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Purpose. Using human gene chip expression profiling technology to screen out downstream genes related to TrkB regulation in
laryngeal cancer cells. Methods. Using the Hep-2 TrkB shRNA cell line, divide it into an experimental group (shNTRK2) and a
control group (PLKO1), and use the human gene expression microarray to screen out the differential genes. Then, select 10
upregulated genes and 10 downregulated genes from the differential genes, and use RT-PCR to verify whether the screening
results of human gene expression microarray profiles are reliable. Use GO, KEGG, and miRNA enrichment analyses, PPI
network diagram, etc., to analyze the differential genes and further screen out the key genes. Results. A total of 318 differential
genes (87 upregulated genes and 231 downregulated genes) were screened in laryngeal cancer cells. Use RT-PCR for the 10
upregulated differential genes (DMKN, FHL1, FOXN4, GGNBP1, HOXB9, ABCB1, TNFAI, RGS2, LINC01133, and FGG) and
10 downregulated differential genes (CHI3L1, FMOD, IGFBP1, IRF5, SPARC, NPAS4, TRPS1, TRAP, COL8A1, and DNER),
and the results are consistent with the chip results, confirming the accuracy of the chip results; GO analysis results show that
the downstream differential genes (DEGs) regulated by TrkB are mainly involved in biological processes such as retinol
metabolic process, diterpenoid metabolic process, and regulation of cell-substrate adhesion. DEGs mainly affect cytoskeletal
protein binding, serotonin-activated cation-selective channel activity, and sphingosine molecular functions. DEGs are mainly
enriched in the cell periphery, secretory granule, cytoplasmic membrane-bounded vesicle lumen, blood microparticle, and
other molecular components. The results of disease enrichment analysis show that the downstream differential genes regulated
by TrkB are mainly involved in atypical hemolytic uremic syndrome, hematologic disease, meningococcal disease, lung cancer,
susceptibility, asthma, and other diseases. The PPI network diagram results showed 7 hub genes, and then, we used GO
analysis and KEGG enrichment analysis to see the biological process, cell component, molecular functions, and biological
pathways. Conclusion. Gene chip technology was used to screen out the differential genes of TrkB epigenetic modification in
the Hep-2 cell line, and seven key genes (ALDH1A1, SDR16C5, PIK3R1, PLCG2, IL2RG, PIK3CD, and SPARC) were further
screened using bioinformatics technology.

1. Introduction

Laryngeal carcinoma is a malignant tumor that occurs in the
larynx, accounting for 25%-30% of all head and neck cancer
cases, and is the most common solid cancer. More than 95%
of laryngeal cancers are squamous cell carcinomas. Epidemi-
ological investigations have shown that the incidence of

laryngeal cancer is 2.1/100,000, which is a greater threat to
human health [1–3]. Research results show that the occur-
rence of laryngeal cancer is related to a variety of factors.
Smoking and drinking are positively related to the incidence
of laryngeal cancer. Secondly, factors such as sulfur dioxide,
arsenic, industrial dust, toxic chemicals, and HPV infection
can all become incentives for laryngeal cancer [4, 5]. The
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Figure 1: Continued.
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main clinical manifestations of laryngeal cancer are hoarse-
ness, dyspnea, coughing, dysphagia, cervical lymph node
metastasis, etc. The order of appearance of symptoms at dif-
ferent primary sites is different [6–8]. Pathological biopsy
under laryngoscopy is the gold standard for the diagnosis
of laryngeal cancer. Combined treatments such as surgical
treatment, radiotherapy, chemotherapy, and biological ther-
apy have improved the survival rate of patients, but their
curative effect is still not ideal [9, 10].

Tyrosine kinase receptor B (TrkB) is a type of protein
kinase with multiple biological functions encoded by the
NTRK2 gene. It is also a specific binding receptor for
brain-derived nerve growth factors [11, 12]. TrkB can
interact with BDNF. Specific binding, TrkB is activated by
inducing dimerization of TrkB and induces its autophos-
phorylation, thereby exerting a series of biological effects
[13–15]. Many studies have shown that TrkB participates
in the regulation of tumor proliferation, invasion, and
migration, but the expression and mechanism of TrkB in
laryngeal cancer have not been studied [16–18]. The previ-
ous research results of our group showed that the expression
of TrkB mRNA and protein was overexpressed in tumor tis-
sues, and the high expression of TrkB significantly reduced
the overall survival time of patients, which is closely related
to clinical staging, lymph node metastasis, and smoking
history, which can be an independent prognostic indicator
for laryngeal cancer. However, whether TrkB can affect the
expression of downstream genes through epigenetic modifi-
cation, and the downstream genes that TrkB affects the
metastasis of laryngeal cancer through epigenetic modifica-
tion, still needs to be further clarified.

