demonstrated that riskScore is a valuable prognostic
predictor as other valid clinical predictors like tumor grade
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Figure 1: Establishment of a risk assessment model using DEirlncRNA pairs. Identification of differentially expressed immune-related
lncRNAs (DEirlncRNAs) using TCGA datasets and annotation by Ensembl. (a and b) The heat map (a) and volcano plot (b) are shown.
(c) Variables going to zero as we increase the penalty (lambda) in the objective function of the LASSO. (d) 10-fold cross-validation for
tuning parameter selection in the LASSO model, −4 < lambda:min < −3:5, and there were 28 variables (immune-related lncRNA pairs)
left. (e) The univariate Cox regression analysis of the 12 DEirlncRNA pairs. (f) A forest map shows 12 DEirlncRNA pairs identified by
the Cox proportional hazard regression in the stepwise method.

Table 1: Detailed information of the 12 immune-related lncRNA pairs included in the prognostic signature.

Id Coef HR HR.95 L HR.95H p value

AC016700.2|AC093001.1 -0.555606139437541 0.573724398796137 0.416297695146405 0.790683421050959 0.000686076662003585

AL355075.2|AC015845.2 0.430419065848712 1.53790187067958 1.01755489950781 2.32433863272024 0.0410972283642356

AL132989.1|AL117379.1 -0.492662779184755 0.610997275328431 0.42746865065855 0.87332175092522 0.00686828997559175

AL355803.1|AL355488.1 -0.337782984347439 0.713350079234553 0.515147153257942 0.987811603588818 0.0419716042136084

AC023509.3|AL031846.2 0.368641620152125 1.44576937621004 0.956818971469132 2.18458156821172 0.0800537100889237

AC067817.2|AD001527.1 -0.600072662204743 0.548771759679331 0.397286721159376 0.758017895344506 0.000271616905474768

AL031710.1|AL031846.2 -0.372132850780792 0.689262667357912 0.486341990519643 0.976849693989471 0.0364731879647768

AL031846.2|AL031670.1 -0.306752711799432 0.735832541115505 0.501459754200406 1.07974672748735 0.1169244327575

AL031846.2|AC012615.6 -0.450512101167986 0.637301705094545 0.390057679070148 1.04126513874727 0.0720924820494324

AL031670.1|AC025917.1 0.327629977864943 1.38767540666321 0.898479178435956 2.14322499672168 0.139602853715524

AC012615.6|AC020907.4 -0.37879660475502 0.684684860149524 0.474231274929152 0.988533195723983 0.0432267830019594

AL132989.1|AL031429.2 0.255953118485003 1.29169217003435 0.906761769946673 1.84002978227255 0.156248628062543
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and clinical stage. Besides, it is interesting that among all the
clinical subgroups, this signature performed well in distin-
guishing the great or poor outcome (Figures 5(a)–5(n)),
including age > 65 or ≤65 (Figures 5(a) and 5(b)), female
or male (Figures 5(c) and 5(d)), stages I and II or stages III
and IV (Figures 5(e) and 5(f)), G1-2 or G3-4 (Figures 5(g)
and 5(h)), T1-2 or T3-4 (Figures 5(i) and 5(j)), N0 or N1
(Figures 5(k) and 5(l)), and M0 or M1 (Figures 5(m) and
5(n)). These results showed the universality of our
immune-related lncRNA pair-based prognostic signature.

3.4. Estimation of Tumor-Infiltrating Immune Cells and
Immunosuppressive Molecules with Risk Assessment Model.
Since it was reported that lncRNAs may affect the tumor

immune cell microenvironment by regulating tumor
immune cell infiltration [14], we explored the relationship
between the risk model and the tumor immune cell micro-
environment in the next step. We performed a Spearman
correlation analysis to obtain a lollipop shape (Figure 6(a))
and found that the riskScore was positively related with reg-
ulatory T cells (Tregs). Since immune checkpoint inhibitors
are very popular in the treatment of kidney clear cell renal
cell carcinoma, we screened out several targeted biomarkers
critical for immune therapy and wanted to figure out
whether or not the risk model was connected with them.
We found that CTLA4 expression (Figure 6(b)), CD247
expression (Figure 6(c)), LAG3 expression (Figure 6(d)),
PDCD1 expression (Figure 6(e)), and TIGIT expression
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Figure 2: Establishment of a risk assessment model by DEirlncRNA pairs. (a) The ROC of the optimal DEirlncRNA pair models was related
to the maximum AUC, and the cutoff point was calculated by the AIC. (b) The 1-, 2-, and 3-year ROC of the optimal model suggested that
all AUC values were over 0.73. (c) A comparison of 1-year ROC curves with other common clinical characteristics.
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(Figure 6(f)) were positively related to riskScore, and all
these differences had statistical significance.

