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Background. The current high mortality rate of female breast cancer (BC) patients emphasizes the necessity of identifying
powerful and reliable prognostic signatures in BC patients. Epithelial-mesenchymal transition (EMT) was reported to be
associated with the development of BC. The purpose of this study was to identify prognostic biomarkers that predict overall
survival (OS) in female BC patients by integrating data from TCGA database. Method. We first downloaded the dataset in
TCGA and identified gene signatures by overlapping candidate genes. Differential analysis was performed to find differential
EMT-related genes. Univariate regression analysis was then performed to identify candidate prognostic variables. We then
developed a prognostic model by multivariate analysis to predict OS. Calibration curves, receiver operating characteristics
(ROC) curves, C-index, and decision curve analysis (DCA) were used to test the veracity of the prognostic model. Result. In
this study, we identified and validated a prognostic model integrating age and six genes (CD44, P3H1, SDC1, COL4A1,
TGFβ1, and SERPINE1). C-index values for BC patients were 0.672 (95% CI 0.611–0.732) and 0.692 (95% CI 0.586–0.798) in
the training cohort and test set, respectively. The calibration curve and the DCA curve show the good predictive performance
of the model. Conclusion. This study offered a robust predictive model for OS prediction in female BC patients and may
provide a more accurate treatment strategy and personalized therapy in the future.

1. Introduction

Breast cancer is one of the most prevalent malignancies in
women worldwide and the leading cause of most cancer-
related deaths, although early-stage BC is considered curable
[1, 2]. In 2018, BC was the most commonly diagnosed can-
cer (24.2% of all cancer cases) and the leading cause of
cancer-related deaths (15% of all cancer deaths) in women
worldwide. Among these, metastatic BC accounted for more

than 90% of BC-related deaths [3]. At present, the main
treatment strategies for BC include surgery, chemotherapy,
radiotherapy, immunotherapy, and hormonal therapy [4].
Although nanomedicine has been developed this year to tar-
get progesterone and estrogen receptors (PR and ER),
human epidermal growth factor receptor 2 (HER2), and
microRNA (miRNAs) and long chain non-coding RNAs,
the incidence of BC remains high, with previous studies sug-
gesting that the number of new cases worldwide will be
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2,261,419 women in 2020, and this number is expected to
increase to 30.2 million by 2040 [5, 6].

Epithelial-mesenchymal transition (EMT) is widely
known to occur during mammalian development, wound
healing, and cancer metastasis [7]. In recent years, EMT
has received increasing attention for its role in cancer drug
resistance [8]. Many studies have shown that EMT is associ-
ated with tumorigenesis, invasion, metastasis, and resistance
to treatment, especially in BC [9, 10]. Saotome et al. demon-
strated that GATA3 truncation mutants affected ductal BC
development by altering EMT-related gene expression
through partial motif recognition in luminal BC cells [11].
Parthasarathi and his colleagues found that EMT-related
genes were associated with dysregulated ion channels in
BC-associated tumorigenesis and could potentially be used
to determine the prognosis of BC patients. Therefore, in this
study, we evaluated the relevance of the EMT genes in
female BC patients to explore the mechanisms of EMT in
BC [12].

The new 8th edition of a related Union for International
Cancer Control (UICC) and American Joint Committee on
Cancer (AJCC) publication updates the description of BC
staging for tumor lymph node metastasis (TNM) [13]. Yet,
it is not sufficient to simply predict the prognosis of BC
based on the TNM staging system. Some of the factors that
influence BC include age, genes, reproductive factors, estro-
gen, and lifestyle [14]. Hence, a multifactorial predictive

model is essential. Predictive modeling is a more advanced
approach as it can be visualized using a nomogram and it
can estimate individualized risk based on a more compre-
hensive set of gene signatures and clinical characteristics.
In previous studies, we constructed a clinical prediction
model based on the clinical data of metastatic colon cancer
patients extracted from the SEER database. The nomogram
developed with high prognosis prediction accuracy to evalu-
ate the 1-, 3-, and 5-year survival of metastatic colon cancer
patients, which will help clinical decision-making of metas-
tatic colon cancer patients after surgery and individualized
treatment [15].

In this study, we identified EMT-related genes with inde-
pendent prognostic value to establish a prognostic model for
predicting the overall survival (OS) at 1-, 3-, and 5-year of
female BC patients and generating new insights about BC
progression.

