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Colorectal cancer (CRC) is becoming increasingly prevalent worldwide. Fluoropyrimidine drugs are the primary chemotherapy
regimens in routine clinical practice of CRC. However, the survival rate of patients on fluoropyrimidine-based chemotherapy
varies significantly among individuals. Biomarkers of fluoropyrimidine drugs’' efficacy are needed to implement personalized
medicine. This review summarized fluoropyrimidine drug-related microRNA (miRNA) by affecting metabolic enzymes or
showing the relevance of drug efficacy. We first outlined 42 miRNAs that may affect the metabolism of fluoropyrimidine
drugs. Subsequently, we filtered another 41 miRNAs related to the efficacy of fluoropyrimidine drugs based on clinical trials.
Bioinformatics analysis showed that most well-established miRNA biomarkers were significantly enriched in the cancer
pathways instead of the fluoropyrimidine drug metabolism pathways. The result also suggests that the miRNAs screened from
metastasis patients have a more critical role in cancer development than those from non-metastasis patients. There are five
miRNAs shared between these two lists. The miR-21, miR-215, and miR-218 can suppress fluoropyrimidine drugs’' catabolism.
The miR-326 and miR-328 can reduce the efflux of fluoropyrimidine drugs. These five miRNAs could jointly act by increasing
intracellular levels of fluoropyrimidine drugs’' cytotoxic metabolites, leading to better chemotherapy responses. In conclusion,
we demonstrated that the dynamic changes in the transcriptional regulation via miRNAs might play significant roles in the
efficacy and toxicity of the fluoropyrimidine drug. The reported miRNA biomarkers would help evaluate the efficacy of
fluoropyrimidine drug-based chemotherapy and improve the prognosis of colorectal cancer patients.

1. Introduction

Colorectal cancer (CRC) is the third most commonly diag-
nosed malignancy and the second leading cause of cancer
death worldwide [1]. The global burden of CRC is expected
to increase to more than 2.5 million new cases in 2035 [1].
The incidence of CRC in developed countries, such as in
Europe and North America, has stabilized and declined. In
contrast, the incidence of CRC in developing countries is still

on the rise [2], especially in China [3]. It is estimated that 4.3
million new cancer cases and 2.9 million new cancer deaths
occurred in China in 2018 [2], meaning 30% and 40% higher
cancer incidence and mortality than in the UK and USA [2].
Fluoropyrimidine-based (5-fluorouracil/5-FU, Capecitabine,
Tegafur) drugs are the most commonly used chemothera-
peutic agents in CRC treatment. They significantly improved
the survival rates of CRC patients [4, 5]. However, many
CRC patients will still experience recurrences or develop
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advanced diseases. The mutations in coding genes [6] and
microRNAs (miRNAs) [7] were related to individual hetero-
genesis of drug efficacy and toxicity. Personalized therapy
has been proved to aid clinicians in improving the treatment
outcome [6]. The essential requirement is reliable marker
systems with solid clinical evidence or precise molecular
mechanisms.

The enzyme thymidylate synthase (TS) can methylate
deoxyuridine monophosphate (dUMP) to form deoxythymi-
dine monophosphate (dTMP). 5-FU acts as an inhibitor of
TS by reducing the dTMP formation and ultimately blocking
the formation of thymidine, an essential nucleoside for DNA
replication and repair. Administration of 5-FU can rapidly
induce cancer cell death via lack of thymidine [8]. The phar-
macokinetics or pharmacodynamics of fluoropyrimidine
drugs and their reactive metabolites are closely related to
their efficacy [9]. These are controlled by enzymes and com-
pounds that participate in drug transportation and metabo-
lism. For instance, the calcium folinate can enhance 5-FU’s
cytotoxicity by providing exogenous folinate, stabilizing the
5-FU-TS complex [10].