Therefore, this study used gene chip technology to
screen out the downstream genes that were epigenetically

modified by TrkB and then selected 10 upregulated differen-
tially expressed genes and 10 downregulated differentially
expressed genes, using RT-PCR to verify the correction.

2. Materials and Methods

2.1. Cell Grouping and Culture. Human Hep2 cell was pur-
chased from China Center for Type Culture Collection.
Then, we divided the cells into the experimental group
(shNTRK2) and the control group (PLKO1) and place them
in a 37°C 5% CO2 incubator. The culture medium is DMEM
containing 10% fetal bovine serum (FBS), 1% penicillin, and
streptomycin; replace the culture medium regularly.

2.2. Agilent Gene Chip Technology. Add nuclease-free water
to 40μl in the labeled fluorescent DNA sample, then add
41.6μl hybridization solution, and centrifuge to mix. After
detecting that the hybridization device is normal, add a
45μl hybridization solution and place the chip in the hybrid-
ization furnace for hybridization. Wash twice with washing
solution I and washing solution II, each for 5 minutes. Use
the steps in the Agilent chip scanner manual to scan the chip
and save the hybridization picture. Use Agilent Feature
Extraction (10.7) and CBC analyzer software to analyze
and extract the data.

2.3. RT-PCR Verification of Differentially Expressed Genes.
Ten genes that were upregulated and downregulated were
selected from the differentially expressed genes to perform
RT-PCR experiments for verification. First, extract the total
RNA of the sample, reverse transcribed it into cDNA, and
perform reverse transcription-polymerase chain reaction
(RT-PCR) reaction. The reaction conditions are 95°C
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Figure 1: Quality control results of gene chip data. (a) Box plot for case vs. control. (b) The plot of PCA (each line represents a sample in the
figure). (c) Pearson’s correlation plot.
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5min, 95°C 15 s, and 60°C 32 s, 40 cycles. Each sample was
repeated 3 times.

2.4. Statistical Methods. The Gene Spring software V13
(Agilent) was used to summarize, standardize, and quality
control the array data. The multiple of difference ≥ 1:5,
P < 0:05, was used as the criteria for screening differential
genes. The cluster 3.0 software was used for cluster anal-
ysis and principal component analysis. Use GO, KEGG,
and other databases for bioinformatics analysis of differ-
ential genes.

3. Results

3.1. Quality Control Results of Gene Chip Data. The box plot
can visually display the gene expression of each sample
before and after normalization. Red represents the experi-
mental group, and blue represents the control group. From
Figure 1(a), we can see that the distribution of all samples
is relatively close, indicating that the repeatability of the chip
between different samples tend to be consistent. Principal
component analysis shows the distribution of all samples
on the three main variables. Through principal component
analysis, the data space is compressed, and the characteris-
tics of multiple variables are visually displayed in the low-
dimensional space. The PCA chart is used to indicate that
each chip has a high degree of similarity within the group,
but there is a certain difference between the groups. The
results in Figure 1(b) show that the experimental group
and the control group have good similarities, but the two
groups also have big differences. The Pearson correlation
coefficient graph shows the similarity of each sample. The
closer the correlation coefficient is to 1.0, it means that the
abscissa sample and the ordinate sample are positively corre-
lated, and the negative correlation tends to be -1. The results
in Figure 1(c) show that the correlation coefficients of the
experimental group and the control group are both greater
than 0.95, indicating that there is a high positive correlation
between the 3 samples in the control group and the 3 sam-
ples in the experimental group.