2. Materials and Methods

2.1. Data Collection. We downloaded gene expression data
from The Cancer Genome Atlas (TCGA) database (https://
cancergenome.nih.gov) of 1109 BC patients and 113 nontu-
mor breast tissues. Clinical data were also acquired, but the
clinical data of 12 male BC patients were removed because
the study population in this paper was female. EMT-
related genes were collected from the Molecular Signature

TCGA-BRCA cohort (Hiseq-Counts)
(1109 breast cancer tissues and 113 non-tumor breast tissues) EMT-related genes
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Figure 1: Flow chart of this study.
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Figure 2: Heat map (a) and volcano map (b) of differentially expressed gene related to EMT.

9.50E – 05SERPINE1

TGFBI

COL4A1

SDC1

P3H1

CD44

Age

1.000343682 (1.000171082~1.000516312)

1.000097797 (1.000031525~1.000164073)

1.000013101 (1.000005124~1.000021079)

1.000054399 (1.000015754~1.000093046)

1.000508636 (0.999993948~1.001023589)

1.000041058 (1.000003757~1.00007836)

1.032444525 (1.01656348~1.048573667)

0.003823697

0.001286646

0.005797971

0.052756299

0.030977103

5.41E – 05

P

HR

0.985 1 1.02 1.04 1.055

HR (95%)

Figure 3: Forest plot analyzed by univariate Cox regression.

Table 1: Genes contained in the prognostic model of breast cancer.

Factors coef HR HR_95L HR_95U P

Age 0.030655 1.031129 1.015051 1.047463 0.000132

CD44 3:35E − 05 1.000033 0.999994 1.000073 0.098155

P3H1 0.000142 1.000142 0.999283 1.001002 0.74605

SDC1 3:76E − 05 1.000038 0.999966 1.000109 0.304272

COL4A1 1:60E − 05 1.000016 1.000008 1.000024 0.000149

TGFBI 2:04E − 05 1.00002 0.999884 1.000156 0.768605

SERPINE1 0.000247 1.000247 0.999911 1.000583 0.149765
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database v7.1 (MSigDB) (http://www.broad.mit.edu/gsea/
msigdb/).

2.2. Identification of Differentially Expressed EMT-Related
Genes. Combining the gene expression data obtained from
TCGA database with EMT-related genes by using the
“edgeR” package of R software, the expression data of the
target genes could be obtained. After that, the “limma” pack-
age was utilized to derive differentially expressed EMT-
related genes according to False Discovery Rate (FDR)
values less than 0.05 and the absolute value of fold change
above 1.

2.3. Statistical Analysis

2.3.1. Univariate Cox Regression Analysis for Independent
Prognostic Factors. The expression matrix of the obtained
EMT-related genes was further analyzed by incorporating
the matrix with the survival time and survival status. Based
on previous studies, age had an impact on the prognosis of
female BC patients, so we included age as a study variable
[16]. Using the “caret” package in R software (version
4.1.0) to randomly divide the overall cohort into two groups
in the ratio of 7 : 3. The subgroup containing 70% of female

BC patients was used to construct the prediction model,
while the remaining 30% of patients were examined for the
accuracy and reliability of the model. Also, the whole cohort
was used as the overall internal validation set. The basic
values of patients were listed (Table S1).

Univariate Cox regression analysis was used to screen for
independent prognostic factors. Factors with a cutoff value
of P < 0:1 were defined as candidates associated with OS.

2.3.2. Prognostic Nomogram Construction. The genes filtered
by univariate Cox regression were then analyzed in the mul-
tivariate Cox regression for the risk scoring model. The risk
score for each patient can be calculated by the following for-
mula: risk score = Expðx1Þ ∗ β1 + Expðx2Þ ∗ β2 +⋯+Expðx
nÞ ∗ βn, where n is the number of selected variables, Exp is
the expression level of the variable, and β is the regression
coefficient of the variable. Then, the nomogram was devel-
oped using R software. According to the scores calculated
from the nomogram, the patient’s OS at 1, 3, and 5 years
can be predicted. Subsequently, according to the median risk
scores, patients with risk scores greater than the median
value were divided into the high-risk group and otherwise
into the low-risk group.
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Figure 4: Nomogram for predicting 1-, 3-, and 5-year overall survival (OS) for BC patients in the training cohort.
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2.3.3. Prognostic Nomogram Evaluation and Validation. In
order to improve the reliability of the prediction model
and thus its clinical application, 30% of the patients and
the overall cohort were used as an internal validation cohort
to test the validity of the prediction model.