Much effort has been made to screen for biomarkers that
can affect or measure the activity of these effectors to predict
chemotherapy response. MiRNAs can act as gene regulators
that affect the tumor cell life cycle, such as growth, differen-
tiation, and apoptosis. MiRNAs are small noncoding RNAs
containing 21-24 nucleotides that play essential post-
transcriptional regulatory roles in diverse organisms, includ-
ing humans [11]. They affect protein function by combining
with semi-complementary target mRNAs, resulting in
mRNA destabilization and translation repression [12]. After
the discovery of miRNA in the early-90s of twentieth cen-
tury, the roles of miRNA in the pharmacology of standard
chemotherapy drugs such as 5-FU were studied. Lorena
Rossi and colleagues published one of the earliest studies
in 2007 [13]. They proved that 5-FU could alter miRNA
expression in malignant cells profoundly. These miRNAs
include two of the most important miRNA markers, miR-
21 and miR-200b, whose functions have been validated in
many following observational studies since then. In the sec-
ond decade of the twenty-first century, huge progress has
been made to screen miRNA makers related to the efficacy
or safety of 5-FU and 5-FU-based drugs. And a significant
portion of these works was completed by European
researchers such as Torben Frøstrup Hansen, who linked
another important miRNA biomarker, miR126, with 5-
FU’s efficacy from a randomized phase III study with A total
of 230 patients [14]. However, most therapy-associated
miRNA biomarkers are deduced from molecular biological
mechanisms based on cellular models, which leaves them
lacking clinical validation. Besides, a single biomarker also
lacks sensitivity and specificity. A miRNA panel could help
increase the predictive efficiency [15].

Chen Lab is one of the pioneers in utilizing computa-
tional algorithms to discover small molecule drug-miRNA
associations in batches. Dual-network collaborative matrix
factorization (DCMF) [16], Ensemble of kernel ridge
regression-based small molecule-miRNA association pre-
diction (EKRRSMMA) [17], and bounded nuclear norm

regularization for small molecule-miRNA associations pre-
diction (BNNRSMMA) [18] methods were developed to
fulfill the need, contributing to the miRNA panel discov-
ery and validation efforts. Based on these sophisticated
and subtle studies, to acquire a promising miRNA bio-
marker panel for predicting the efficacy of fluoropyrimi-
dine drugs, each potential miRNA biomarker should
have a clear biological function or should have been vali-
dated by retrospective or observational clinical trials. In
this study, we reviewed miRNAs that may affect fluoropyr-
imidine drugs’ metabolism and miRNAs that are associ-
ated with the response to fluoropyrimidine therapy. Five
miRNAs meet both criteria, and their biological roles are
further discussed.

2. Materials and Methods

2.1. Searching Strategy. We searched research articles on
enzymes affected by miRNAs in the fluoropyrimidine drug
metabolic pathway by the following strategy. Online data-
bases including Embase, PubMed, Google Schooler, and Sci-
ence Direct (updated to Sep 1, 2019) were searched [19]. We
explicitly designed the searching strategy with the following
terms: (“TS” OR “thymidylate synthase”) AND (“miRNA”
OR “microRNA” OR “miR-” OR “microRNAs” OR “miR-
NAs”). Table 1 shows a complete list of search keywords
used in this article. Each result was recorded with title, date
of publication, author list, and abstract for finner screening
as described below.

Furthermore, we searched clinical trial outcomes related
to the efficacy of fluoropyrimidine drugs according to the
established paradigm of the Cochrane framework [20].
Online databases including Embase, PubMed, Google
Scholar, and Science Direct (updated to Sep 1, 2019) were
searched. A predefined searching strategy that outlined and
combined the following terms was designed for this review:
(a) in the title: (“colorectal” OR “colon” OR “rectum”)
AND (“cancer” OR “tumor” OR “tumour” OR “Carcinoma”
OR “neoplasia”) AND (“miRNA” OR “microRNA” OR
“miR-” OR “microRNAs” OR “miRNAs”). Relevant reviews
or articles on the citation list were independently screened to
ensure completeness. Duplicate studies were combined
before proceeding to the next round of filtering. b) Consid-
ering the most common validation for studies focusing on
finding miRNAs to predict better chemotherapy outcomes
is whether the potential marker could produce a good
ROC curve with reasonable sensitivity and specificity based
on regression analysis. We used the following keywords in
Mendeley software to locate the publications with detailed
efficiency assessments: (“survival” OR “response” OR “os”
OR “PFS” OR “side” OR “adverse” OR “toxic” OR “effective-
ness” OR “prognosis” OR “diagnosis” OR “diagnostic value”
OR “detection” OR “biomarker” OR “sensitivity AND spec-
ificity” OR “ROC curve”) AND (“chemotherapy” OR “5-fu”
OR “capecitabine” OR “fluoropyrimidine” OR “fluorouracil”
OR “FOLFOX” OR “XELOX”) AND (patients). We summa-
rized the search keywords and their representing categories
in Table 1.
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2.2. Filtering Strategy. The initial searched studies were fur-
ther filtered based on the following criteria: (a) clinical
research should base on humans; (b) all included patients
should have had chemotherapy with fluoropyrimidine
drugs; and (c) differences in survival should be related to
miRNA expressions. Besides, the following studies were dis-
carded: (a) duplicate publication; (b) case reports, letters to
the editor, or review articles; and (c) studies with unqualified
or insufficient clinical data.