3.5. Analysis of the Correlation between the Risk Model and
Chemotherapeutics. Targeted chemotherapeutics were more
commonly used in the treatment of kidney clear cell renal
cell carcinoma, so we wanted to dig out the interaction
between the risk model and targeted agent sunitinib. We
discovered that patients in the high-risk group had a lower
half inhibitory centration (IC50) of sunitinib (p < 0:001)
(Figure 6(g)), which means that the risk model had a

latent predictive significance for the sensitivity of targeted
chemotherapeutics.

4. Discussion

In recent years, more and more studies focus on the relation-
ship between tumor and lncRNAs, and many lncRNA signa-
tures have been established to predict the prognosis of tumor
patients. Many previous lncRNA signatures are constructed
based on several coding genes regulating the expression
and modification of lncRNAs, or several lncRNAs regulating

Table 2: Clinicopathological characteristics of KIRC patients included in this study.

n
Overall High risk Low risk p
530 220 310

Age (mean (SD)) 60.56 (12.14) 61.08 (12.24) 60.20 (12.07) 0.409

Gender = female/male (%) 186/344 (35.1/64.9) 76/144 (34.5/65.5) 110/200 (35.5/64.5) 0.896

Grade (%) <0.001
G1 14 (2.6) 3 (1.4) 11 (3.5)

G2 227 (42.8) 70 (31.8) 157 (50.6)

G3 206 (38.9) 93 (42.3) 113 (36.5)

G4 75 (14.2) 53 (24.1) 22 (7.1)

GX 5 (0.9) 1 (0.5) 4 (1.3)

Unknown 3 (0.6) 0 (0.0) 3 (1.0)

Stage (%) <0.001
Stage I 265 (50.0) 76 (34.5) 189 (61.0)

Stage II 57 (10.8) 25 (11.4) 32 (10.3)

Stage III 123 (23.2) 61 (27.7) 62 (20.0)

Stage IV 82 (15.5) 55 (25.0) 27 (8.7)

Unknown 3 (0.6) 3 (1.4) 0 (0.0)

T (%) <0.001
T1 21 (4.0) 8 (3.6) 13 (4.2)

T1a 140 (26.4) 35 (15.9) 105 (33.9)

T1b 110 (20.8) 35 (15.9) 75 (24.2)

T2 55 (10.4) 22 (10.0) 33 (10.6)

T2a 10 (1.9) 5 (2.3) 5 (1.6)

T2b 4 (0.8) 4 (1.8) 0 (0.0)

T3 5 (0.9) 2 (0.9) 3 (1.0)

T3a 120 (22.6) 71 (32.3) 49 (15.8)

T3b 52 (9.8) 27 (12.3) 25 (8.1)

T3c 2 (0.4) 2 (0.9) 0 (0.0)

T4 11 (2.1) 9 (4.1) 2 (0.6)

M (%) <0.001
M0 420 (79.2) 152 (69.1) 268 (86.5)

M1 78 (14.7) 52 (23.6) 26 (8.4)

MX 30 (5.7) 16 (7.3) 14 (4.5)

Unknown 2 (0.4) 0 (0.0) 2 (0.6)

N (%) 0.004

N0 239 (45.1) 107 (48.6) 132 (42.6)

N1 16 (3.0) 12 (5.5) 4 (1.3)

NX 275 (51.9) 101 (45.9) 174 (56.1)

riskScore (median (IQR)) 1.03 (0.48, 2.01) 2.33 (1.66, 3.56) 0.54 (0.37, 0.87) <0.001
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a certain biological process such as angiogenesis, autophagy,
and ferroptosis, which have been proven to be connected
with tumorigenesis and prognosis. A signature of nine
coding genes regulating the methylation of the lncRNA
promoter region has been established in patients with gli-
oma [22]. Lei et al. [23], Tang et al. [24], and Li et al. [25]
constructed lncRNA signatures related to angiogenesis,
ferroptosis, and autophagy to predict the prognosis of hepa-
tocellular carcinoma, head and neck squamous cell carci-
noma, and breast cancer, respectively. Immune-related
lncRNAs were also widely studied and included in many
predictive models. For example, Chen et al. developed an
immune-related seven-lncRNA signature for head and neck
squamous cell carcinoma [26]. However, all these signatures
are established based on the exact expression levels of
lncRNAs. In this study, we used a model based on
DEirlncRNA pairs composed of two related DEirlncRNAs,
which has been formulated by Hong et al. [20] and is inde-
pendent of their expression levels, and we adopted this novel
model in kidney clear cell renal cell carcinoma for the first
time and made some improvements. For example, we added
a multivariate Cox proportional hazard model when sifting
DEirlncRNA pairs and performing subgroup analyses for
validation of the prognostic signature.