The discriminative power of the nomogram was calcu-
lated using the concordance index (C-index). We also mea-
sured the area under the curve (AUC) at 1, 3, and 5 years,
which was derived from a ROC analysis. The C-indexes
and AUCs take values ranging from 0.5 to 1.0, where 1.0
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Figure 5: (a, c, e) Distribution of risk score in patients with BC. The black dotted line serves as the dividing line between the high-risk group
and the low-risk group. (b, d, f) Diagram of the relationship between risk score and patient survival time. The result of (a, b) is based on
training set, the result of (c, d) is based on test set, and the result of (e, f) is based on the overall internal validation set.
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represents the perfect ability to correctly distinguish the
results from the model and 0.5 represents random chance.
The calibration curve of the nomogram was evaluated
graphically by plotting the ratio of the predicted probability
to the observed ratio of the nomogram. Overlapping with
the reference line indicated that the model was perfectly con-
sistent. Finally, decision curve analysis was performed to
evaluate the clinical benefits. A flow chart of the study pro-
cess of this article was presented (Figure 1).

3. Results

3.1. Identification of Differentially Expressed EMT-Related
Genes. To describe our study more clearly, we developed a
flowchart of the analysis procedure. First, we obtained data
from TCGA database for 1109 tumor tissues and 113 nontu-
mor tissues. After taking intersection with EMT-related
genes, a matrix of 200 EMT-related genes (Table S2)
expression values was acquired. Then, after differential
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Figure 6: Overall survival (OS) Kaplan-Meier curves for patients in the low- and high-risk groups: (a) training set; (b) test set; (c) overall
internal validation set.
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Figure 7: Continued.
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analyses, a total of 78 differentially expressed EMT-related
genes were identified. (logFC > 1 or logFC < −1, FDR < 0:05
). The results were expressed in heat maps and volcano
plots (Figures 2(a) and 2(b)).

3.2. Prognostic Nomogram Construction. Since age is associ-
ated with prognosis in female BC patients, we included age
and 78 differentially expressed genes in univariate Cox
regression to investigate the correlation between the
included variables and prognostic value in BC patients and
finally identified seven variables significantly associated with
OS in BC patients at P value < 0.1 (Figure 3). The model was
then constructed with age, CD44, P3H1, SDC1, COL4A1,
TGFβ1, and SERPINE1 by multivariate Cox regression:
risk score = ð0:030655 ∗ age levelÞ + ð3:35E − 05 ∗
expression level of CD44Þ + ð0:000142 ∗ expression level of
P3H1Þ + ð3:76E − 05 ∗ expression level of SDC1Þ + ð1:60E −
05 ∗ COL4A1 expression levelÞ + ð2:04E − 05 ∗ TGFβ1
expression levelÞ + ð0:000247 ∗ SERPINE1 expression levelÞ
(Table 1).

The nomogram was then constructed and consisted of a
total of seven variables (Figure 4), and the total score could
be obtained by summing the scores of each variable. The
total score can be used to predict the survival rate of individ-
ual patients at 1, 3, and 5 years. For example, a BC patient

aged 65 years (20 points) with CD44 expression of 0 (20
points), P3H1 expression of 0 (21 points), SDC1 expression
of 0 (20 points), COL4A1 expression of 80000 (43 points),
TGFβ1 expression of 0 (21 points), and SERPINE1 expres-
sion of 0 (21 points) gets a sum-point of 166, corresponding
to predicted 1-, 3-, and 5-year OS of 94.8%, 76.0%, and
57.4%, respectively.

Patients in TCGA group were divided into a low-risk
group and a high-risk group using the median risk score as
the threshold value. Figures 5(a), 5(c), and 5(e) show the dis-
tribution of the risk scores of BC patients from high to low
in the training set, the internal validation set, and the overall
internal validation set. The relationship between risk score
and patient survival time in the training set, test set, and
overall internal validation set is also shown (Figures 5(b),
5(d), and 5(f)). Patients with high-risk scores tended to have
poorer clinical outcomes compared with those with low-risk
scores. The survival analyses indicated the high-risk group
had worse OS than that of the high-risk group (P < 0:05)
(Figures 6(a)–6(c)).