The flow chart of the entire literature filtering process is
shown in Figure 1. The initial search returned 107 articles, of
which five review articles were excluded. After carefully
reviewing their titles and abstracts, 37 unrelated articles were
excluded due to the lack of clinical data. The remaining 65
articles were available for further full-text manual check.
Another 14 articles were excluded because the survival dif-
ference was unrelated to any miRNA expression. And
patients from 16 articles did not receive chemotherapy with
fluoropyrimidine drugs. In the end, there were 31 articles
included in this review.

In the final 31 selected articles, candidate miRNAs and
their corresponding target genes were summarized and
enriched to the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways and Gene Ontology (GO) terms. The
functional enrichment analysis was performed by the Data-
base for Annotation, Visualization, and Integrated Discovery
(DAVID) online tool [21, 22]. A number of matched genes
larger than five and P values less than 0.05 (corrected by
the two-side Bonferroni test) were considered significant.

3. Results

3.1. miRNAs Affecting the Metabolism of 5-FU. Based on the
toxicity-related polymorphisms studies of fluoropyrimidines
drugs proposed earlier [23–28], a metabolic pathway of 5-
FU was drawn (Figure 2). We then searched for miRNAs
that affect these metabolizing enzymes.

The cytotoxic metabolite of fluoropyrimidine drugs is
fluorodeoxyuridine monophosphate (FdUMP), inhibiting the
TS. 5-FU can be converted to FdUMP through different met-
abolic pathways (Figure 2). Thymidine phosphorylase (TP, or
TYMP) controls one of the main metabolic pathways by con-
verting 5-FU to fluorine de-oxidation pyridine (FUDR).
FUDR can subsequently be converted to FdUMP catalyzed
by thymidine kinase (TK). Another catalytic pathway converts
the 5-FU to FdUMP through a more extended route, with a
rate-limiting enzyme DPYD. The primary intermediate
metabolites are fluorouridine diphosphate (FUDP) and fluor-
odeoxyuridine diphosphate (FdUDP), which could be further
converted to fluorouridine triphosphate (FUTP) and fluoro-
deoxyuridine triphosphate (FdUTP). They can incorporate
themselves into the newly formed DNA or RNA and suppress
the normal replication and repair process. A previous study
also showed that FUTP and FdUTP also contributed to the
efficacy of fluoropyrimidine drugs [29].

We targeted 42 miRNAs that may affect the expression
of enzymes within the fluoropyrimidine drug metabolic
pathway (Table 2).

3.2. miRNAs Affecting the Efficiency of 5-FU. For the fluoro-
pyrimidine drug efficacy-related miRNAs from the selected
31 articles, miRNAs with solid evidence from clinical trials
were included. The relationship between chemotherapy
response and miRNA expression level was confirmed by
Kaplan-Meier plot with log-rank test or Cox regression P
values less than 0.05. We filtered 41 miRNAs (Table 3) with
necessary clinical information such as tumor stage and
miRNA expression data. Eleven miRNAs were summarized

Table 1: Keywords used in the literature searching strategy.

Type of keywords Keywords used in literature searching

Target enzyme-related
TS

Thymidylate synthase

Treatment-related

Chemotherapy

5-fu

Capecitabine

Fluoropyrimidine

Fluorouracil

FOLFOX

XELOX

Patients

Phenotype-related

Colorectal

Colon

Rectum

Cancer

Tumor

Tumour

Carcinoma

Neoplasia

MicroRNA-related

miRNA

microRNA

miR-

microRNAs

miRNAs

Validation-related

Survival

Response

Os

PFS

Side

Adverse

Toxic

Effectiveness

Prognosis

Diagnosis

Diagnostic value

Detection

Biomarker

Sensitivity

Specificity

ROC curve
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from the studies in Asia. The median number of patients is
84. Six studies derived their conclusion from plasma sam-
ples, 24 from tissue, and one from both.