3.2. Analysis Results of Gene Chip Data

3.2.1. Differential Genes in Gene Chip Expression Profile. A
gene chip experiment was performed after knocking down
the TrkB gene in laryngeal cancer cells. The results showed
that there were obvious differences in gene expression
between the two groups. Using jLogFCj > 1:5, P < 0:05, as
the screening criteria, a total of 318 differential genes were
found, of which 87 belonged to highly expressed genes,
and 231 belonged to low expressed genes. The top ten upreg-
ulated genes are DMKN, FHL1, FOXN4, GGNBP1, HOXB9,
ABCB1, TNFAI, RGS2, LINC01133, and FGG; the top ten
downregulated genes are CHI3L1, FMOD, IGFBP1, IRF5,
SPARC, NPAS4, TRPS1 TRAP, COL8A1, and DNER.

3.2.2. Difference Analysis of Expression Profile. The results of
the cluster analysis graph (Figure 2(a)) show that there is a
significant difference in gene expression between the experi-
mental group and the control group, and there is no signif-
icant difference in gene expression between the groups. As
the abscissa and ordinate to draw a volcano map, the vol-
cano map can directly reflect the significant difference
between the two sets of sample data. The results of the vol-
cano diagram (Figure 2(c)) show that there is a significant
difference in gene expression between the experimental
group and the control group. Downregulated genes account
for the majority. Red indicates upregulated genes, green
indicates downregulated genes, and black indicates genes
with no significant difference. After standardizing the origi-
nal chip data, a scatter plot is drawn. The scatter plot of the
chip data is used to evaluate the central tendency of the over-
all distribution of the two sets of data. Each point in the scat-
ter plot represents a probe point on the chip, which is in two
dimensions. The position in the plane is determined by its
abscissa and ordinate. The scatter plot (Figure 2(b)) of this
experiment reflects the significant differences between the
experimental group and the control group, where red repre-
sents upregulated genes, green represents downregulated
genes, and black represents no significant differences in gene
expression between different groups. The Circos diagram

(d)

Figure 2: Expression profile difference analysis diagram. (a) The cluster diagram of genes expression profile. (b) Scatter plot for case vs.
control. (c) Volcano plot for case vs. control. (d) Circos plot for case vs. control.
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Figure 3: Continued.
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Figure 3: Continued.
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Figure 3: Continued.
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Figure 3: Continued.
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(Figure 2(d)) is based on gene location to show gene
expression among different groups. The results show that
there are significant differences between the experimental
group and the control group. The outer circle represents
the type of chromosome, and the inner circle represents
the degree of difference in genes at that position. Red indi-
cates upregulation of gene expression, green indicates
downregulation of gene expression, and the length of the
cylinder indicates the multiple of difference.

3.2.3. Bioinformatics Analysis Results of Differentially
Expressed Genes

(1) Enrichment Analysis of Signal Pathways of Differential
Genes. After epigenetic modification of TrkB, we screened
out 318 differential genes from 6 groups and analyzed the
signal pathways of these differential genes through 6 data-
bases (KEGG, PID, BioCarta, Reactome, Panther, and
Biocyc) and obtained a significantly enriched signal pathway
diagram (Figure 3). KEGG pathway enrichment analysis
results show that differential genes are mainly involved:
signal transduction, global and overview maps, immune
system, platelet activation, pathway in cancer I hsa05200,
complement and coagulation cascades I hsa04610, etc.
Signal pathway is shown in Figures 3(a), 3(b), 3(f), and
3(g). Biocyc pathway enrichment analysis results show that
differential genes are mainly involved in signal pathways
such as retinoate biosynthesis II PWY-6872 and gluta-
mine biosynthesis I GLNSYN-PWY (Figures 3(c)–3(e)).
Panther pathway enrichment analysis results show that
differential genes are mainly involved in signaling pathways

(Figures 3(h) and 3(i)) such as axon guidance mediated
by netrin I P00009, blood coagulation I P00011, and PI3
kinase pathway I P00048. The results of Reactome path-
way enrichment analysis showed that differential genes
are mainly involved in the regulation of complement cas-
cade I R-HAS-977606, platelet activation, signaling and
aggregation I R-HA S-76002, complement cascade I R-
HAS-166658, and other signaling pathways (Figures 3(j)
and 3(k)).