Primarily, we retrieved the kidney clear cell renal cell
carcinoma (KIRC) project of The Cancer Genome Atlas
(TCGA) database for the transcriptome profiling data of
the kidney clear cell renal cell carcinoma and performed
coexpression analysis between known ir-genes and lncRNAs
to find DEirlncRNAs. Then, we used an iterative loop and a
0-or-1 matrix and sifted valid lncRNA pairs. Next, we
adopted a single-factor test and a modified LASSO regres-
sion analysis to screen out ideal DEirlncRNAs and con-
structed a Cox proportional hazard model by a stepwise
method. Afterwards, we calculated the AUC value of every
ROC curve and found the optimal model, and then we com-
pared this model with other ROC curves plotted by using
other clinical characteristics such as gender, age, and stage
to test the optimality. Then, a cutoff point was found by
using the AIC value, and we distinguished the patients with
kidney clear cell renal cell carcinoma into the high-risk
group and the low-risk group using this value. Finally, we
tested this model by investigating the relationship between
risk score and survival, clinicopathological characteristics,
cells in tumor immune microenvironment, chemotherapy,
and targeted checkpoint biomarkers.

Many lncRNAs have been reported to participate in the
tumorigenesis of renal carcinoma or have an influence on
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Figure 3: Risk assessment model for prognosis prediction. (a and b) Risk scores (a) and survival outcome (b) of each case are shown. (c)
Patients in the low-risk group experienced a longer survival time tested by the Kaplan-Meier test.
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the prognosis of patients with malignant renal tumor.
lncRNA HIF1A-AS2 was found to be connected with the
malignant development and progression of renal carcinoma
through the HIF1A-AS2-miR-30a-5p-SOX4 axis [27]. And
lncRNA ZNF582-AS1 was reported to work as a tumor
suppressor, which was downregulated in ccRCC and tightly
related to the malignance of tumor, distant metastasis, and
poor prognosis [28]. These studies all revealed that the exact
expression levels of lncRNAs would have a latent predictive
significance in clinical practice. However, measuring the
exact expression levels of every lncRNAs is not always viable.
In this article, we adopted a more concise model in which we
used the combination of two lncRNAs instead of their
specific expression levels. Thus, this model has stronger
clinical practicability and can be applied on a more extensive
scale. Moreover, some of the DEirlncRNAs we found in this
article have never been reported before, such as AC016700.2

and AC093001.1, which may have a latent diagnostic and
predictive significance and need further studies.

A tumor microenvironment is an ecosystem consisting
of many kinds of adaptive and innate immune cells, which
modulates the development and metastasis of all sorts of
tumors [29]. Tumor-associated macrophages (TAMs) and
T cells are the main constituents of the microenvironment
[30]. T cells are the most abundant and feature-rich popula-
tion in solid tumor TME. CD4+ T cells and CD8+ cells can
prevent the tumor from developing by capturing tumor anti-
gens and activating adaptive immunity to kill tumors [31].
However, the tumor cells will express immune checkpoint
biomarkers such as PDL1 and CTLA4 to suppress T cell
responses and lead to T cell exhaustion [32]. TAMs can be
divided into two phenotypes, antitumor M1 and protumor
M2 subtypes [33]. Tregs also participate in immune suppres-
sion and immune escape in TME. More and more studies
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Figure 4: Clinical evaluation by the risk assessment model. (a–j) A strip chart (a) along with the scatter diagram showed that (b) age and (c)
gender were not significantly associated with the riskScore but (d) tumor grade, (e) T stage, (f) N stage, (g) M stage, and (h) clinical stage
were significantly associated with the riskScore. (i) A univariate Cox hazard ratio analysis demonstrated that age (p < 0:001; HR = 1:032;
95% CI (1.018–1.045)), tumor grade (p < 0:001; HR = 2:279; 95% CI (1.859–2.795)), clinical stage (p < 0:001; HR = 1:863; 95% CI (1.633–
2.126)), and riskScore (p < 0:001; HR = 1:389; 95% CI (1.316–1.465)) were statistically different. (j) age (p < 0:001; HR = 1:035; 95% CI
(1.021–1.050)), tumor grade (p = 0:004; HR = 1:394; 95% CI (1.111–1.750)), clinical stage (p < 0:001; HR = 1:534; 95% CI (1.316–1.789)),
and riskScore (p < 0:001; HR = 1:301; 95% CI (1.224–1.384)) also showed statistical differences by the multivariate Cox regression analysis.
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have found that a large proportion of Treg cell infiltration in
TME is connected with poor prognosis, and the removal of
Treg cells in TME will enhance immune responses. Tregs
highly express CTLA4 and can secrete immunosuppressive
cytokines, which can suppress immune responses in TME
and inactivate other immune cells [34]. ccRCC is one of
the most immune-infiltrated tumors, in which the propor-
tion of CD8+ T cells, Th1 T cells, dendritic cells (DC), and
neutrophils is high, while the proportion of Th2 T cells
and Tregs are relatively lower [35]. It is reported that PD1
is widely expressed in ccRCC, whereas the other inhibitory
receptor such as TIM-3, CTLA4, and 4-1BB are only
expressed in few PD1+ clusters, and CD38 is also widely
expressed and may work as a latent T cell exhaustion marker
[30]. So immune checkpoint inhibitors which block
PD1/PDL1 or CTLA4 have been proven effective and con-
sidered as standard treatment [11, 36]. In our study, we have
found that the risk score is positively related to Tregs, which
is consistent with previous studies [37]. And we also found