The miRNA related to fluoropyrimidine drug efficacy
were listed in two subgroups based on CRC stages. MiRNAs
in the first group were screened from patients without
metastasis CRC (I, II, or III). MiRNAs in the second group
were screened from patients with metastasis CRC (IV). If
available, we recorded the number of patients within each
stage (I, II, III, or IV) in the bracket. We marked these miR-
NAs according to the types of tissue (AMT: adjacent muco-
sal tissues; LR: local recurrences; metastases; plasma; and PT:
primary tumors). Each miRNA expression level was tagged
by its relationship with adverse clinical outcomes (shorter
PFS, OS, or DFS). The statistical significance of each miRNA
was annotated as superscript: for log-rank test, ∗, <0.05; ∗∗,
<0.01; ∗∗∗, <0.001; and for COX test, #, <0.05; ##, <0.01;
###, <0.001. The origin of these studies was listed as the
two-letter codes for countries and regions: AT, Austria;
CN, China; DK, DENMARK; CZ, Czech; ES, Spain; FR,
France; DE, Germany; JP, Japan; HK, Hong Kong; NL, Neth-
erlands, NO, Norway; ES, Spain; NL, Netherlands; and PL,
Poland.

The top 20 KEGG pathways based on fluoropyrimidine-
efficacy-related miRNAs from the two subgroups (with
metastasis and without metastasis) are listed in Table 4. Both
enrichment results contain pathways directly related to the
disease (including types of cancers). Many pathways regulate
the normal cellular process, the abnormality of which might
be the susceptible factor for cancer development. For miR-
NAs from the group without metastasis CRC, besides disease

or cancer pathways, the FoxO signaling pathway, MAPK sig-
naling pathway, autophagy, and PI3K-Akt signaling path-
way are enriched, and their rank is within the top ten of all
the enriched pathways. On the other hand, disease (espe-
cially cancer) pathways contribute the most to the miRNAs
in the metastasis CRC cohort. The ranks of the FoxO signal-
ing pathway and the MAPK signaling pathway were reduced
from 2 to 4 and 4 to 17, respectively.

In addition, those fluoropyrimidine-efficacy-related
miRNAs from the two subgroups were also subjected to
GO term enrichment (Table 5). Based on the results, miR-
NAs from the two cohorts showed similar cellular compo-
nent (CC) and molecular functions (MF) characteristics.
For CC, they both have intracellular organelle, membrane-
bounded organelle, and intracellular membrane-bounded
organelle. For MF, they both have enzyme binding, regula-
tory region nucleic acid binding, and transcription regula-
tory region sequence-specific DNA binding. However, they
showed quite a different biological process (BP). MiRNAs
from the cohort without metastasis patients are mainly
enriched in metabolic-related functions, such as regulating
the cellular metabolic process, the primary metabolic pro-
cess, and the nitrogen compound metabolic process. On
the other hand, miRNA from the cohort with metastasis
patients is mainly enriched in cell cycle control mechanisms,
such as G1/S transition of mitotic cell cycle, mitotic cell
cycle, cell morphogenesis, and cell morphogenesis involved
in differentiation.

4. Discussion

This study first summarized a list of 42 miRNAs that may
affect fluoropyrimidine drug metabolism based on litera-
ture research. Subsequently, we have created another list
of 41 miRNAs related to fluoropyrimidine drugs’ efficacy
based on clinical trials according to the Cochrane frame-
work. By comparing the two sets, we found that miR-21,
miR-215, miR-218, miR-326, and miR-328 could affect
the metabolic pathways of 5-FU and their expressions
were associated with CRC survival after fluoropyrimidine
adjuvant chemotherapy.

MiR21 is a marker for better efficacy of fluoropyrimi-
dine drugs for CRC patients with and without metastasis.
It can suppress the expression of dihydropyrimidine dehy-
drogenase (DYPD) and thymidine phosphorylase (TP)
[30]. DPYD is a crucial enzyme in fluoropyrimidine drugs
metabolism [31], which takes charge of the detoxifying
process of 5-FU in the liver. A low DPD level can increase
internal exposure to 5-FU and its cytotoxicity, resulting in
better efficacy. On the other hand, Capecitabine is almost
wholly absorbed in the gastrointestinal tract, metabolized
to 5-deoxy 5-cytosine nucleoside (5’-DFCR), and finally
converted into 5-FU by thymidine phosphorylase (TP)
[32, 33]. A low TP level may reduce the catabolism of
fluoropyrimidine drug, resulting in extended exposure of
5-FU and its cytotoxic intermediate metabolites. Further-
more, several pieces of literature from Czech [34], German
[35], Japanese [35], and Chinese [36] have confirmed that
the increased expression of miR-21 was significantly