(2) GO Analysis of Differential Genes. We mainly conduct
Gene Ontology analysis on 318 differential genes from bio-
logical processes, molecular functions, and cell components.
The results of biological process analysis show that the
downstream differential genes regulated by TrkB are mainly
involved in the regulation of retinol metabolic process,
diterpenoid metabolic process, regulation of cell-substrate
adhesion, and other biological processes (Figures 4(a),
4(b), 4(g), and 4(h)). The results of molecular function
analysis showed that the downstream differential genes reg-
ulated by TrkB mainly affected molecular functions such as
cytoskeletal protein binding, serotonin-activated cation-
selective channel activity, sphingosine N-acyltransferase
activity, and calcium ion binding (Figures 4(d), 4(e), 4(k),
and 4(l)). Cell component analysis results show that the
downstream differential genes regulated by TrkB are
mainly enriched in the cell periphery, secretory granule,
cytoplasmic membrane-bounded vesicle lumen, vesicle
lumen, plasma membrane, blood microparticle, and other
molecular components (Figures 4(c), 4(e), 4(f), 4(i), and
4(j)).

(k)

Figure 3: Differential gene signal pathway enrichment analysis diagram. (a) KEGG classification. (b) Statistics of pathway enrichment.
(c) Significantly enriched pathway terms. (d) Statistics of Biocyc enrichment. (e) Significantly enriched Biocyc pathway terms. (f) Statistics of
KEGG pathway enrichment. (g) Significantly enriched KEGG pathway terms. (h) Statistics of Panther enrichment. (i) Significantly enriched
Panther pathway terms. (j) Statistics of Reactome enrichment. (k) Significantly enriched Reactome pathway terms.
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Figure 4: Continued.
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Figure 4: Continued.
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Figure 4: Continued.
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(3) Disease Enrichment Analysis of Differential Genes. After
epigenetic modification of TrkB, we screened out 318
differential genes from 6 groups and performed disease
enrichment analysis on these differential genes through 6
databases (OMIM, KEGG Disease, Fun DO, GAD, NHGRI,
and Disease). A significantly enriched enrichment analysis
chart (Figure 5) was obtained. The KEGG disease enrichment
analysis results showed that the downstream differential
genes regulated by TrkB are mainly involved in atypical
hemolytic uremic syndrome, hematologic disease, amyotro-
phic lateral sclerosis, Opitz-GBBB syndrome, and other dis-
eases (Figures 5(a)–5(c)). The results of NHGRI disease
enrichment analysis showed that the downstream differential
genes regulated by TrkB are mainly involved in meningo-
coccal disease, lung cancer, major depressive disorder,
HDL cholesterol, obesity-related traits, and other diseases
(Figures 5(d) and 5(e)). OMIM disease enrichment analysis
results show that the downstream differential genes regulated
by TrkB are mainly involved in hemolytic uremic syndrome,
atypical, susceptibility, asthma, inflammatory bowel dis-
ease14, emphysema due to AAT deficiency, and other dis-
eases (Figures 5(f) and 5(g)).

(4) miRNA Enrichment Analysis and PPI Network. The
results of miRNA enrichment analysis showed the top 30
upregulated and downregulated miRNAs (Figures 6(a) and
6(b)). Based on the interaction data between genes in the
KEGG pathway, the gene-gene interaction data within the
differential gene set was screened out, and a molecular net-
work was constructed. In Figure 7, the results show that
ALDH1A1, SDR16C5, PIK3R1, PLCG2, IL2RG, PIK3CD,
and SPARC are the key genes.

(5) GO Analysis and KEGG Pathway of Hub Genes. We
mainly conduct Gene Ontology analysis on 7 differential
genes from biological processes, molecular functions, cell
components, and biological pathways. The results of biolog-
ical process analysis showed that the 7 hub genes were
mainly involved in regulation: signal transduction, metabo-
lism, and energy pathways. The results of cell component
analysis showed that the 7 hub genes were mainly enriched
in the cytoplasm and extracellular. The results of molecular
function analysis showed that the 7 hub genes mainly
affected molecular functions such as lipid kinase activity,
phospholipase activity, and transmembrane receptor activ-
ity. The KEGG disease enrichment analysis results showed
that the 7 hub genes regulated by TrkB are mainly involved
in GPV1-meditated activation cascade, EPO signaling path-
way, and IL-4-mediated signaling events (Figures 8(a)–8(d)).