3.3. Nomogram Calibration and Validation. The small angle
between the survival probability and the actual survival out-
come in the calibration curve indicates a strong agreement
between them (Figure 7).
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Figure 7: (a–c) Calibration plots to predict 1-, 3-, and 5-year overall survival (OS) in the training set; (d–f) calibration plots to predict 1-, 3-,
and 5-year; overall survival (OS) in the test set; (g–i) calibration plots to predict 1-, 3-, and 5-year overall survival (OS) in the overall internal
validation set.
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The C-index values for BC patients were 0.672 (95% CI
0.611–0.732), 0.692 (95% CI 0.586–0.798), and 0.679 (95%
CI 0.626–0.732) in the training cohort, test set, and overall
internal validation set, respectively. The time-dependent
ROC curves were used to measure the sensitivity and speci-
ficity of the prediction model for predicting OS. Signifi-
cantly, the AUC values were all greater than 0.63, except
for the overall internal validation set with a 5-year predicted
survival rate of 0.56, indicating that the model has high sur-
vival outcome prediction performance (Figure 8). The DCA
curves also revealed better clinical applications for the risk
scoring model (Figure 9).

The results based on C-index, ROC curves, calibration
curves, and DCA curves indicated that the nomogram in
our study demonstrated favorable predictive accuracy for
the survival prognosis of female BC patients.

4. Discussion

BC is one of the most common cancers in females, with over
1,300,000 new cases and 450,000 deaths worldwide each year
[16, 17]. Treatment of BC has advanced considerably,
mainly through surgery, neoadjuvant chemotherapy, adju-
vant chemotherapy, radiotherapy, systemic therapy, targeted
therapy, and so on, with initial conventional surgery no lon-

ger being the best option for all patients [1]. However, BC
remains one of the leading causes of cancer deaths in women
worldwide, largely due to delayed diagnosis and unsuccessful
treatment strategies [18]. Therefore, it is crucial to diagnose
BC at an early stage and propose a personalized treatment
plan based on the characteristics of the women patient’s
condition to predict their prognosis.

The TNM staging system is still the most widely used
prognosis method to predict the survival of patients with
BC. Although the American Joint Committee on Cancer
(AJCC) updated BC staging in 2016 to include T, N, M,
tumor grade, and expression of estrogen and progesterone
receptors and HER2 [19], the current TNM staging system
still has its undeniable deficiencies. For instance, it does
not take into account other pathophysiological characteris-
tics of the patient that have an impact on the prognosis of
the tumor: age, gender, exercise, and overweight [20–22].
In addition, gene signature is an important factor in deter-
mining the prognosis of BC patients, as BC is a highly het-
erogeneous disease with different subtypes with different
biological, molecular, and clinical processes. Gene expres-
sion profiling can identify genetic features to predict progno-
sis and guide the use of adjuvant therapy [23]. Among
others, EMT genes regulate tumor proliferation, invasion,
and metastasis [24, 25]. There are many prognostic models
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Figure 8: (a–c) ROC curves to predict 1-, 3-, and 5-year overall survival (OS) in the training set; (d–f) ROC curves to predict 1-, 3-, and 5-
year; overall survival (OS) in the test set; (g–i) ROC curves to predict 1-, 3-, and 5-year overall survival (OS) in the overall internal validation
set.
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on BC; however, this is the first gene signature constructed
by EMT-related genes. Moreover, considering the role of
age and gender in the onset and progression of BC, we chose
to study the prognosis of patients in women and used age as
one of the predictors. Compared to previous studies, this
nomogram was more accurate.

EMT is a cellular process in which cells lose their epithe-
lial characteristics and acquire mesenchymal characteristics,
such as quiescent adnexal cells gaining the ability to migrate
[26]. EMT has been associated with a variety of tumor func-
tions, including tumor initiation, malignant progression,
tumor stemness, tumor cell migration, intravascular infiltra-
tion, metastasis, and resistance to therapy [9]. Most notably
in this context, previous studies have shown that both cancer
stem cell-like properties and drug resistance are associated
with EMT [27]. Given the close link between oncogenic sig-
naling and EMT blockers, EMT has emerged as a therapeu-
tic target or goal in cancer therapy [28]. The relationship
between EMT-related genes and breast cancer is also
increasingly being investigated by researchers. The major
focus of current studies is the regulatory mechanisms and
therapeutic approaches of EMT for breast cancer in metasta-
sis and invasion, mainly including miRNA and signaling
pathways such as Wnt, Notch, TNF-α, NF-κB, and RTK.
Investigators suppress breast cancer by attempting to thera-
peutically target or inhibit key/auxiliary players in these
pathways [8, 29–31]. Most notably, upregulation of pro-
grammed death ligand 1 (PD-L1) expression is associated
with EMT cell phenotype activation, and the control of the
interaction between p53 and EMT master regulators is of
importance in breast cancer. These two mechanisms have
also been studied in other types of cancer and play a key role
in the development and metastasis of cancer [30, 32].