Articles identified by 
searching strategy (N = 107)

Articles lack of clinical data 
(N = 37)

Review articles (N = 5)

Articles not dividing patients 
with miRNA expressions (N = 14)

Articles for further evaluation 
(N = 65)

Articles irrelevant to 5-FU
based chemotherapy (N = 16)

Articles included (N = 31)

Title & Abstract filter

Full text filter

Figure 1: The literature searching and filtering workflow.
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correlated with good outcomes of adjuvant chemotherapy.
Thus, miR-21 is a solid marker for using fluoropyrimidine
drugs after CRC surgery.

For miR-215 and miR-218, they are positively related
to better chemotherapy response in patients without
metastasis. In fluoropyrimidine drug metabolism, they
suppress the expression of thymidylate synthetase (TS)
[37, 38]. TS is an enzyme that catalyzes the conversion
of deoxyuridine monophosphate (dUMP) to deoxythymi-
dine monophosphate (dTMP) (Figure 2). The dTMP is
the fundamental building material for DNA and RNA syn-
thesis. Suppressed TS expression can cause the cells to be
more sensitive to genotoxic stress, further activating pro-
grammed cell death pathways, resulting in DNA fragmen-
tation [39]. MiR-215 and miR218 could make the tumor
cells more sensitive to chemotherapy. Three clinical trials
from different regions have indicated that induced expres-
sion of miR-215 and miR-218 could lead to a good cura-
tive effect and survival [40–42].

For miR-326 and miR-328, their high plasma expres-
sions are positively related to good chemotherapy response
in patients with/without metastasis [43]. In fluoropyrimi-
dine drug metabolism, miR-326 and miR-328 can suppress
ATP-binding cassette (ABC) subfamily C member 1
(ABCC1) and ATP-binding cassette (ABC) subfamily G
member 2(ABCG2), subsequently. This may lead to the
increased intracellular concentration of fluoropyrimidine
drugs and their metabolites. And the induced cytotoxicity
increases as well (Figure 2). Since the clinical evidence was
concluded based on plasma samples, miR-326 and miR-
328 may cause an overall suppressed efflux of fluoropyrimi-
dine drugs and their metabolites.

Of the 42 miRNAs that may affect fluoropyrimidine
drug metabolism, 37 lack direct clinical evidence on their
predictive effect on efficacy of fluoropyrimidine drugs.
Detection limits and other experimental factors might limit
the discovery of their potential prediction effects. They could
be screened as potential biomarkers by future properly
designed clinical experiments.

For the 41 miRNAs related to fluoropyrimidine drugs’
efficacy based on clinical trials, 36 of them may not affect
fluoropyrimidine drug metabolism enzymes. This result
suggests that proteins other than those from the fluoropyr-
imidine drug metabolism pathway may also contribute
equally or even more to the efficacy of fluoropyrimidine
drugs. Consistent with this finding, we have found that
several urine endogenous metabolites can predict fluoro-
pyrimidine drugs’ adverse effects [44]. These adverse
effects, such as hand-foot syndrome, are predictors of bet-
ter chemotherapy response alone [45, 46]. Based on the
KEGG pathway and GO term enrichment results, miRNAs
screened from the patients with and without metastasis
showed similar results. These two subgroups of miRNA
enrich both the FoxO signaling pathway and the MAPK
signaling pathway. The abnormality of these pathways is
a susceptible factor for cancer development. The difference
is that the latter subgroup of miRNAs enriched more
disease or cancer pathways, which may result from the
advanced stage of the tumor.