3.2.4. RT-PCR Verification Results. We extracted 10 upregu-
lated and downregulated genes from the downstream genes
regulated by TrkB and used RT-PCR to detect mRNA
expression levels of differential genes. The results showed
that compared with the control group, the mRNA expres-
sion levels of DMKN, FHL1, FOXN4, GGNBP1, HOXB9,
ABCB1, TNFAI, RGS2, LINC01133, and FGG genes in the
experimental group were significantly increased (P & LT;
0.05). Compared with the normal control group, mRNA
expression levels of CHI3L1, FMOD, IGFBP1, IRF5, SPARC,
NPAS4, TRPS1, TRAP, COL8A1, and DNER genes in the
experimental group were significantly decreased (P < 0:05).
All of the above confirm that the gene chip results are
reliable (Figure 9).

(l)

Figure 4: GO analysis diagram of differential genes. (a) GO standard. (b) Biological process hierarchy. (c) Cellular component
hierarchy. (d) Molecular function hierarchy. (e) Significantly enriched GO terms. (f) Statistics of GO enrichment. (g) Statistics of
biological enrichment. (h) Significantly enriched biological process GO terms. (i) Statistics of cellular component enrichment. (j)
Significantly enriched cellular component GO terms. (k) Statistics of molecular function enrichment. (l) Significant molecular
function GO terms.
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Figure 5: Continued.
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(c)

(d)

Figure 5: Continued.
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(f)

Figure 5: Continued.
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4. Discussion

Laryngeal cancer is a serious threat to human health. Its
early symptoms are not obvious, and it is easy to be ignored
by patients. So when diagnosed, it is already in the middle or
late stages. Although the current comprehensive treatment
of various methods has improved the survival of patients,
its clinical efficacy is not very satisfactory [19–22]; it is nec-
essary to find new diagnoses and treatment methods to
improve the prognosis and quality of life of patients. At pres-
ent, the pathogenesis of laryngeal cancer has not been fully
elucidated. Therefore, searching for genes that are closely
related to the occurrence and development of laryngeal can-
cer and targeted therapy for key genes has become a popular
research direction.

TrkB belongs to the family of neurotrophic factors and
plays an important role in the occurrence and development
of the nervous system and malignant tumors [20, 21]. The
TrkB/BDNF signaling pathway is also involved in a variety
of physiological functions such as tumor angiogenesis, pro-
liferation, metastasis, and invasion and is closely related to
the invasion and metastasis of a variety of malignant tumors
[23]. Immunohistochemical results showed that the expres-
sion of TrkB and its ligand brain-derived neurotrophic
factor (BDNF) in endometrial cancer was significantly
increased (P < 0:05), and its high level of TrkB was associ-
ated with lymph node metastasis and lymphatic vessels
Interstitial involvement is closely related (P < 0:05). Knock-
down mediated by stable shRNA depletes TrkB and reduces
the migration and invasion ability of cancer cell lines
in vitro, leading to anoikic in suspension cells. In addition,

overexpression of TrkB or BDNF stimulation leads to
changes in the expression of molecular mediators of
epithelial-mesenchymal transition (EMT). RNA interfer-
ence- (RNAi-) mediated downstream regulator Twist deple-
tion prevents TrkB-induced EMT-like transformation [24].
TrkB may become a potential Treatment target for endome-
trial cancer.

Preliminary studies of this group also showed that TrkB
is abnormally expressed in patients with laryngeal cancer
and is significantly related to the prognosis of patients. Both
in vivo and in vitro experimental results show that the
expression of TrkB mRNA in human laryngeal cancer
Hep2 cells is significantly increased, so in this study, Hep2
cells were used for subsequent experiments. Studies have
shown that downregulating TrkB can inhibit tumor growth
and promote tumor cell apoptosis. TrkB can also mediate
the PI3K/AKT signaling pathway to activate EMT by upreg-
ulating the expression of Twist-1 and Twist-2, thereby
affecting the metastasis of laryngeal cancer [25, 26]. How-
ever, the mechanism of TrkB in laryngeal cancer has not
yet been fully elucidated, and further research is needed.