that CTLA4 expression, CD247 expression, LAG3 expres-
sion, PDCD1 expression, and TIGIT expression were posi-
tively related to the risk score, which means that this
model has a potential predictive significance for the efficacy
of immune checkpoint inhibitors.

However, we also realize that there still exist several
shortcomings and limitations in our study. First, a large pro-
portion of unknown lncRNAs were missing due to the
intrinsic limitation of the microarray technique and probe
repurposing method, and the original data for initial analysis
were relatively limited and not general enough since they
were simply downloaded from TCGA. And we are unable
to obtain a data set that includes lncRNA expression levels,
clinicopathological characteristics, and survival outcomes
of ccRCC patients at the same time. Second, due to the dif-
ference in the expression levels of each sample which may
make the final model unreliable, the constructed model
requires external verification, although we have constructed
a 0 or 1 matrix to screen all lncRNA pairs to minimize
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Figure 5: Subgroup survival analysis. (a) Risk score-based survival analysis in patients with age > 65. (b) Risk score-based survival analysis
in patients with age ≤ 65. (c) Risk score-based survival analysis in female patients. (d) Risk score-based survival analysis in male patients. (e)
Risk score-based survival analysis in patients with stages I and II. (f) Risk score-based survival analysis in patients with stages III and IV. (g)
Risk score-based survival analysis in patients with G1-2. (h) Risk score-based survival analysis in patients with G3-4. (i) Risk score-based
survival analysis in patients with T1-2. (j) Risk score-based survival analysis in patients with T3-4. (k) Risk score-based survival analysis
in patients with N0. (l) Risk score-based survival analysis in patients with N1. (m) Risk score-based survival analysis in patients with M0.
(n) Risk score-based survival analysis in patients with M1.

13Disease Markers



−0.4 −0.2 0.0 0.2 0.4
Correlation coefficient

Im
m

un
e c

el
l

So�ware
XCELL
TIMER
QUANTISEQ
MCPCOUNTER

EPIC
CIBERSORT−ABS
CIBERSORT

(a)

⁎⁎⁎

0.0

2.5

5.0

7.5

Low High
Risk

CT
LA

4 
ex

pr
es

sio
n 

Risk
Low
High

(b)

⁎⁎⁎

0

5

10

15

Low High
Risk

CD
24

7 
ex

pr
es

sio
n 

Risk
Low
High

(c)

⁎⁎⁎

0

10

20

30

40

50

Low High
Risk

LA
G

3 
ex

pr
es

sio
n

Risk
Low
High

(d)

Figure 6: Continued.

14 Disease Markers



sample errors sourcing from expression changes and use
various methods to test this model’s optimality. Third, our
study lacks verification from other clinical data sets which
will be helpful to further confirm our model, and whether
this model has a predictive significance in other types of can-
cer has not been verified. Therefore, we are prepared to col-
lect some clinical samples to further verify our model, and
assess the prognostic value of the lncRNA pair signature in
other subtypes of RCC and other urinary system tumors.
Fourth, we did not define the specific mechanisms in the
connection between immune-related lncRNA pair signature
and the prognosis of patients with ccRCC and the efficacy of
immunotherapy, which should be further explored by labo-
ratory experiments in the future.

In conclusion, in this study, we constructed a novel
immune-related lncRNA pair signature in patients with
ccRCC, which is based on the combination of two lncRNA
pairs and independent of the exact expression level. And this
model was proven to have a potential predictive significance
for the prognosis of patients with ccRCC and the efficacy of
immunotherapy.

Data Availability

The datasets used and/or analyzed during the current study
are available from the corresponding authors on reasonable
request.
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Figure 6: Estimation of tumor-infiltrating immune cells and immunosuppressive molecules with risk assessment model. (a) Patients in
the high-risk group were more positively associated with Tregs as shown by the Spearman correlation analysis. (b–e) High-risk scores
were positively correlated with upregulated (b) CTLA4 expression, (c) CD247 expression, (d) LAG3 expression, (e) PDCD1 expression,
and (f) TIGIT expression levels, and all these differences had statistical significance in patients with ccRCC. (g) The model acted as a
potential predictor for chemosensitivity as high-risk scores were related to a lower IC50 for chemotherapeutics such as sunitinib.
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