In the future, the studies on miRNA biomarkers could be
improved in the following aspects. We think what comes
first is that more biological mechanism experiments are
needed to reveal the actual function of miRNA markers in
cancer development or drug pharmacology. Since a number
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Figure 2: Metabolic pathway map of 5-FU. Abbreviations: 5-FU: 5-Fluorouracil; CES1: recombinant carboxylesterase 1; UPP1: uridine
phosphorylase 1; 5′-dFCR: 5′-deoxy-5-fluorocytidine; CDA: cytidine deaminase; TYMP: thymidine phosphorylase; DPYS:
dihydropyrimidinase; FUPA: 5-fluorouracil-hydantoic-acid; UPB1: recombinant beta-ureidopropionase; TK1: thymidine kinase 1; UMPS:
uridine monophosphate synthetase; PPAT: phosphoribosyl pyrophosphate amido transferase; DHFU: dihydrofluorouracil; FUR:
fluorouridine; FUMP: fluorouridine monophosphate; FUDP: fluorouridine diphospho; FUTP: fluorouridine triphosphate; FdUDP:
fluorodeoxyuridine diphospho; FdUMP: fluorodeoxyuridine monophosphate; FdUTP: fluorodeoxyuridine triphosphate; dUMP: deoxy-
uridine monophosphate; and dTMP: deoxy-thymidine monophosphate.
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Table 2: The list of miRNAs affecting the expression of 5-FU metabolic enzymes.

Affected protein MicroRNA Related cancer (cell lines or patients)

ABCC5(+) miR-101 [74] HCC

ABCC1(+) miR-199 [74] HCC

ABCC1(-) miR-326 [75] Breast cancer

ABCC2(-) miR-397 [76] Hepatoblastoma cell

ABCC3(-), ABCC6(-) miR-9 [77] Glioma cell

ABCC4(-) miR-125 [74] Hepatocellular carcinoma

ABCG2(-) miR-212 [78] Myelogenous leukemia

ABCG2(-) miR-328 [78–81] Breast cancer, retinoblastoma, myelogenous leukemia, and CRC

ABCG2(-) miR-519 [79, 82, 83] Colon cancer, breast cancer, and retinoblastoma

DPYD(-) miR-134 [84] HCC, lung cancer

DPYD(-) miR-494 [85] Colon cancer

DPYD(-) miR-582 [84] HCC

DPYD(-), P-gp(-) miR-302 [86, 87] HCC and breast cancer

P-gp(-) miR-103 [88] Gastric cancer

P-gp(-) miR-107 [88] Gastric cancer

P-gp(-) miR-129 [89] Gastric cancer

P-gp(+) miR-130 [90] Ovarian cancer

P-gp(-) miR-137 [91] Breast cancer

P-gp(-) miR-138 [92] Leukemia

P-gp(-) miR-298 [93] Breast cancer

P-gp(-) miR-30 [94] Gastric cancer

P-gp(-) miR-331 [95] Chronic myelogenous leukemia

P-gp(-), ABCB1(-) miR-451[96–98] Breast cancer, CRC

P-gp(-) miR-506 [99] CRC

P-gp(-), ABCG2(-) miR-145 [100, 101] Colon carcinoma

P-gp(-), ABCG2(-),
ABCG5(-)

miR-200 [102, 103] Breast cancer and melanomas

TP(-), DPYD(-) miR-21 [30] CRC

TS(-) miR-192 [104] CRC

TS(-) miR-196 [37] Rectal cancer

TS(-) miR-197 [105] CRC

TS(-) miR-203 [106] CRC

TS(-) miR-215 [37, 104, 107–110] CRC, soft tissue sarcoma, renal cancer, and head and neck cancer

P-gp(+) miR-218 [38] CRC

TS(-) miR-24 [107] Soft tissue sarcoma

TS(-) miR-433 [111] HCC

TS(-) miR-450 [37] Rectal cancer

TS(-) miR-99 [37] Rectal cancer

ABCC5(-)TS(-) Let-7e [37, 74] Rectal cancer, HCC

TS(-), ABCC3(-) miR-192 [104, 112] CRC and esophageal adenocarcinoma

TS(-), ABCC3(-) miR-193 [112] Esophageal adenocarcinoma

TS(-), ABCC3(-) miR-378 [112] Esophageal adenocarcinoma

TS(-), ABCG2(-) miR-520 [80, 113–115] HCC, pancreatic cancer, and retinoblastoma

TS(-), DPYD(-), P-gp(-
), ABCC3(-)

miR-27 [37, 38, 74, 93, 95, 96,
102, 105, 116, 117]

CRC, HCC, lung cancer, gastric cancer, breast cancer, esophageal
adenocarcinoma, leukemia, and ovarian cancer

The effect of miRNAs on each enzyme’s expression was noted as “+” for inducing and “-” for suppressing. Abbreviations: CRC: colorectal cancer; HCC:
hepatocellular carcinoma.
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Table 3: The list of miRNAs relating to the efficacy of 5-FU.