This study was based on TCGA database. Differential
analysis was firstly performed to find differential EMT-

related genes. Univariate regression analysis was then con-
ducted to identify candidate prognostic variables. We then
developed a prognostic model by multivariate analysis to
predict OS. Calibration curves, receiver operating character-
istics (ROC) curves, C-index, and decision curve analysis
(DCA) were used to test the veracity of the prognostic
model. In addition to the training cohort of 70% BC patients,
the remained cohort was treated as the test set. In the end,
we derived that patient’s age, CD44, P3H1, SDC1, COL4A1,
TGFβ1, and SERPINE1 were independent prognostic factors
for overall survival in female BC patients and constructed
predictive models. The accuracy of the model has also been
verified using various methods.

In accordance with our findings, in stage I and IV BC
tumors, excess mortality increased linearly with age [33].
Recent studies have shown that a novel positive feedback
loop between IL1β and CD44 promoted malignant progres-
sion in triple-negative BC (TNBC) and that CD44 was a
potential target for inhibiting PD-L1 function in TNBC
[34, 35]. Sayyad et al. demonstrated the role of Sdc1 in pro-
moting brain metastasis in BC [36]. Several studies have
demonstrated that COL4A1 expression could be used as a
biomarker for superior prognosis in BC patients receiving
neoadjuvant chemotherapy [37], while epigallocatechin-3-
gallate (EGCG) exerted antitumor effects by restoring nine
key genes, including COL4A1, in myeloid-derived suppres-
sor cells (MDSCs) [37]. TGFβ1-activated cancer-associated
fibroblasts (CAFs) promote BC growth and metastasis in
part through autophagy [38]. The evolutionary branch E
member 1 (SERPINE1) is a molecule involved in a variety
of human malignancies. Zhang et al. showed that SERPINE1
served as an oncogene for PTX resistance in BC, and Xu
et al. identified a functional pathway linking miR-1185-2-
3p, GOLPH3L, and SERPINE1, which played an essential
role in glucose metabolism in BC. Both of their studies
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Figure 9: (a–c) DCA analysis predicting 1-, 3-, and 5-year overall survival (OS) in the training set; (d–f) DCA analysis predicting 1-, 3-, and
5-year; overall survival (OS) in the test set; (g–i) DCA analysis predicting 1-, 3-, and 5-year overall survival (OS) in the overall internal
validation set.
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revealed that it may serve as a possible target for the treat-
ment of BC [39, 40]. No studies have yet explored the mech-
anisms by which P3H1 affects BC development, progression,
and metastasis, but an algorithm-based meta-analysis of
genome-wide and proteomic data identified P3H1 as a
potential biomarker for CRC. Our study indicates a direction
of research for subsequent basic studies [41].

In this endeavor, some limitations need to be acknowl-
edged. To begin with, the population races in TCGA data-
base are primarily limited to whites and blacks, and
extrapolation of findings to other racial groups needs to be
validated. Second, a robust nomogram should be externally
validated across cohorts; therefore, our nomogram needs to
be further validated in multicenter clinical trials and pro-
spective studies. Finally, some of the genes identified in this
paper are relatively rarely reported in the academic litera-
ture. Therefore, more evidence including sample collection
with complete experimental and clinical information should
be performed for future validation is needed to elucidate the
intrinsic association between age and six-gene signature and
prognosis of BC patients.

However, our study also has some advantages. To our
knowledge, this is the first study to additionally combine
age as a prognostic variable with EMT-related genes to pre-
dict the prognosis of BC patients. Prognostic models may
predict patient prognosis more accurately than conventional
indicators.

In conclusion, we have developed and validated a rela-
tively effective predictive model to predict the survival out-
come of female BC patients at 1, 3, and 5 years. The
accuracy and reliability of the prognostic model have also
been verified. The results of our research need to be further
validated in subsequent clinical practice.
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