In this study, human gene chip expression profiling tech-
nology was used to screen the Hep2 TrkB shRNA cell line
for differential genes. A total of 318 differential genes were
obtained, of which 78 were upregulated and 231 were down-
regulated. To verify the gene chip results, we selected 10
upregulated genes and 10 downregulated genes for RT-
PCR verification. The results showed that all gene expression
trends were consistent with the gene chip results, indicating
that TrkB can regulate the expression of downstream genes
in laryngeal cancer. The gene chip technology is accurate

(g)

Figure 5: Disease enrichment analysis diagram of differential genes. (a) Statistics of disease enrichment. (b) Statistics of KEGG disease
enrichment. (c) Significantly enrichment KEGG disease terms. (d) Statistics of NHGRI GWAS Catalog enrichment. (e) Significantly
enriched NHGRI GWAS Catalog terms. (f) Statistics of OMIM enrichment. (g) Significantly enriched OIMI disease terms.
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and can be used to study the physiological mechanism of
tumors. We also used bioinformatics technology to per-
form GO, KEGG, and PPI enrichment analyses on the dif-
ferential genes that were screened out. The signal pathway
enrichment analysis showed that differential genes are
mainly involved in signal transduction, global and over-
view maps, retinoate biosynthesis II PWY-6872, axon
guidance mediated by netrin I P00009, regulation of com-

plement cascade I R-HAS-977606, and other signal path-
ways. GO analysis results show that the downstream
differential genes regulated by TrkB are mainly involved
in the regulation of retinol metabolic process, diterpenoid
metabolic process, regulation of cell-substrate adhesion,
and other biological processes; the downstream differential
genes regulated by TrkB mainly affect cytoskeletal protein
binding, serotonin-activated cation-selective channel activ-
ity, sphingosine N-acyltransferase activity, calcium ion bind-
ing, and other molecular functions; downstream differential
genes regulated by TrkB are mainly enriched in the cell
periphery, secretory granule, cytoplasmic membrane-
bounded vesicle lumen, vesicle lumen, plasma membrane,
blood microparticle, and other molecular components. The
results of disease enrichment analysis showed that the down-
stream differential genes regulated by TrkB are mainly
involved in atypical hemolytic uremic syndrome, hemato-
logic disease, meningococcal disease, lung cancer, major
depressive disorder, hemolytic uremic syndrome, atypical,
susceptibility, asthma, and other diseases. The results of
miRNA enrichment analysis showed the top 30 upregulated

Figure 7: PPI network diagram of differential genes after silencing
the TrkB gene in laryngeal cancer cells.
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Figure 6: miRNA enrichment analysis diagram. (a) Significantly enriched up miRNAs (top 30). (b) Significantly enriched down miRNAs
(top 30).
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Figure 8: Continued.
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and downregulated miRNAs. The PPI network diagram
results showed that ALDH1A1, SDR16C5, PIK3R1, PLCG2,
IL2RG, PIK3CD, and SPARC are the key genes. Then, we
used GO analysis and KEGG enrichment analysis to see the
biological process, cell component, molecular functions,
and biological pathways.

The GO analysis of biological process analysis results
showed that the 7 hub genes were mainly involved in
regulation: signal transduction, metabolism, and energy
pathway. Cell component analysis showed that the 7 hub
genes were mainly enriched in cytoplasm and extracellular.
The results of molecular function analysis showed that the
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Figure 8: GO analysis and KEGG pathways of hub genes. (a) Biological process. (b) Cellular component. (c) Molecular function.
(d) Biological pathway.
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Figure 9: Continued.
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7 hub genes mainly affected molecular functions such as
lipid kinase activity, phospholipase activity, and transmem-
brane receptor activity. The KEGG disease enrichment anal-
ysis results showed that the 7 hub genes regulated by TrkB
are mainly involved in the GPV1-meditated activation cas-
cade, EPO signaling pathway, and IL-4-mediated signaling
events.

In this study, we used gene chip technology to screen
out the downstream differential genes regulated by TrkB,
explored the pathways and diseases of differential gene
enrichment through bioinformatics technology, and
screened out key genes through the construction of a PPI net-
work, providing a potential therapeutic target for laryngeal
cancer.
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