miRNA N Region Sources (N) Survival Expression Stage (N)

Without metastasis

miR-1300 [54] 85 PL PT DMFS# — I-II

miR-939 [54] 85 PL PT DMFS# — I-II

miR-135b [54] 85 PL PT DMFS## + I-II

miR-1296 [54] 85 PL PT DMFS## + I-II

miR-539 [54] 85 PL PT DMFS## + I-II

miR-572 [54] 85 PL PT DMFS## — I-II

miR-21 [35] 145 DE PT OS# + II

miR-215 [40] 71 ES PT DFS∗∗ ,## + II

miR-103a-3p [40] 71 ES PT DFS∗ ,# + II

miR-103a-3p [40] 71 ES PT DFS# + II

miR-143-5p [40] 71 ES PT DFS# + II

miR-103a-3p [40] 71 ES PT DFS# + II

miR-143-5p [40] 71 ES PT DFS# + II

miR-143-5p [40] 71 ES PT DFS∗ ,# + II

miR-21 [36] 125 CN PT DFS∗∗∗ + II-III

miR-21 [35] 87 JP PT OS# + II-III

miR-218 [40] 63 CN PT PFS∗∗/OS∗∗∗ — II-III

miR-17-5p [55] 240 CN PT OS## + II-III

miR-320e [56] 167 ES PT OS##/DFS## + II-III

miR-625-3p [57] 77 DK PT OS∗ + II-III

miR-148a [58] 201 ES PT DFS# — II-III

miR-148a [58] 201 ES PT DFS# — II-III

miR-141 [59] 56 ES Plasma DFS∗/OS∗ — I-II (35), III(15)

miR-200c [59] 56 ES Plasma DFS∗/OS∗ — I-II (35), III(15)

miR-342-3p [60] 322 CN Plasma DFS###/OS## + I-III

miR-652-3p [60] 322 CN Plasma DF ###/OS## + I-III

miR-501-3p [60] 322 CN Plasma DFS###/OS## + I-III

miR-328-3p [60] 322 CN Plasma DFS###/OS## + I-III

miR-4772-3p [61] 84 US Plasma OS# — II-III

With metastasis

miR-126 [62] 83 DK PT OS∗∗/PFS∗∗∗ + I-III (3), IV(86)

miR-199b [63] 60 CN PT OS∗ ,# — I-IV

miR-17-5p [64] 81 CN PT OS∗∗∗ ,# + I-IV

miR-143 [65] 52 AT PT PFS∗ — II-IV

miR-21 [66] 32 JP PT PFS∗ + IV

miR-31-3p [67] 45 FR PT PFS∗ + IV

miR-107 [68] 78 ES PT PFS# + IV

miR-889 [68] 78 ES PT PFS#/OS## — IV

miR-337-5p [68] 78 ES PT PFS## + IV

miR-148a [58] 71 ES PT OS∗ ,# — IV

miR-99a-3p [68] 78 ES PT PFS# + IV

miR-31 [69] 221 CN PT, AMT DFS∗/OS∗ + II-IV

miR-365 [70] 76 CN PT, AMT DFS∗ — I-IV

miR-133a [71] 125 HK PT, AMT OS∗ + I-IV

miR-20a-5p [72] 88 NZ PT (80), LR (3), metastases (5) PFS# + I-IV

miR-92a-3p [72] 88 NZ PT (80), LR (3), metastases (5) PFS# + I-IV
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of the miRNA markers were only derived from clinical
screening studies, they could be either the actual markers
or merely the outcome of cancer development or drug
metabolism. This question is complicated because one
miRNA may affect many genes, and several miRNAs may
regulate one gene. A review by Xing Chen may provide valu-
able guidance for future research on this aspect. This review
summarized and discussed not just the databases of the
experimentally validated or potential small molecule-
miRNA associations but also four experimental techniques
used in the past few years to search for small-molecule
inhibitors of miRNAs [47]. Secondly, with the rapid

advances in omics techniques, future clinical screening stud-
ies could be designed for multi-omics biomarkers, including
miRNA, since other biomolecules such as DNA, proteins,
and metabolite also contribute to the final phenotype. Last
but not least, screening miRNAs from normal tissues other
than tumors may provide more informative clues. Accumu-
lating evidence suggests that the efficacy and safety of che-
motherapy are not solely dependent on drug metabolism
but also on the overall physiological functions [44, 48–53].
Individual differences in cell maintenance, proliferation,
and immune function also influence the response to
chemotherapy.

Table 3: Continued.

miRNA N Region Sources (N) Survival Expression Stage (N)

miR-92b-3p [72] 88 NZ PT (80), LR (3), metastases (5) PFS# + I-IV

miR-30a-5p [72] 88 NZ PT (80), LR (3), metastases (5) PFS# + I-IV

miR-98-5p [72] 88 NZ PT (80), LR (3), metastases (5) PFS# + I-IV

miR-17-5p [72] 88 NZ PT (80), LR (3), metastases (5) PFS# + I-IV

miR-126 [73] 68 DK Plasma PFS∗ + IV

miR-148 [43] 150 NO Plasma PFS## + IV

miR-326 [43] 150 NO Plasma PFS##/OS## + IV

miR-27b [43] 150 NO Plasma PFS## + IV

Table 4: Top 20 significant KEGG pathways enriched by fluoropyrimidine drug efficacy–related miRNAs in CRC cohorts with/without
metastasis.

Without metastasis With metastasis
KEGG pathway Genes Ratio (%) P value KEGG pathway Genes Ratio (%) P value

MicroRNAs in cancer 62 20.00 9.87E-11 Chronic myeloid leukemia 22 28.95 6.36E-09

FoxO signaling pathway 36 27.48 7.13E-10 Cellular senescence 30 18.75 2.46E-07

Cellular senescence 40 25.00 1.21E-09 TGF-beta signaling pathway 22 23.40 5.48E-07

MAPK signaling pathway 57 19.39 3.38E-09 FoxO signaling pathway 26 19.85 8.85E-07

Autophagy 33 24.09 2.47E-07 Non-small cell lung cancer 18 27.27 1.09E-06

Proteoglycans in cancer 42 20.49 3.02E-07 MicroRNAs in cancer 43 13.87 1.31E-06

PI3K-Akt signaling pathway 60 16.95 3.1E-07 Pancreatic cancer 19 25.00 1.99E-06

Hepatitis B 36 22.22 4.58E-07
Signaling pathways regulating
pluripotency of stem cells

26 18.18 5.82E-06

AGE-RAGE signaling pathway
in diabetic complications

26 26.00 2.53E-06 Pathways in cancer 59 11.11 1.22E-05

Pancreatic cancer 22 28.95 3.94E-06 Proteoglycans in cancer 31 15.12 2.4E-05

Pathways in cancer 76 14.31 5.99E-06 Hepatocellular carcinoma 27 16.07 4.4E-05

Colorectal cancer 23 26.74 9.64E-06 Glioma 17 22.67 5.26E-05

Kaposi sarcoma-associated
herpesvirus infection

37 19.58 9.82E-06 Hepatitis B 26 16.05 7.44E-05

Glioma 21 28.00 1.52E-05 Cell cycle 22 17.74 9.85E-05

Human cytomegalovirus infection 41 18.22 1.78E-05 Prostate cancer 19 19.59 0.000119

Chronic myeloid leukemia 21 27.63 1.94E-05 MAPK signaling pathway 37 12.59 0.000177

Bladder cancer 15 36.59 2.18E-05 Gastric cancer 24 16.11 0.000187

Prostate cancer 24 24.74 2.41E-05
AGE-RAGE signaling pathway

in diabetic complications
19 19.00 0.00019

Genes related to miRNA from the two CRC cohorts were subjected to KEGG pathway enrichment analysis. The top 20 pathways with gene numbers higher
than five and P values less than 0.05 (corrected by the two-side Bonferroni test) were listed here.
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5. Conclusions

In conclusion, we have found that 41 miRNAs are related to
fluoropyrimidine drugs’ efficacy with solid clinical evidence.
They are promising candidate markers for predicting fluor-
opyrimidine drugs’ efficacy in the future clinical application
of personalized medicine. The miRNAs screened from
metastasis CRC patients have a more critical role in cancer
development based on bioinformatic analysis than those
screened from non-metastasis CRC patients. Among the 41
miRNAs, miR-21, miR-215, and miR-218 can suppress
fluoropyrimidine drugs’ catabolism; miR-326 and miR-328
can reduce the efflux of fluoropyrimidine drugs. Together,
these five miRNAs can increase the intracellular levels of
cytotoxic metabolites of fluoropyrimidine drugs, leading to
better chemotherapy response.
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